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Abstract. Adversarial attacks provide a good way to study the robust-
ness of deep learning models. One category of methods in transfer-based
black-box attack utilizes several image transformation operations to im-
prove the transferability of adversarial examples, which is effective, but
fails to take the specific characteristic of the input image into considera-
tion. In this work, we propose a novel architecture, called Adaptive Im-
age Transformation Learner (AITL), which incorporates different image
transformation operations into a unified framework to further improve
the transferability of adversarial examples. Unlike the fixed combina-
tional transformations used in existing works, our elaborately designed
transformation learner adaptively selects the most effective combination
of image transformations specific to the input image. Extensive experi-
ments on ImageNet demonstrate that our method significantly improves
the attack success rates on both normally trained models and defense
models under various settings.

Keywords: Adversarial Attack, Transfer-based Attack, Adaptive Image
Transformation

1 Introduction

The field of deep neural networks has developed vigorously in recent years. The
models have been successfully applied to various tasks, including image clas-
sification [22,45,67], face recognition [34,50,12], semantic segmentation [3,4,5],
etc. However, the security of the DNN models raises great concerns due to that
the model is vulnerable to adversarial examples [46]. For example, an image with
indistinguishable noise can mislead a well-trained classification model into the
wrong category [19], or a stop sign on the road with a small elaborate patch
can fool an autonomous vehicle [18]. Adversarial attack and adversarial defense
are like a spear and a shield. They promote the development of each other and
together improve the robustness of deep neural networks.

Our work focuses on a popular scenario in the adversarial attack, i.e.,
transfer-based black-box attack. In this setting, the adversary can not get ac-
cess to any information about the target model. Szegedy et al. [46] find that
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Table 1: The list of image transformation methods used in various input-
transformation-based adversarial attack methods

Method Transformation Method Transformation

DIM [61] Resize CIM [63] Crop
TIM [15] Translate Admix [52] Mixup
SIM [33] Scale AITL (ours) Adaptive

adversarial examples have the property of cross model transferability, i.e., the
adversarial example generated from a source model can also fool a target model.
To further improve the transferability of adversarial examples, the subsequent
works mainly adopt different input transformations [61,15,33,52] and modified
gradient updates [14,33,68,63]. The former improves the transferability of ad-
versarial examples by conducting various image transformations (e.g., resizing,
crop, scale, mixup) on the original images before passing through the classifier.
And the latter introduces the idea of various optimizers (e.g., momentum and
NAG [43], Adam [28], AdaBelief [66]) into the basic iterative attack method [29]
to improve the stability of the gradient and enhance the transferability of the
generated adversarial examples.

Existing transfer-based attack methods have studied a variety of image trans-
formation operations, including resizing [61], crop [63], scale [33] and so on (as
listed in Tab. 1). Although effective, we find that almost all existing works of
input-transformation-based methods only investigate the effectiveness of fixed
image transformation operations respectively (see (a) and (b) in Fig. 1), or sim-
ply combine them in sequence (see (c) in Fig. 1) to further improve the trans-
ferability of adversarial examples. However, due to the different characteristics
of each image, the most effective combination of image transformations for each
image should also be different.

To solve the problem mentioned above, we propose a novel architecture called
Adaptive Image Transformation Learner (AITL), which incorporates different
image transformation operations into a unified framework to adaptively select
the most effective combination of input transformations towards each image for
improving the transferability of adversarial examples. Specifically, AITL con-
sists of encoder and decoder models to convert discrete image transformation
operations into continuous feature embeddings, as well as a predictor, which
can predict the attack success rate evaluated on black-box models when incor-
porating the given image transformations into MIFGSM [14]. After the AITL
is well-trained, we optimize the continuous feature embeddings of the image
transformation through backpropagation by maximizing the attack success rate,
and then use the decoder to obtain the optimized transformation operations.
The adaptive combination of image transformations is used to replace the fixed
combinational operations in existing methods (as shown in (d) of Fig. 1). The
subsequent attack process is similar to the mainstream gradient-based attack
method [29,14].
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Fig. 1: Comparison between existing input-transformation-based black-box ad-
versarial attack methods and our work. Different colors of the small circles in
the red dotted box correspond to different image transformation operations. Ex-
isting works only conduct fixed image transformation once (as (a)) or repeat
several times in parallel (as (b)), or simply combine multiple image transforma-
tion operations in the fixed sequence (as (c)). Our proposed method (as (d))
takes the characteristic of the current input image into consideration, utilizing
an Adaptive Image Transformation Learner (AITL) to achieve the most effective
combination of image transformations for each image, which can further improve
the transferability of generated adversarial examples

Extensive experiments on ImageNet [42] demonstrate that our method not
only significantly improves attack success rates on normally trained models, but
also shows great effectiveness in attacking various defense models. Especially,
we compare our attack method with the combination of state-of-the-art meth-
ods [14,61,33,63,52] against eleven advanced defense methods and achieve a sig-
nificant improvement of 15.88% and 5.87% on average under the single model
setting and the ensemble of multiple models setting, respectively. In addition, we
conclude that Scale is the most effective operation, and geometry-based image
transformations (e.g., resizing, rotation, shear) can bring more improvement on
the transferability of the adversarial examples, compared to other color-based
image transformations (e.g., brightness, sharpness, saturation).

We summarize our main contributions as follows:

1. Unlike the fixed combinational transformation used in existing works, we
incorporate different image transformations into a unified framework to adap-
tively select the most effective combination of image transformations for the
specific image.

2. We propose a novel architecture called Adaptive Image Transformation
Learner (AITL), which elaborately converts discrete transformations into con-
tinuous embeddings and further adopts backpropagation to achieve the optimal
solutions, i.e., a combination of effective image transformations for each image.
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3. We conclude that Scale is the most effective operation, and geometry-
based image transformations are more effective than other color-based image
transformations to improve the transferability of adversarial examples.

2 Related Work

2.1 Adversarial Attack

The concept of adversarial example is first proposed by Szegedy et al. [46].
The methods in adversarial attack can be classified as different cate-
gories according to the amount of information to the target model the
adversary can access, i.e., white-box attack [19,38,37,1,2,9,47,17], query-
based black-box attack [6,49,24,31,7,16,36] and transfer-based black-box at-
tack [14,61,15,56,30,21,33,51,58]. Since our work focuses on the area of transfer-
based black-box attacks, we mainly introduce the methods of transfer-based
black-box attack in detail.

The adversary in transfer-based black-box attack can not access any informa-
tion about the target model, which only utilizes the transferability of adversarial
example [19] to conduct the attack on the target model. The works in this task
can be divided into two main categories, i.e., modified gradient updates and
input transformations.

In the branch of modified gradient updates, Dong et al. [14] first propose
MIFGSM to stabilize the update directions with a momentum term to improve
the transferability of adversarial examples. Lin et al. [33] propose the method of
NIM, which adapts Nesterov accelerated gradient into the iterative attacks. Zou
et al. [68] propose an Adam [28] iterative fast gradient tanh method (AI-FGTM)
to generate indistinguishable adversarial examples with high transferability. Be-
sides, Yang et al. [63] absorb the AdaBelief optimizer into the update of the
gradient and propose ABI-FGM to further boost the success rates of adversarial
examples for black-box attacks. Recently, Wang et al. propose the techniques of
variance tuning [51] and enhanced momentum [53] to further enhance the class
of iterative gradient-based attack methods.

In the branch of various input transformations, Xie et al. [61] propose DIM,
which applies random resizing to the inputs at each iteration of I-FGSM [29]
to alleviate the overfitting on white-box models. Dong et al. [15] propose a
translation-invariant attack method, called TIM, by optimizing a perturbation
over an ensemble of translated images. Lin et al. [33] also leverage the scale-
invariant property of deep learning models to optimize the adversarial perturba-
tions over the scale copies of the input images. Further, Crop-Invariant attack
Method (CIM) is proposed by Yang et al. [63] to improve the transferability of
adversarial. Contemporarily, inspired by mixup [65], Wang et al. [52] propose
Admix to calculate the gradient on the input image admixed with a small por-
tion of each add-in image while using the original label of the input, to craft more
transferable adversaries. Besides, Wu et al. [58] propose ATTA method, which
improves the robustness of synthesized adversarial examples via an adversarial
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transformation network. Recently, Yuan et al. [64] propose AutoMA to find the
strong model augmentation policy by the framework of reinforcement learning.
The works most relevant to ours are AutoMA [64] and ATTA [58] and we give a
brief discussion on the differences between our work and theirs in Appendix B.

2.2 Adversarial Defense

To boost the robustness of neural networks and defend against adversarial at-
tacks, numerous methods of adversarial defense have been proposed.

Adversarial training [19,29,37] adds the adversarial examples generated by
several methods of adversarial attack into the training set, to boost the robust-
ness of models. Although effective, the problems of huge computational cost and
overfitting to the specific attack pattern in adversarial training receive increas-
ing concerns. Several follow-up works [41,37,48,54,13,40,57,55] aim to solve these
problems. Another major approach is the method of input transformation, which
preprocesses the input to mitigate the adversarial effect ahead, including JPEG
compression [20,35], denoising [32], random resizing [60], bit depth reduction [62]
and so on. Certified defense [27,59,8,25] attempts to provide a guarantee that
the target model can not be fooled within a small perturbation neighborhood
of the clean image. Moreover, Jia et al. [26] utilize an image compression model
to defend the adversarial examples. Naseer et al. [39] propose a self-supervised
adversarial training mechanism in the input space to combine the benefit of both
the adversarial training and input transformation method. The various defense
methods mentioned above help to improve the robustness of the model.

3 Method

In this section, we first give the definition of the notations in the task. And then
we introduce our proposed Adaptive Image Transformation Learner (AITL),
which can adaptively select the most effective combination of image transforma-
tions used during the attack to improve the transferability of generated adver-
sarial examples.

3.1 Notations

Let x ∈ X denote a clean image from a dataset of X , and y ∈ Y is the correspond-
ing ground truth label. Given a source model f with parameters θ, the objective
of adversarial attack is to find the adversarial example xadv that satisfies:

f(xadv) ̸= y, s.t.∥x− xadv∥∞ ≤ ϵ, (1)

where ϵ is a preset parameter to constrain the intensity of the perturbation. In
implementation, most gradient-based adversaries utilize the method of maximiz-
ing the loss function to iteratively generate adversarial examples. We here take
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the widely used method of MIFGSM [14] as an example:

gt+1 = µ · gt +
∇xadv

t
J(f(xadv

t ), y)

∥∇xadv
t

J(f(xadv
t ), y)∥1

, (2)

xadv
t+1 = xadv

t + α · sign(gt+1), (3)

g0 = 0, xadv
0 = x, (4)

where gt is the accumulated gradients, xadv
t is the generated adversarial example

at the time step t, J(·) is the loss function used in classification models (i.e., the
cross entropy loss), µ and α are hyperparameters.

3.2 Overview of AITL

Existing works of input-transformation-based methods have studied the influence
of some input transformations on the transferability of adversarial examples.
These methods can be combined with the MIFGSM [14] method and can be
summarized as the following paradigm, where the Eq. (2) is replaced by:

gt+1 = µ · gt +
∇xadv

t
J(f(T (xadv

t )), y)

∥∇xadv
t

J(f(T (xadv
t )), y)∥1

, (5)

where T represents different input transformation operations in different method
(e.g., resizing in DIM [61], translation in TIM [15], scaling in SIM [33], cropping
in CIM [63], mixup in Admix [52]).

Although existing methods improve the transferability of adversarial exam-
ples to a certain extent, almost all of these methods only utilize different image
transformations respectively and haven’t systematically studied which transfor-
mation operation is more suitable. Also, these methods haven’t considered the
characteristic of each image, but uniformly adopt a fixed transformation method
for all images, which is not reasonable in nature and cannot maximize the trans-
ferability of the generated adversarial examples.

In this paper, we incorporate different image transformation operations into
a unified framework and utilize an Adaptive Image Transformation Learner
(AITL) to adaptively select the suitable input transformations towards different
input images (as shown in (d) of Fig. 1). This unified framework can analyze the
impact of different transformations on the generated adversarial examples.

Overall, our method consists of two phases, i.e., the phase of training AITL
to learn the relationship between various image transformations and the corre-
sponding attack success rates, and the phase of generating adversarial examples
with well-trained AITL. During the training phase, we conduct encoder and
decoder networks, which can convert the discretized image transformation oper-
ations into continuous feature embeddings. In addition, a predictor is proposed
to predict the attack success rate in the case of the original image being firstly
transformed by the given image transformation operations and then attacked
with the method of MIFGSM [14]. After the training of AITL is finished, we
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Fig. 2: The diagram of Adaptive Image Transformation Learner in the process
of training

maximize the attack success rate to optimize the continuous feature embeddings
of the image transformation through backpropagation, and then use the decoder
to obtain the optimal transformation operations specific to the input, and incor-
porate it into MIFGSM to conduct the actual attack.

In the following two subsections, we will introduce the two phases mentioned
above in detail, respectively.

3.3 Training AITL

The overall process of training AITL is shown in Fig. 2. We first randomly select
M image transformations t1, t2, · · · , tM from the image transformation opera-
tion zoo (including both geometry-based and color-based operations, for details
please refer to Appendix A.3) based on uniform distribution to compose an image
transformation combination. We then discretize different image transformations
by encoding them into one-hot vectors c1, c2, · · · , cM (e.g., [1, 0, 0, · · · ] represents
resizing, [0, 1, 0, · · · ] represents scaling). An embedding layer then converts dif-
ferent transformation operations into their respective feature vectors, which are
concatenated into an integrated input transformation feature vector a:

a1, a2, · · · , aM = Embedding(c1, c2, · · · , cM ), (6)

a = Concat(a1, a2, · · · , aM ). (7)

The integrated input transformation feature vector then goes through a trans-
formation encoder fen and decoder fde in turn, so as to learn the continuous
feature embeddings htrans in the intermediate layer:

htrans = fen(a), (8)

a′ = fde(htrans). (9)
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The resultant decoded feature a′ is then utilized to reconstruct the input trans-
formation one-hot vectors:

c′1, c
′
2, · · · , c′M = FC(a′), (10)

where FC represents a fully connected layer with multiple heads, each repre-
sents the reconstruction of an input image transformation operation. On the
other hand, a feature extractor fimg is utilized to extract the image feature
of the original image himg, which is concatenated with the continuous feature
embeddings of image transformation combination htrans:

himg = fimg(x), (11)

hmix = Concat(htrans, himg). (12)

Then the mixed feature is used to predict the attack success rate pasr through an
attack success rate predictor fpre in the case of the original image being firstly
transformed by the input image transformation combination and then attacked
with the method of MIFGSM:

pasr = fpre(hmix). (13)

Loss Functions. The loss function used to train the network consists of
two parts. The one is the reconstruction loss Lrec to constrain the reconstructed
image transformation operations c′1, c

′
2, · · · , c′M being consistent with the input

image transformation operations c1, c2, · · · , cM :

Lrec = −
M∑
i=1

cTi log c′i, (14)

where T represents the transpose of a vector. The other one is the prediction
loss Lasr, which aims to ensure that the attack success rate predicted by the
ASR predictor pasr is close to the actual attack success rate qasr.

Lasr = ∥pasr − qasr∥2. (15)

The actual attack success rate qasr is achieved by evaluating the adversarial
example xadv, which is generated through replacing the fixed transformation
operations in existing methods by the given input image transformation combi-
nation (i.e., T = tM ◦ · · · ◦ t2 ◦ t1 in Eq. (5)) on n black-box models f1, f2, · · · , fn
(as shown in the bottom half in Fig. 2):

qasr =
1

n

n∑
i=1

1(fi(x
adv) ̸= y). (16)

And the total loss function is the sum of above introduced two items:

Ltotal = Lrec + Lasr. (17)

The entire training process is summarized in Algorithm 1 in the appendix.
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Transformation Learner

3.4 Generating Adversarial Examples with AITL

When the training of Adaptive Image Transformation Learner is finished, it
can be used to adaptively select the appropriate combination of image transfor-
mations when conducting adversarial attacks against any unknown model. The
process has been shown in Fig. 3.

For an arbitrary input image, we can not identify the most effective input
transformation operations that can improve the transferability of generated ad-
versarial examples ahead. Therefore, we first still randomly sample M initial
input transformation operations t1, t2, · · · , tM , and go through a forward pass
in AITL to get the predicted attack success rate pasr corresponding to the input
transformation operations. Then we iteratively optimize the image transforma-
tion feature embedding htrans by maximizing the predicted attack success rate
for r times:

ht+1
trans = ht

trans + γ · ∇ht
trans

pasr, (18)

h0
trans = htrans, (19)

where γ is the step size in each optimizing step. Finally we achieve the optimized
image transformation feature embedding hr

trans. Then we utilize the pre-trained
decoder to convert the continuous feature embedding into specific image trans-
formation operations:

aopt = fde(h
r
trans), (20)

c̃1, c̃2, · · · , c̃M = FC(aopt). (21)

The resultant image transformation operations c̃1, c̃2, · · · , c̃M achieved by AITL
are considered to be the most effective combination of image transformations
for improving the transferability of generated adversarial example towards the
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specific input image. Thus we utilize these image transformation operations to
generate adversarial examples. When combined with MIFGSM [14], the whole
process can be summarized as:

c̃1, c̃1, · · · , c̃M = AITL(x), (22)

gt+1 = µ · gt +
∇xadv

t
J(f(c̃M ◦ · · · ◦ c̃1(xadv

t )), y)

∥∇xadv
t

J(f(c̃M ◦ · · · ◦ c̃1(xadv
t )), y)∥1

, (23)

xadv
t+1 = xadv

t + α · sign(gt+1), (24)

g0 = 0, xadv
0 = x. (25)

Since the random image transformation operations contain randomness (e.g.,
the degree in rotation, the width and height in resizing), existing works [33,63,52]
conduct these transformation operations multiple times in parallel during each
step of the attack to alleviate the impact of the instability caused by random-
ness on the generated adversarial examples (as shown in (b) of Fig. 1). Similar
to previous works, we also randomly sample the initial image transformation
combination multiple times, and then optimize them to obtain the optimal com-
bination of image transformation operations respectively. The several optimal
image transformation combinations are used in parallel to generate adversarial
examples (as shown in the bottom half in Fig. 3). The entire process of using
AITL to generate adversarial examples is formally summarized in Algorithm 2
in the appendix.

The specific network structure of the entire framework is shown in Appendix
A.4. The ASR predictor, Transformation Encoder and Decoder in our AITL
consist of only a few FC layers. During the iterative attack, our method only
needs to infer once before the first iteration. So our AITL is a lightweight method,
and the extra cost compared to existing methods is negligible.

4 Experiments

In this section, we first introduce the settings in the experiments in Sec. 4.1.
Then we demonstrate the results of our proposed AITL method on the single
model attack and an ensemble of multiple models attack, respectively in Sec. 4.2.
We also analyze the effectiveness of different image transformation methods in
Sec. 4.3. In Appendix C, more extra experiments are provided, including the
attack success rate under different perturbation budgets, the influence of some
hyperparameters, more experiments on the single model attack, the results of
AITL combined with other base attack methods and the visualization of gener-
ated adversarial examples.
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4.1 Settings

Dataset. We use two sets of subsets4,5 in the ImageNet dataset [42] to conduct
experiments. Each set contains 1000 images, covering almost all categories in
ImageNet, which has been widely used in previous works [14,15,33]. All images
have the size of 299 × 299 × 3. In order to make a fair comparison with other
methods, we use the former subset to train the AITL model, and evaluate all
methods on the latter one.

Models. In order to avoid overfitting of the AITL model and ensure the
fairness of the experimental comparison, we use completely different models to
conduct experiments during the training and evaluation of the AITL model.
During the training, we totally 11 models to provide the attack success rate
corresponding to the input transformation, including 10 normally trained and 1
adversarially trained models. During the evaluation, we use 7 normally trained
models, 3 adversarially trained models, and another 8 stronger defense models
to conduct the experiments. The details are provided in Appendix A.1.

Baselines. Several input-transformation-based black-box attack methods
(e.g., DIM [61], TIM [15], SIM [33], CIM [63], Admix [52], AutoMA [64]) are
utilized to compare with our proposed method. Unless mentioned specifically, we
combine these methods with MIFGSM [14] to conduct the attack. In addition,
we also combine these input-transformation-based methods together to form the
strongest baseline, called Admix-DI-SI-CI-MIFGSM (as shown in (c) of Fig. 1,
ADSCM for short). Moreover, we also use a random selection method instead
of the AITL to choose the combination of image transformations used in the
attack, which is denoted as Random. The details of these baselines are provided
in Appendix A.2.

Image Transformation Operations. Partially referencing from [10,11], we
totally select 20 image transformation operations as candidates, including Admix,
Scale, Admix-and-Scale, Brightness, Color, Contrast, Sharpness, Invert,
Hue, Saturation, Gamma, Crop, Resize, Rotate, ShearX, ShearY, TranslateX,
TranslateY, Reshape, Cutout. The details of these operations are provided in
Appendix A.3, including the accurate definitions and specific parameters in the
random transformations.

Implementation Details. We train the AITL model for 10 epochs. The
batch size is 64, and the learning rate β is set to 0.00005. The detailed network
structure of AITL is introduced in Appendix A.4. The maximum adversarial
perturbation ϵ is set to 16, with an iteration step T of 10 and step size α of 1.6.
The number of iterations during optimizing image transformation features r is
set to 1 and the corresponding step size γ is 15. The number of image transfor-
mation operations used in a combination M is set to 4 (the same number as the
transformations used in the strongest baseline ADSCM for a fair comparison).
Also, for a fair comparison of different methods, we control the number of repe-

4 https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.

1.0/examples/nips17_adversarial_competition/dataset
5 https://drive.google.com/drive/folders/1CfobY6i8BfqfWPHL31FKFDipNjqWwAhS

https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/examples/nips17_adversarial_competition/dataset
https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/examples/nips17_adversarial_competition/dataset
https://drive.google.com/drive/folders/1CfobY6i8BfqfWPHL31FKFDipNjqWwAhS
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Table 2: Attack success rates (%) of adversarial attacks against 7 normally
trained models and 11 defense models under single model setting. The ad-
versarial examples are crafted on Incv3. ∗ indicates the white-box model. † The
results of AutoMA [64] are cited from their original paper

(a) The evaluation against 7 normally trained models
Incv3∗ Incv4 IncResv2 Resv2-101 Resv2-152 PNASNet NASNet

MIFGSM [14] 100 52.2 50.6 37.4 35.6 42.2 42.2
DIM [61] 99.7 78.3 76.3 59.6 59.9 64.6 66.2
SIM [33] 100 84.5 81.3 68.0 65.3 70.8 73.6
CIM [63] 100 85.1 81.6 58.1 57.4 65.7 66.7
Admix [52] 99.8 69.5 66.5 55.3 55.4 60.0 62.7
ADSCM 100 87.9 86.1 75.8 76.0 80.9 82.2
Random 100 94.0 92.0 79.7 80.0 84.6 85.5

AutoMA† [64] 98.2 91.2 91.0 82.5 - - -
AITL (ours) 99.8 95.8 94.1 88.8 90.1 94.1 94.0

AutoMA-TIM† [64] 97.5 80.7 74.3 69.3 - - -
AITL-TIM (ours) 99.8 93.4 92.1 91.9 92.2 93.8 94.6

(b) The evaluation against 11 defense models
Incv3ens3 Incv3ens4 IncResv2ens HGD R&P NIPS-r3 Bit-Red JPEG FD ComDefend RS

MIFGSM [14] 15.6 15.2 6.4 5.8 5.6 9.3 18.5 33.3 39.0 28.1 16.8
DIM [61] 31.0 29.2 13.4 15.8 14.8 24.6 26.8 59.3 45.8 48.3 21.8
SIM [33] 37.5 35.0 18.8 16.8 18.3 26.8 31.0 66.9 52.1 55.9 24.1
CIM [63] 33.3 30.0 15.9 20.4 16.4 25.7 26.8 62.2 46.3 44.9 21.2
Admix [52] 27.5 27.0 14.3 11.6 12.6 19.8 28.4 51.2 48.8 44.0 22.0
ADSCM 49.3 46.9 27.0 33.1 28.5 40.5 39.0 73.0 60.4 65.5 32.8
Random 49.8 46.7 24.5 29.2 26.4 42.2 36.3 81.4 57.4 69.6 29.6

AutoMA† [64] 49.2 49.0 29.1 - - - - - - - -
AITL (ours) 69.9 65.8 43.4 50.4 46.9 59.9 51.6 87.1 73.0 83.2 39.5

AutoMA-TIM† [64] 74.8 74.3 63.6 65.7 62.9 68.1 - - 84.7 - -
AITL-TIM (ours) 81.3 78.9 69.1 75.1 64.7 74.6 60.9 87.8 83.8 85.6 55.4

titions per iteration in all methods to 5 (m in SIM [33], m2 in Admix [52], m in
AutoMA [64] and N in our AITL).

4.2 Compared with the State-of-the-art Methods

Attack on the Single Model. We use Inceptionv3 [45] model as the white-box
model to conduct the adversarial attack, and evaluate the generated adversar-
ial examples on both normally trained models and defense models. As shown
in Tab. 2, comparing various existing input-transformation-based methods, our
proposed AITL significantly improves the attack success rates against various
black-box models. Especially for the defense models, although it is relatively
difficult to attack successfully, our method still achieves a significant improve-
ment of 15.88% on average, compared to the strong baseline (Admix-DI-SI-CI-
MIFGSM). It demonstrates that, compared with the fixed image transformation
combination, adaptively selecting combinational image transformations for each
image can indeed improve the transferability of adversarial examples. Also, when
compared to AutoMA [64], our AITL achieves a distinct improvement, which
shows that our AITL model achieves better mapping between discrete image
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Table 3: Attack success rates (%) of adversarial attacks against 7 normally
trained models and 11 defense models under multiple models setting. The
adversarial examples are crafted on the ensemble of Incv3, Incv4, IncResv2 and
Resv2-101. ∗ indicates the white-box model. † The results of AutoMA [64] are
cited from their original paper

(a) The evaluation against 7 normally trained models
Incv3∗ Incv4∗ IncResv2∗ Resv2-101∗ Resv2-152 PNASNet NASNet

MIFGSM [14] 100 99.6 99.7 98.5 86.8 79.4 81.2
DIM [61] 99.5 99.4 98.9 96.9 92.0 91.3 92.1
SIM [33] 99.9 99.1 98.3 93.2 91.7 90.9 91.9
CIM [63] 99.8 99.3 97.8 90.6 88.5 88.2 90.9
Admix [52] 99.9 99.5 98.2 95.4 89.3 88.1 90.0
ADSCM 99.8 99.3 99.2 96.9 96.0 88.1 90.0
Random 100 99.4 98.9 96.9 94.3 94.4 95.0

AITL (ours) 99.9 99.7 99.9 97.3 96.6 97.7 97.8

(b) The evaluation against 11 defense models
Incv3ens3 Incv3ens4 IncResv2ens HGD R&P NIPS-r3 Bit-Red JPEG FD ComDefend RS

MIFGSM [14] 52.4 47.5 30.1 39.2 31.7 43.6 33.8 76.4 54.5 66.8 29.7
DIM [61] 77.4 73.1 54.4 68.4 61.2 73.5 53.3 89.8 71.5 84.3 43.1
SIM [33] 78.8 74.4 59.8 66.9 59.0 70.7 58.1 89.0 73.2 83.0 46.6
CIM [63] 75.1 69.7 54.3 68.5 59.1 70.7 51.1 90.2 68.9 78.5 41.1
Admix [52] 67.7 61.9 44.8 51.0 44.8 57.9 51.4 84.6 69.2 78.5 42.2
ADSCM 85.8 82.9 69.2 78.7 74.1 81.1 68.1 94.9 82.3 90.8 57.8
Random 83.7 80.2 64.8 73.7 67.3 77.9 65.7 93.0 79.9 88.6 52.3

AITL (ours) 89.3 89.0 79.0 85.5 82.3 86.3 74.9 96.2 88.4 93.7 65.7

AutoMA-TIM† [64] 93.0 93.2 90.7 91.2 90.4 92.0 - - 94.1 - -
AITL-TIM (ours) 93.8 95.3 92.0 93.1 93.7 94.8 80.9 95.0 96.2 95.0 76.9

transformations and continuous feature embeddings. More results of attacking
other models are available in Appendix C.2. Noting that the models used for eval-
uation here are totally different from the models used when training the AITL,
our method shows great cross model transferability to conduct the successful
adversarial attack.

Attack on the Ensemble of Multiple Models. We use the ensemble of
four models, i.e., Inceptionv3 [45], Inceptionv4 [44], Inception-ResNetv2 [44] and
ResNetv2-101 [23], as the white-box models to conduct the adversarial attack.
As shown in Tab. 3, compared with the fixed image transformation method, our
AITL significantly improves the attack success rates on various models. Although
the strong baseline ADSCM has achieved relatively high attack success rates,
our AITL still obtains an improvement of 1.44% and 5.87% on average against
black-box normally trained models and defense models, respectively. Compared
to AutoMA [64], our AITL also achieves higher attack success rates on defense
models, which shows the superiority of our proposed novel architecture.
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Fig. 4: The frequency of various image transformations used in AITL when gen-
erating adversarial examples of the 1000 images in ImageNet

4.3 Analysis on Image Transformation Operations

In order to further explore the effects of different image transformation opera-
tions on improving the transferability of adversarial examples, we calculate the
frequency of various image transformations used in AITL when generating adver-
sarial examples of the 1000 images in ImageNet. From Fig. 4, we can clearly see
that Scale operation is the most effective method within all 20 candidates. Also,
we conclude that the geometry-based image transformations are more effective
than other color-based image transformations to improve the transferability of
adversarial examples.

5 Conclusion

In our work, unlike the fixed image transformation operations used in almost all
existing works of transfer-based black-box attack, we propose a novel architec-
ture, called Adaptive Image Transformation Learner (AITL), which incorporates
different image transformation operations into a unified framework to further im-
prove the transferability of adversarial examples. By taking the characteristic of
each image into consideration, our designed AITL adaptively selects the most
effective combination of image transformations for the specific image. Extensive
experiments on ImageNet demonstrate that our method significantly improves
the attack success rates both on normally trained models and defense models
under different settings.
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