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A Related works

Adversarial Traffic Scenarios Generation In Strive [1], adversarial scenarios
generated from the traffic model is not always realistic due to the limited training
data which does not cover dangerous scenarios such as collisions. In Figure A,
we demonstrated from one example generated in Strive, where the adversarial
agent drives in reverse lane and violates the traffic rule, in order to collide into
the AV.

Reverse 
lane

Fig.A: Adversarial agent drives in reverse lane in adversarial scenarios gener-
atated from Strive [1].
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B Method

In this section, we describe implementation and formulation details for the pro-
posed method.

B.1 Differential dynamic model

The differential dynamic model Φ is devised for deriving dynamic parameters
{p, v, θ} from control actions u = {a, κ} and deriving control actions from tra-
jectories p = (px, py). Specifically, we use a kinematic bicycle model as the
dynamic model [2]. Detailed formulation is as below:

Φ : vt+1 = at ·∆t+ vt

dθt = vt · κt

θt+1 = dθt ·∆t+ θt

pt+1
x = vt · cos θt ·∆t+ pt

pt+1
y = vt · sin θt ·∆t+ pt

Φ−1 : vt = ∥pt+1 − pt∥/∆t

θt = arctan ptx/p
t
y

at = (vt+1 − vt)/∆t

κt = dθt/vt

For the physical constraints for dynamically feasibility, we follow the standard
values used in [3].

B.2 Reconstruction loss and adversarial loss

Here, we describe losses for reconstruction and generating adversarial trajectory
in details:

ldyn(θ, v, a, κ) =
∑

x=θ,v,a,κ

(x−xlb)/(xub−xlb)−Sigmoid ((x− xlb)/(xub − xlb))+0.5

, where xub, xlb represent the hard-coded upper bound and lower bound corre-
spondingly for the dynamic parameter x.

lcol(Dadv,X) =
1

n− 1

n−1∑
i ̸=adv

1

∥Dadv −Xi∥+ 1

, where n is the number of agent in the current prediction time frame.

lbh(Dadv,D*orig, ϵ) = ∥Dadv −D*orig∥/ϵ− Sigmoid (∥Dadv −D*orig∥/ϵ) + 0.5
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, where ϵ is the tolerance for position deviation, which we empirically set to half
lane width (1 meter).

lobj =
1

T

∑
t=1...T

∥ Yt − Ŷt ∥2

, where Ŷt is the predicted future trajectory at time t given the adversarial tra-
jectory and Yt is the corresponding ground truth. This loss aims to mislead the
prediction by maximizing the difference between the predicted future trajectory
and ground truth.

C Experiments

In this section, we describe implementation and formulation details for the ex-
periments.

C.1 Attack fidelity analysis

In this analysis, we aim to demonstrate the generated adversarial trajectory is
realistic from both perspectives of: (1) dynamically feasibility and (2) similar be-
havior as the original history trajectory. For the first perspective, we demonstrate
the results quantitatively with the Violation Rates (VR) metric described be-
low. For the second perspective, since it is a common challenge to measure the
behavior change quantitatively, we propose to approximate the degree of behav-
ior change with the Aggregated sensitivity metric described below. We also
visually examine generated adversarial trajectories in Figure B.

Violation rates. Since the violation rates metric is only suitable for the search
method and on the curvature κ parameter, we represent the VR as:

V R =
#total adv trajectories

#adv trajectories violating curvature constraints

.

Aggregated sensitivity. To approximate the behavior change quantitatively,
we leverage the sensitivity concept proposed by Ivanovic et al. [4]. Sensitivity
PI(Yi,Yego) of an agent’s trajectory to the ego agent represents how much the
agent’s trajectory Yi will affect the ego planningYego. Therefore, we can present
how much the adversarial trajectory Xadv will affect other agents’ planning Xi

as the aggregated sensitivity of the adversarial agent’s trajectory to all the other
agents in the scene. With a normalization over agents nearby, we attain the
aggregated sensitivity:

ΣSensitivity(Xadv,X) =
1

m

m∑
i,∥Xadv−Xi∥<ρ

PI(Xadv,Xi)
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, where m represents the total number of agents nearby filtered by the distance
threshold ρ, which is empirically set to 5 meters. Therefore, we attain the metric
for measuring behavior change as:

∆Sensitivity = ΣSensitivity(Xadv,X)−ΣSensitivity(Xorig,X)

Other metrics. To measure the behavior change quantitatively, we also include
evaluation results with other metrics proposed by Jekel et al. for comparing the
similarity between trajectories [5], including Dynamic Time Warping (DTW),
Fréchet Distance (FD), Partial Curve Mapping (PCM), Area and Curve Length
(CL). In Table A we demonstrate that the proposed methods have lowest er-
ror for all similarity metrics. The results are also consistent with the result on
∆sensitivity metric.

Table A: Similarity between original history
trajectory and adversarial trajectory generated
from search, Opt-init and Opt-end .

Attack method DTW↓ FD↓ PCM↓ Area↓ CL↓

search 0.3558 0.2490 0.0676 0.8892 0.0003
Opt-init 0.2303 0.1429 0.0209 0.5928 0.0002
Opt-end 0.1891 0.0564 0.0210 0.3045 0.0001

Table B: Augmentation on
AgentFormer.

ADE FDE

Benign 1.83 3.81
+ aug 1.69 3.57

Visualization. We randomly sample examples from 150 scenes in nuScene val-
idation data, where the adversarial trajectory generated from search that have
a curvature violation or a large ∆Sensitivity value. In Figure B, we show that
the adversarial trajectory generated from search have either behavior change or
unrealistic steering rates. We also notice that, the Opt-end can also generate ad-
versarial trajectory that has large turning rates but dynamically feasible. Even
though the predicted results are worse under search attack when the curvature
constraint if not bounded, Opt-end achieves higher prediction errors in average
scenarios. To further show that the generated trajectories obey traffic rules, we
conduct a study where adversarial trajectories are illustrated with map infor-
mation (e.g. lane segments, road, crosswalk etc.). We select five human subjects
with driver license and show our generated trajectories to them. Out of the 50
trajectories evaluated, only 2.2(±1.3) are considered rule-violating. We conclude
that the adversarial trajectory generated by our methods are more realistic in
both perspectives of dynamical feasibility and behavior changing.
AdvDO as Augmentation. Noticed that AdvDO also provides a framework
for generating realistic trajectories. We replace the adversarial objective losses
with other objectives (e.g. left/right/forward/backward deviations) and generate
additional data. In Table B, we demonstrate that the augmented data improves
the clean performance by 9% on ADE. This further validates that the high
fidelity of the generated trajectories with the proposed method.
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C.2 Case studies with planners

Planner. In this work, to demonstrate the explicit consequences of the adversar-
ial trajectory, we implement two planners (including path planning and motion
planning). The first one is a rule-based planner as implemented by Rempe et
al. [1]. However, we notice that this planner is enforcing path planning along
the center of lane lines which leads to insufficient path sampling through the
simulations. Therefore, though the planner naturally avoids driving off road, it
is also lack of flexibility to dodge incoming traffic. To better represent planners
equipped on AV, we implement a simple yet effective planner that uses confor-
mal lattice [6] for sampling paths and model predictive control (MPC) [7] for
motion planning. We call this planner MPC-based planner.
Planning strategy. In this work, we consider both an open-loop and a closed-
loop planning strategy. Though for the closed-loop planning we have to replay
the ground truth trajectories of other agents, we do notice reduced collisions
and driving off road consequences and consider the closed-loop planning fashion
meaningful.

C.3 Transferability Analysis

In this section, we aim to analyze the transferability of adversarial trajectories
generated on a source model to a unseen target model. We measure the transfer-
ability by devising the transfer rate metric. High transfer rates indicate that
the feasibility of transfer attack, which is a more realistic black-box attack, in the
real-world scenario. Transfer rate is defined as the success degree of adversarial
trajectories on target model over the success degree of them on source model.
The success degree is measured by the average percentage of increased error (on
metrics ADE/FDE/MR/ORR) with transfer attack on the target models over
the increased error with white-box attack on the source models.

C.4 Ablation Study

We explore the attack results in different traffic scenarios with different speeds
curvatures. We calculate the aggregated speed and curvature for each agent in
the entire scene to represent the speed and curvature for that scene. Similarly,
we calculate the aggregated Miss Rates to evaluate performance.
Attack effectiveness with different speeds As shown in Figure Ca, the
higher speed traffic show higher Miss Rates. It is reasonable since position de-
viations are larger in high speed traffics. We also notice that the attack results
are consistent to results in Table 1&2 in the main paper, which means different
attack methods are not restricted due to the speed constraints.
Attack effectiveness with different curvatures In Figure Cb, we notice
that adversarial trajectories are more effective in small curvature traffics. This
is reasonable since small curvature traffics allow more flexible adversarial trajec-
tory generations. We find that Opt-end performs better than Opt-init in small
curvature traffic. This could be due to low curvature traffic being less sensitive
to current positions.
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C.5 Mitigation

We present a preliminary mitigation methods against adversarial trajectory via
adversarial training. We notice that naive adversarial training results in no-
ticeable degradation in benign performance for both adversarial trained models
using search and Opt-init . In Table C, we demonstrate that the performance
degradation are much smaller and even better for the adversarial trained model
with proposed method Opt-init .

Table C: Adversarial training results. The number in brackets represent the
difference between the benign model and adversarial trained model.

Model Attack ADE ↓ FDE ↓ MR ↓ ORR ↓

Benign

Benign 1.83 3.81 28.2% 4.7%
search 2.34 4.78 34.3% 6.6%
Opt-init 3.39 5.75 44.0% 10.4%

Rob-search

Benign 2.69(+0.86) 5.82(+2.01) 37.8% (+9.6%) 10.2%(+5.5%)
search 2.72(+0.38) 5.76(+0.98) 40.7%(+6.3%) 12.3%(+5.8%)
Opt-init 2.81(-0.58) 5.92(+0.17) 42.2%(-1.8%) 13.8%(+3.4%)

Rob-ours

Benign 2.38(+0.55) 5.03(+1.23) 35.1%(+6.9%) 8.1%(+3.4%)
search 2.42(+0.08) 5.25(+0.47) 36.8%(+2.5%) 9.2%(+2.6%)
Opt-init 2.54(-0.85) 5.21(-0.54) 36.4%(-7.6%) 8.9%(-1.5%)
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Fig. B: Visualization examples of generated adversarial trajectories from Opt-
end and search. We only show the adversarial agent’s trajectory in the attack
scenario for clearer visualization.

(a) Speed ablation (b) Curvature ablation

Fig. C: Ablation studies for different traffic scenes.
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