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Abstract. Trajectory prediction is essential for autonomous vehicles
(AVs) to plan correct and safe driving behaviors. While many prior works
aim to achieve higher prediction accuracy, few study the adversarial ro-
bustness of their methods. To bridge this gap, we propose to study the
adversarial robustness of data-driven trajectory prediction systems. We
devise an optimization-based adversarial attack framework that lever-
ages a carefully-designed differentiable dynamic model to generate real-
istic adversarial trajectories. Empirically, we benchmark the adversarial
robustness of state-of-the-art prediction models and show that our at-
tack increases the prediction error for both general metrics and planning-
aware metrics by more than 50% and 37%. We also show that our attack
can lead an AV to drive off road or collide into other vehicles in simu-
lation. Finally, we demonstrate how to mitigate the adversarial attacks
using an adversarial training scheme1.

Keywords: Adversarial Machine learning, Trajectory Prediction, Au-
tonomous Driving

1 Introduction

Trajectory forecasting is an integral part of modern autonomous vehicle (AV)
systems. It allows an AV system to anticipate the future behaviors of other
nearby road users and plan its actions accordingly. Recent data-driven methods
have shown remarkable performances on motion forecasting benchmarks [1–7].
At the same time, for a safety-critical system like an AV, it is as essential for its
components to be high-performing as it is for them to be reliable and robust. But
few existing work have considered the robustness of these trajectory prediction
models, especially when they are subject to deliberate adversarial attacks.

A typical adversarial attack framework consists of a threat model, i.e., a
function that generates “realistic” adversarial samples, adversarial optimization
objectives, and ways to systematically determine the influence of the attacks.

⋆ This work was done during an internship at NVIDIA
1 Our project website is at https://robustav.github.io/RobustPred

https://robustav.github.io/RobustPred/
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Fig. 1: An example of attack scenarios on trajectory prediction. By driving along
the crafted adversarial history trajectory, the adverial agent misleads the pre-
diction of the AV systems for both itself and the other agent. As a consequence,
the AV planning based on the wrong prediction results in a collision.

However, a few key technical challenges remain in devising such a framework for
attacking trajectory prediction models.

First, the threat model must synthesize adversarial trajectory samples that
are 1) feasible subject to the physical constraints of the real vehicle (i.e. dynam-
ically feasible), and 2) close to the nominal trajectories. The latter is especially
important as a large alteration to the trajectory history conflates whether the
change in future predictions is due to the vunerability of the prediction model
or more fundamental changes to the meaning of the history. To this front, we
propose an attack method that uses a carefully designed differentiable dynamic
model to generate adversarial trajectories that are both effective and realistic.
Furthermore, through a gradient-based optimization process, we can generate
adversarial trajectories efficiently and customize the adversarial optimization
objectives to create different safety-critical scenarios.

Second, not all trajectory prediction models react to attacks the same way.
Features that are beneficial in benign settings may make a model more vulnerable
to adversarial attacks. We consider two essential properties of modern predic-
tion models: (1) motion property, which captures the influence of past agent
states over future states; and (2) social property, which captures how the state
of each agent affects others. Existing prediction models have proposed various
architectures to explicitly models these properties either in silo [3] or jointly [4].
Specifically, we design an attack framework that accounts for the above proper-
ties. We show that our novel attack framework can exploit these design choices.
As illustrated in Figure 1, by only manipulating the history trajectory of the
adversarial agent, we are able to mislead the predicted future trajectory for the
adversarial agent (i.e. incorrect prediction for left turning future trajectory of
red car in Figure 1-right). Furthermore, we are able to mislead the prediction
for other agent’s behavior (i.e. turning right to turning left for the yellow car
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in Figure 1-right). During the evaluation, we could evaluate these two goals
respectively. It helps us fine-grained diagnose vulnerability of different models.

Finally, existing prediction metrics such as average distance error (ADE) and
final distance error (FDE) only measure errors of average cases and are thus too
coarse for evaluating the effectiveness of adversarial attacks. They also ignore the
influence of prediction errors in downstream planning and control pipelines in an
AV stack. To this end, we incorporate various metrics with semantic meanings
such as off-road rates, miss rates and planning-aware metrics [8] to systemat-
ically quantify the effectiveness of the attacks on prediction. We also conduct
end-to-end attack on a prediction-planning pipeline by simulating the driving
behavior of an AV in a close-loop manner. We demonstrate that the proposed
attack can lead to both emergency brake and various of collisions of the AV.

We benchmark the adversarial robustness of state-of-the-art trajectory pre-
diction models [4, 3] on the nuScenes dataset [9]. We show that our attack can
increase prediction error by 50% and 37% on general metrics and planning-aware
metrics, respectively. We also show that adversarial trajectories are realistic both
quantitatively and qualitatively. Furthermore, we demonstrate that the proposed
attack can lead to severe consequences in simulation. Finally, we explore the
mitigation methods with adversarial training using the proposed adversarial dy-
namic optimization method (AdvDO). We find that the model trained with the
dynamic optimization increase the adversarial robustness by 54%.

2 Related works

Trajectory Prediction. Modern trajectory prediction models are usually deep
neural networks that take state histories of agents as input and generate their
plausible future trajectories. Accurately forecasting multiagent behaviors re-
quires modeling two key properties: (1) motion property, which captures the
influence of past agent states over future states; (2) social property, which cap-
tures how the state of each agent affects others. Most prior works model the
two properties separately [2, 3, 10, 11, 7]. For example, a representative method
Trajactron++ [3] summarizes temporal and inter-agent features using a time-
sequence model and a graph network, respectively. But modeling these two prop-
erties in silo ignores dependencies across time and agents. A recent work Agent-
former [4] introduced a joint model that allows an agent’s state at one time to
directly affect another agent’s state at a future time via a transformer model.

At the same time, although these design choices for modeling motion and
social properties may be beneficial in benign cases, they might affect a model’s
performance in unexpected ways when under adversarial attacks. Hence we select
these two representative models [3, 4] for empirical evaluation.
Adversarial Traffic Scenarios Generation. Adversarial traffic scenario gen-
eration is to synthesize traffic scenarios that could potentially pose safety risks[12–
16]. Most prior approaches fall into two categories. The first aims to capture
traffic scenarios distributions from real driving logs using generative models and
sample adversarial cases from the distribution. For example, STRIVE [16] learns
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a latent generative model of traffic scenarios and then searches for latent codes
that map to risky cases, such as imminent collisions. However, these latent codes
may not correspond to real traffic scenarios. As shown in the supplementary ma-
terials, the method generates scenarios that are unlikely in the real world (e.g.
driving on the wrong side of the road). Note that this is a fundamental limi-
tation of generative methods, because almost all existing datasets only include
safe scenarios, and it is hard to generate cases that are rare or non-existent in
the data.

Our method falls into the second category, which is to generate adversarial
cases by perturbing real traffic scenarios. The challenge is to design a suitable
threat model such that the altered scenarios remain realistic. AdvSim [17] plants
adversarial agents that are optimized to jeopardize the ego vehicles by causing
collisions, uncomfortable driving, etc. Although AdvSim enforces the dynamic
feasibility of the synthesized trajectories, it uses black-box optimization which is
slow and unreliable. Our work is most similar to a very recent work [18]. However,
as we will show empirically, [18] fails to generate dynamically feasible adversar-
ial trajectories. This is because its threat model simply uses dataset statistics
(e.g. speed, acceleration, heading, etc.) as the dynamic parameters, which are
too coarse to be used for generating realistic trajectories. For example, the max-
imum acceleration in the NuScenes dataset is over 20m/s2 where the maximum
acceleration for a top-tier sports car is only around 10m/s2. In contrast, our
method leverages a carefully-designed differentiable dynamic model to estimate
trajectory-wise dynamic parameters. This allows our threat model to synthesize
realistic and dynamically-feasible adversarial trajectories.
Adversarial Robustness. Deep learning models are shown to be generally
vulnerable to adversarial attacks [19–30]. There is a large body of literature on
improving their adversarial robustness [31–44]. In the AV context, many works
examine on the adversarial robustness of the perception task [45], while analyzing
the adversarial robustness of trajectory forecaster [18] is rarely explored. In this
work, we focus on studying the adversarial robustness in the trajectory prediction
task by considering its unique properties including motion and social interaction.

3 Problem Formulation and Challenges

In this section, we introduce the trajectory prediction task and then describe
the threat model and assumptions for the attack and challenges.
Trajectory Prediction Formulation. In this work, we focus on the trajec-
tory prediction task. The goal is to model the future trajectory distribution
of N agents conditioned on their history states and other environment context
such as maps. More specifically, a trajectory prediction model takes a sequence
of observed state for each agent at a fixed time interval ∆t, and outputs the
predicted future trajectory for each agent. For observed time steps t ≤ 0, we
denote states of N agents at time step t as Xt = (xt

1, . . . , x
t
i, . . . , x

t
N ), where xt

i

is the state of agent i at time step t, which includes the position and the context
information. We denote the history of all agents over H observed time steps as
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X =
(
X−H+1, . . . ,X0

)
. Similarly, we denote future trajectories of all N agents

over T future time steps as Y =
(
Y1, . . . ,YT

)
, where Yt = (yt1, . . . , y

t
N ) denotes

the states of N agents at a future time step t (t > 0). We denote the ground

truth and the predicted future trajectories as Y and Ŷ, respectively. A trajec-
tory prediction model P aims to minimize the difference between Ŷ = P(X)
and Y. In an AV stack, trajectory prediction is executed repeatedly at a fixed
time interval, usually the same as ∆t. We denote Lp as the number of trajectory
prediction being executed in several past consecutive time frames. Therefore, the

histories at time frame (−Lp < t ≤ 0) are X(t) =
(
X−H−t+1, . . . ,X−t

)
, and

similarly for Y and Ŷ.

Adversarial Attack Formulation. In this work, we focus on the setting where
an adversary vehicle (adv agent) attacks the prediction module of an ego vehicle
by driving along an adversarial trajectory Xadv(·). The trajectory prediction
model predicts the future trajectories of both the adv agent and other agents.
The attack goal is to mislead the predictions at each time step and subsequently
make the AV plan execute unsafe driving behaviors. As illustrated in Figure 1, by
driving along a carefully crafted adversarial (history) trajectory, the trajectory
prediction model predicts wrong future trajectories for both the adv agent and
the other agent. The mistakes can in term lead to severe consequences such
as collisions. In this work, we focus on the white-box threat model, where the
adversary has access to both model parameters, history trajectories and future
trajectories of all agents, to explore what a powerful adversary can do based on
the Kerckhoffs’s principle [46] to better motivate defense methods.

Challenges. The challenges of devising effective adversarial attacks against pre-
diction modules are two-fold: (1) Generating realistic adversarial trajec-
tory. In AV systems, history trajectories are generated by upstream tracking
pipelines and are usually sparsely queried due to computational constraints. On
the other hand, dynamic parameters like accelerations and curvatures are high
order derivatives of position and are usually estimated by numerical differen-
tiation requiring calculating difference between positions within a small-time
interval. Therefore, it is difficult to estimate correct dynamic parameters from
such sparsely sampled positions in the history trajectory. Without the correct dy-
namic parameters, it is impossible to determine whether a trajectory is realistic
or not, let alone generate new trajectories. (2) Evaluating the implications of
adversarial attacks. Most existing evaluation metrics for trajectory prediction
assume benign settings and are inadequate to demonstrate the implications for
AV systems under attacks. For example, a large Average Distance Error (ADE)
in prediction does not directly entail concrete consequences such as collision.
Therefore, we need a new evaluation pipeline to systematically determine the
consequences of adversarial attacks against prediction modules to further raise
the awareness of general audiences on the risk that AV systems might face.
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Fig. 2: Adversarial Dynamic Optimization (AdvDO) methodology overview

4 AdvDO: Adversarial Dynamic Optimization

To address the two challenges listed above, we propose Adversarial Dynamic
Optimization (AdvDO). As shown in Figure 2, given trajectory histories, AdvDO
first estimates their dynamic parameters via a differentiable dynamic model.
Then we use the estimated dynamic parameters to generate a realistic adversarial
history trajectory given a benign trajectory by solving an adversarial optimiza-
tion problem. Specifically, AdvDO consists of two stages: (1) dynamic parameters
estimation, and (2) adversarial trajectory generation. In the first stage, we aim
to estimate correct dynamic parameters by reconstructing a realistic dense tra-
jectory from a sampled trajectory from the dataset. To reconstruct the dense
trajectory, we leverage a differentiable dynamic model through optimization of
control actions. When we get the estimated correct dynamic parameters of the
trajectory, it could be used for the second stage. In the second stage, we aim
to generate an adversarial trajectory that misleads future trajectory predictions
given constraints. To achieve such goal, we carefully design the adversarial loss
function with several regularization losses for the constraints. Then, we also
extend the method to attacking consecutive predictions.

4.1 Dynamic Parameters Estimation

Differentiable dynamic model. A dynamic model computes the next state
st+1 = {pt+1, θt+1, vt+1} given current state st = {pt, θt, vt} and control ac-
tions ut = {at, κt}. Here, p, θ, v, a, κ represent position, heading, speed, accel-
eration and curvature correspondingly. We adopt the kinematic bicycle model
as the dynamic model which is commonly used [17]. We calculate the next
state with a differential method, e.g., vt+1 = vt + at · ∆t where ∆t denotes
the time difference between two time steps. Given a sequence of control ac-
tions u = (u0, . . . , ut) and the initial state s0, we denote the dynamic model
as a differentiable function Φ such that it can calculate a sequence of future
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states s = (s0, . . . , st) = Φ(s0, u;∆t). Noticed that the dynamic model also pro-
vides a reverse function Φ−1 that calculate a sequence of dynamic parameters
{θ, v, a, κ} = Φ−1(p;∆t) given a trajectory p = (p0, . . . , pt). This discrete system
can approximate the linear system in the real world when using a sufficiently
small enough ∆t. It can be also demonstrated that the dynamic model approxi-
mates better using a smaller ∆t.
Optimization-based trajectory reconstruction. To accurately estimate the
dynamic parameters {θ, v, a, κ} given a trajectory p, a small time difference ∆t
or a large sampling rates f = 1/∆t is required. However, the sampling rate of
the trajectory in the trajectory prediction task is decided by the AV stack, and
is often small (e.g. 2Hz for nuScenes [9]) limited by the computation perfor-
mance of the hardware. Therefore, directly estimating the dynamic parameters
from the sampled trajectory is not accurate, making it difficult to determine
whether the adversarial history Xadv generated by perturbing the history tra-
jectory provided by the AV system is realistic or not. To resolve this challenge,
we propose to reconstruct a densely trajectory first and then estimate a more
accurate dynamic parameter from the reconstructed dense trajectory. To recon-

struct a densely sampled history trajectory Di =
(
D−H·f+1

i , . . . ,D0
i

)
from a

given history trajectory Xi with additional sampling rates f , we need to find
a realistic trajectory Di that passes through positions in Xi. We try to find it
through solving an optimization problem. In order to efficiently find a realistic
trajectory, we wish to optimize over the control actions in stead of the positions
in Di. To start with, we initialize Di with a simple linear interpolation of Xi,
i.e. D−t·f+j

i = (1 − j/f) · X−t + j/f · X−t+1. We then calculate the dynamic
parameters for all steps {θ, v, a, κ} = Φ−1(Di;∆t). Now, we can represent the
reconstructed densely sampled trajectoryDi with Φ(s0, u;∆t), where u = {a, κ}.
To further reconstruct a realistic trajectory, we optimize over the control actions
u with a carefully designed reconstruction loss function Lrecon. The reconstruc-
tion loss function consists of two terms. We first include a MSE (Mean Square
Error) loss to enforce the reconstructed trajectory passing through the given
history trajectory Xi. We also include ldyn, a regularization loss based on a soft
clipping function to bound the dynamic parameters in a predefined range based
on vehicle dynamics [17]. To summarize, by solving the optimization problem of:

min
u

Lrecon(u; s
0, Φ) = MSE(Di,Xi) + ldyn(θ, v, a, κ)

,we reconstruct a densely sampled, dynamically feasible trajectory D*i passing
through the given history trajectory for the adversarial agent.

4.2 Adversarial Trajectory Generation

Attacking a single-step prediction. To generate realistic adversarial trajec-
tories, we first initialize the dynamic parameters of the adversarial agent with
estimation from the previous stage, noted as D*orig. Similarly to the optimiza-
tion in the trajectory reconstruction process, we optimize the control actions u
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to generate the optimal adversarial trajectories. Our adversarial optimization
objective consists of four terms. The detailed formulation for each term is in
the supplementary materials. The first term lobj represents the attack goal. As
motion and social properties are essential and unique for trajectory prediction
models. Thus, our lobj has accounted for them when designed. The second term
lcol is a commonsense objective that encourages the generated trajectories to
follow some commonsense traffic rules. In this work we only consider collision
avoidance [11]. The third term lbh is a regularization loss based on a soft clipping
function, given a clipping range of (−ϵ, ϵ). It bounds the adversarial trajectories
to be close to the original history trajectory Xorig. We also include ldyn to bound
the dynamic parameters. The full adversarial loss is defined as:

Ladv = lobj(Y, Ŷ) + α ·
∑
i

lcol(Dadv,X) + β · lbh(Dadv,D*orig) + γldyn(Dadv)

,where α and β are weighting factors. We then use the projected gradient descent
(PGD) method [33] to find the adversarial control actions uadv bounded by
constraints (ulb, uub) attained from vehicle dynamics.
Attacking consecutive predictions. To attack Lp consecutive frames of pre-
dictions, we aim to generate the adversarial trajectory of length H + Lp that
uniformly misleads the prediction at each time frames. To achieve this goal, we
can easily extend the formulation for attacking single-step predictions to attack a
sequence of predictions, which is useful for attacking a sequential decision maker
such as an AV planning module. Concretely, to generate the adversarial tra-
jectories for Lp consecutive steps of predictions formulated in§ 3, we aggregate
the adversarial losses over these frames. The objective for attacking a length of
H + Lp trajectory is: ∑

t∈[−Lp,...0]

Ladv(X(t),Dadv(t),Y(t))

, where X(t),Dadv(t),Y(t) are the corresponding X,Dadv,Y at time frame t.

5 Experiments

Our experiments seek to answer the following questions: (1) Are the current
mainstream trajectory prediction systems robust against our attacks?;(2) Are
our attacks more realistic compared to other methods?; (3) How do our attacks
affect an AV prediction-planning system?; (4) Does features designed to model
motion and/or social properties affect a model’s adversarial robustness?; and (5)
Could we mitigate our attack via adversarial training?

5.1 Experimental Setting

Models. We evaluate two state-of-the-art trajectory prediction models: Agent-
Former and Trajectron++. As explained before, we select AgentFormer and
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Trajectron++ for their representative features in modeling motion and social
aspects in prediction. AgentFormer proposed a transformer-based social interac-
tion model which allows an agent’s state at one time to directly affect another
agent’s state at a future time. And Trajectron++ incorporates agent dynamics.
Since semantic map is an optional information for these models, we prepare two
versions for each model with map and without map.
Datasets. We follow the settings in [4, 3] and use nuScenes dataset [9], a large-
scale motion prediction dataset focusing on urban driving settings. We select
history trajectory length (H = 4) and future trajectory length (T = 12) following
the official recommendation. We report results on all 150 validation scenes.
Baselines. We select the search-based attack proposed by Zhang et al. [18] as
the baseline, named search. As we mentioned earlier in § 2, the original method
made two mistakes: (1) incorrect estimated bound values for dynamic parameters
and (2) incorrect choices of bounded dynamic parameters for generating realistic
adversarial trajectories. We correct such mistakes by (1) using a set of real-world
dynamic bound values [17]. and (2) bounding the curvature variable instead of
heading derivatives since curvature is linear related to steering angle. We denote
this attack method as search* . For our methods, we evaluate two variations:
(1) Opt-init , where the initial dynamics (i.e dynamics at (t = −H) time step)
D−H·S+1

adv are fixed and (2) Opt-end , where the current dynamics (t = 0) D0
adv

are fixed. While Opt-end is not applicable for sequential attacks, we include Opt-
end for understanding the attack with strict bounds, since the current position
often plays an important role in trajectory prediction.
Metrics. We evaluate the attack with four metrics in the nuscenes prediction
challenges: ADE/FDE, Miss Rates (MR), Off Road Rates (ORR) [9] and their
correspondence with planning-awareness version: PI-ADE/PI-FDE, PI-MR, PI-
ORR [8] where metric values are weighted by the sensitivity to AV planning. In
addition, to compare which attack method generates the most realistic adver-
sarial trajectories, we calculate the violation rates (VR) of the curvature bound,
where VR is the ratio of the number of adversarial trajectories violating dynam-
ics constraints over the total number of generated adversarial trajectories.
Implementation details. For the trajectory reconstruction, we use the Adam
optimizer and set the step number of optimization to 5. For the PGD-based at-
tack, we set the step number to 30 for both AdvDO and baselines. We empirically
choose β = 0.1 and α = 0.3 for best results.

5.2 Main Results

Trajectory prediction under attacks. First, we compare the effectiveness
of the attack methods on prediction performances. As shown in Table 1, our
proposed attack (Opt-init) causes the highest prediction errors across all model
variants and metrics. Opt-init overperforms Opt-end by a large margin, which
shows that the dynamics of the current frame play an important role in trajectory
prediction systems. Note that search proposed by Zhang et al. has a significant
violation rates (VR) over 10%. It further validates our previous claim that search
generates unrealistic trajectories.
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Table 1: Attack evaluation results on general metrics.

Model Attack ADE FDE MR ORR Violations

None 1.83 3.81 28.2% 4.7% 0%
search 2.34 4.78 34.3% 6.6% 10%
search* 1.88 3.89 29.2% 4.8% 0%
Opt-end 2.23 4.54 34.5% 6.3% 0%

Agentformer w/ map

Opt-init 3.39 5.75 44.0% 10.4% 0%

None 2.20 4.82 35.0% 7.3% 0%
search 2.66 5.53 40.3% 8.9% 9%
search* 2.20 4.94 35.1% 7.4% 0%
Opt-end 2.54 5.54 39.3% 8.8% 0%

Agentformer w/o map

Opt-init 3.81 6.01 49.8% 13.3% 0%

None 1.88 4.10 35.1% 7.9% 0%
search 2.53 5.03 44.4% 9.4% 12%
search* 1.93 4.26 36.3% 8.3% 0%
Opt-end 2.48 5.57 47.5% 11.3% 0%

Trajectron++ w/ map

Opt-init 3.20 8.56 57.2% 15.9% 0%

None 2.10 5.00 41.1% 9.6% 0%
search 2.76 8.02 50.5% 16.1% 14%
search* 2.17 5.25 42.2% 10.0% 0%
Opt-end 2.49 7.54 49.5% 14.2% 0%

Trajectron++ w/o map

Opt-init 3.58 9.36 76.8% 17.8% 0%

To further demonstrate the impact of the attacks on downstream pipelines
like planning, here we report prediction performance using planning-aware met-
rics proposed by Ivanovic et al. [8]. As described above, these metrics consider
how the predictions accuracy of surrounding agents behaviors impact the ego’s
ability to plan its future motion. Specifically, the metrics are computed from
the partial derivative of the planning cost over the predictions to estimate the
sensitivity of the ego vehicle’s further planning. Furthermore, by aggregating
weighted prediction metrics (e.g., ADE, FDE, MR, ORR) with such sensitiv-
ity measurement, we could report planning awareness metrics including (PI-
ADE/FDE, PI-MR, PI-ORR) quantitatively. As shown in Table 2, results are
consistent with the previous results.

Table 3: Quantitative comparison of
generated adversarial trajectories

Method search Opt-end Opt-init
∆Sensitivity 2.33 1.12 1.34

Attack fidelity analysis. Here, we
aim to demonstrate the fidelity of
the generated adversarial trajectories
qualitatively and quantitatively. We
show our analysis on AgentFormer
with map as a case study. In Figure 3,
we visualize the adversarial trajecto-
ries generated by search and Opt-end
methods. We demonstrate that our



AdvDO 11

Table 2: Attack evaluation results on planning-aware metrics.

Model Attack PI-ADE PI-FDE PI-MR PI-ORR VR

None 1.38 2.76 20.5% 22.8% 0%
search 1.62 3.32 25.7% 25.2% 13%
search* 1.39 2.79 21.4% 23.0% 0%
Opt-end 1.57 3.11 23.7% 24.8% 0%

Agentformer w/ map

Opt-init 2.05 3.81 32.9% 29.0% 0%

None 1.46 3.76 26.8% 30.3% 0%
search 1.63 4.12 28.9% 34.2% 11%
search* 1.49 3.74 27.5% 31.1% 0%
Opt-end 1.63 4.11 28.2% 39.3% 0%

Agentformer w/o map

Opt-init 2.24 5.91 34.3% 41.3% 0%

None 1.42 2.81 26.5% 25.6% 0%
search 1.68 3.38 29.2% 28.3% 14%
search* 1.43 2.83 26.7% 27.7% 0%
Opt-end 1.65 3.14 27.2% 28.1% 0%

Trajectron++ w/ map

Opt-init 2.11 3.85 37.8% 32.7% 0%

None 1.76 3.20 30.9% 44.0% 0%
search 2.02 3.96 35.0% 49.6% 19%
search* 1.77 3.25 31.0% 46.8% 0%
Opt-end 1.95 3.55 31.6% 46.3% 0%

Trajectron++ w/o map

Opt-init 2.46 4.26 41.2% 53.7% 0%

method (Opt-end) can generate effective attack without changing the semantic
meaning of the driving behaviors. In contrast, search either generates unrealis-
tic trajectories or changes the driving behaviors dramatically. For example, the
middle row shows that the adversarial trajectory generated by search takes a
near 90-degree sharp turn within a small distance range, which is dynamically
feasible, whereas by our method (right image in the first row) generates smooth
and realistic adversarial trajectories. More examples of generated adversarial
trajectories can be found in Appendix.

To further quantify the attack fidelity, we propose to use the sensitivity met-
ric in [8] to measure the degree of behavior alteration caused by the adversarial
attacks. The metric is to measure the influence of an agent’s behavior over other
agents’ future trajectories. We calculate the difference of aggregated sensitivity
of non-adv agents between the benign and adversarial settings. Detailed for-
mulation is in Appendix. We demonstrate that our proposed attacks (Opt-init,
Opt-end) cause smaller sensitivity changes. This corroborates our qualitative
analysis that our method generates more realistic attacks at the behavior level.

Case studies with planners. To explicitly demonstrate the consequences
of our attacks to the AV stack, we evaluate the adversarial robustness of a
prediction-planning pipeline in an end-to-end manner. We select a subset of val-
idation scenes and evaluate two planning algorithms, rule-based [16] and MPC-
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Fig. 3: Qualitative comparison of generated adversarial trajectories. We demon-
strate that the proposed AdvDO generates adversarial trajectories both realist
and effective whereas the search-stats could either generate dynamically infeasi-
ble trajectories (sharp turn on the first row) or changing the behavior dramati-
cally (behavior change from driving straight to swerving left on the second row).

Table 4: Planning results

Planner
Open-loop Closed-loop
Rule-based MPC Rule-based MPC

Collisions 26/150 10/150 12/150 7/150
Off road – 43/150 – 23/150

based [47], in in two rollout settings, open-loop and closed-loop. Detailed de-
scription for the planners can be found in Appendix. In the open-loop setting,
an ego vehicle generates and follows a 6-second plan without replanning. The
closed-loop setting is to replan every 0.5 seconds. We replay the other actors’
trajectories in both cases. For the closed-loop scenario, we conduct the sequen-
tial attack using Lp = 6. As demonstrated in Table 4, our attacks causes the
ego to collide with other vehicles and/or leave drivable regions. We visualize a
few representative cases in Figure 4. Figure 4(a) shows the attack leads to a
side collision. Figure 4(b) shows the attack misleads the prediction and forces
the AV to stop and leads to a rear-end collision. Note that no attack can lead
the rule-based planner to leave drivable regions because it is designed to keep
the ego vehicle in the middle of the lane. At the same time, we observed that
attacking the rule-based planner results in more collisions since it cannot dodge
head-on collisions.
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(a) Side collision (b) Rear-end collision (c) Driving off-road

Fig. 4: Visualized results for planner evaluation. Ego vehicle in green, adv agent
in red and other agents in blue. The red cycle represents the collision or driving
off-road consequence.

Motion and social modeling. As mentioned in § 2, trajectory prediction
model aims to learn (1) the motion dynamics of each agent and (2) social in-
teractions between agents. Here we conduct more in-depth attack analysis with
respect to these two properties. For the motion property, we introduce a Motion
metric that measures the changes of predicted future trajectory of the adversar-
ial agent as a result of the attack. For the social property, we hope to evaluate
the influence of the attack on the predictions of non-adv agents. Thus, we use a
metric named Interaction to measure the average prediction changes among all
non-adv agents. As shown in Table 5, the motion property is more prone to attack
than the interaction property. This is because perturbing the adv agent’s his-
tory directly impacts its future, while non-adv agents are affected only through
the interaction model. We observed that our attack leads to larger Motion error
for AgentFormer than for Trajectron++. A possible explanation is that Agent-
Former enables direct interactions between past and future trajectories across
all agents, making it more vunerable to attacks.

Table 5: Ablation results for Motion and Interaction metrics

Model Scenarios ADE FDE MR ORR Model ADE FDE MR ORR

AgentFormer Motion 8.12 12.35 57.3% 18.6% Trajectron++ 8.75 13.27 59.6% 16.6%
Interaction 2.03 4.21 30.3% 5.1% 1.98 4.68 43.0% 8.71%

Transferability analysis. Here we evaluate whether the adversarial examples
generated by considering one model can be transferred to attack another model.
We report transfer rate (more details in the appendix). Results are shown in Fig-
ure 5. Cell (i, j) shows the normalized transfer rate value of adversarial examples
generated against model j and evaluate on model i. We demonstrate that the
generated adversarial trajectories are highly transferable (transfer rates ≥ 77%)
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when sharing the same backbone network. In addition, the generated adversarial
trajectories can transfer among different backbones as well. These results show
the feasibility for black-box attacks against unseen models in the real-world.

(a) ADE (b) FDE (c) Miss Rate (d) Off Road Rate

Fig. 5: Transferability heatmap. A: AgentFormer w/ map; B: & AgentFormer
w/o map; C: Trajectron++ w/ map ; D: Trajectron++ & w/o map

Mitigation. To mitigate the consequences of the attacks, we use the standard
mitigation method, adversarial training [33], which has been shown as the most
effective defense. As shown in Table C in the Appendix, we find that the adver-
sarial trained model using the search attack is much worse than the adversarial
trained model using our Opt-init attack. This can be due to unrealistic adversar-
ial trajectories generated by the search attack lead to the mode failure since the
performance of it on clean data are worse than the model under strong attacks.
This also emphasizes that generating realistic trajectory is essential to success
of improving adversarial robustness.

6 Conclusion

In this paper, we study the adversarial robustness of trajectory prediction sys-
tems. We present an attack framework to generate realistic adversarial trajecto-
ries via a carefully-designed differentiable dynamic model. We have shown that
prediction models are generally vulnerable and certain model designs (e.g, mod-
eling motion and social properties simultaneously) beneficial in benign settings
may make a model more vulnerable to adversarial attacks. In addition, both
motion (predicted future trajectory of adversarial agent) and social (predicted
future trajectory of other agents) properties could be exploited by only manipu-
lating the adversarial agent’s history trajectories. We also show that prediction
errors influence the downstream planning and control pipeline, leading to severe
consequences such as collision. We hope our study can shed light on the impor-
tance of evaluating worst-case performance under adversarial examples and raise
awareness on the types of security risks that AV systems might face, so forth
encourages robust trajectory prediction algorithms.
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