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Abstract. Contrastive learning (CL) has recently been applied to ad-
versarial learning tasks. Such practice considers adversarial samples as
additional positive views of an instance, and by maximizing their agree-
ments with each other, yields better adversarial robustness. However,
this mechanism can be potentially flawed, since adversarial perturba-
tions may cause instance-level identity confusion, which can impede CL
performance by pulling together different instances with separate iden-
tities. To address this issue, we propose to treat adversarial samples
unequally when contrasted, with an asymmetric InfoNCE objective (A-
InfoNCE) that allows discriminating considerations of adversarial sam-
ples. Specifically, adversaries are viewed as inferior positives that induce
weaker learning signals, or as hard negatives exhibiting higher contrast to
other negative samples. In the asymmetric fashion, the adverse impacts
of conflicting objectives between CL and adversarial learning can be ef-
fectively mitigated. Experiments show that our approach consistently
outperforms existing Adversarial CL methods across different finetun-
ing schemes without additional computational cost. The proposed A-
InfoNCE is also a generic form that can be readily extended to other CL
methods. Code is available at https://github.com/yqy2001/A-InfoNCE.

Keywords: Adversarial Contrastive Learning, Robustness, Self-supervised
Learning

1 Introduction

Well-performed models trained on clean data can suffer miserably when exposed
to simply-crafted adversarial samples [39, 19, 4, 14]. There has been many ad-
versarial defense mechanisms designed to boost model robustness using labeled
data [28, 38, 46, 44, 47, 48, 2]. In practice, however, obtaining large-scale anno-
tated data can be far more difficult and costly than acquiring unlabeled data.
Leveraging easily-acquired unlabeled data for adversarial learning, thus becomes
particularly attractive.

⋆ Corresponding authors
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Fig. 1. Illustrations of (a) Contrastive Learning; (b) Adversarial Contrastive Learn-
ing; and our proposed methods for viewing adversarial samples asymmetrically as: (c)
Inferior Positives (asymmetric contrast), and (d) Hard Negatives. In each circle, data
points are augmentations of the same instance, sharing the same Identity. In (b), the
Adversarial sample (A) shares the same Identity (ID:2 ) as the current Instance (I ),
but resides close to a different Identity (ID:1 ), thus Identity Confusion problem occurs.
Specifically, the Adversarial sample (A) of Instance (I) exhibits similar representations
to the Negative sample (N ) of (I ), which makes the positive contrast (A↔I ) and neg-
ative contrast (N↔I ) undermine each other in the training process (colored figure).

Contrastive Learning (CL) [22], which performs instance discrimination [45]
(Figure 1 (a)) by maximizing agreement between augmentations of the same
instance in the learned latent features while minimizing the agreement between
different instances, has made encouraging progress in self-supervised learning [9,
23, 11, 21]. Due to its effectiveness in learning rich representations and competi-
tive performance over fully-supervised methods, CL has seen a surge of research
in recent years, such as positive sampling [9, 41, 3, 42], negative sampling [23, 27,
13, 45], pair reweighting [13, 37], and different contrast methods [21, 6, 31].

Recently, contrastive learning has been extended to adversarial learning tasks
in a self-supervised manner, leading to a new area of adversarial contrastive
learning (Adversarial CL) [30, 17, 26, 20]. The main idea is to generate ad-
versarial samples as additional positives of the same instance [30, 17, 26] for
instance-wise attack, and maximize the similarity between clean views of the
instance and their adversarial counterparts as in CL, while also solving the min-
max optimization problem following canonical adversarial learning objective [33,
38, 46, 44, 47, 48]. For example, RoCL[30] first proposed an attack mechanism
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against contrastive loss to confuse the model on instance-level identity, in a self-
supervised adversarial training framework. AdvCL[17] proposed to minimize the
gap between unlabeled contrast and labeled finetuning by introducing pseudo-
supervision in the pre-training stage.

Although these Adversarial CL methods showed improvement on model ro-
bustness, we observe that a direct extension from CL to adversarial learning
(AL) can introduce ineffective CL updates during training. The core problem
lies in that they add worst-case perturbations δ that no longer guarantee the
preservation of instance-level identity [30] (i.e., different from other data aug-
mentation methods, adversarial samples can reside faraway from the current
instance in the feature space after several attack iterations, because the attack
objective is to make adversaries away from the current instance while approxi-
mating other instances, against the CL objective). As illustrated in Figure 1(b),
when the adversarial sample (A) of the current instance (I ) are in close prox-
imity to negative samples (N ), CL objective minimizes the agreement between
negative samples and current instance (I and N are pushed away from each
other), while AL objective maximizes the agreement between adversarial sam-
ples and current instance (A and I are pulled together as A is considered as an
augmented view of I ). Meanwhile, A and N share similar representations, which
renders the two objectives contradicting to each other. We term this conflict as
“identity confusion”, it means A attracts and ‘confuses’ I with a false identity
induced by N , which impedes both CL and AL from achieving their respective
best performance.

To address this issue of identity confusion, we propose to treat adversar-
ial samples unequally and discriminatingly, and design a generic asymmetric
InfoNCE objective (A-InfoNCE ), in order to model the asymmetric contrast
strengths between positive/negative samples. Firstly, to mitigate the direct pull
between adversarial sample (A) and current instance (I ) (Figure 1 (c)) that
might dampen the effectiveness of CL, we propose to treat adversarial samples
as inferior positives that induce weaker learning signals to attract their coun-
terparts in a lower degree when performing positive contrasts. This asymmetric
consideration in AL promises a trade-off and reduces conflicting impact on the
CL loss.

Secondly, to encourage adversarial samples (A) to escape from false identi-
ties induced by negative samples (N ) that share similar representations to (A)
(pushing A away from N ) (Figure 1(d)), we consider adversarial samples (A) as
hard negatives [37] of other negative samples (N ), by strengthening the nega-
tive contrast between A and N in CL computation. To effectively sample true
adversarial negatives and re-weight each sample, we follow positive-unlabeled
learning [15, 16] and contrastive negatives reweighting [37, 13] practice.

Our contributions are summarized as follows: 1) We propose an generic asym-
metric InfoNCE loss, A-InfoNCE, to address the identity confusion problem in
Adversarial CL, by viewing adversarial samples as inferior positives or hard neg-
atives. 2) Our approach is compatible to existing Adversarial CL methods, by
simply replacing standard CL loss with A-InfoNCE. 3) Experiments on CIFAR-
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10, CIFAR-100 and STL-10 show that our approach consistently outperforms
existing Adversarial CL methods.

2 Asymmetric InfoNCE

2.1 Notations

Contrastive Learning (CL) CL aims to learn generalizable features by max-
imizing agreement between self-created positive samples while contrasting to
negative samples. In typical contrastive learning, each instance x will be ran-
domly transformed into two views (x1, x2), then fed into a feature encoder f
with parameters θ to acquire normalized projected features, i.e., zi = f(xi; θ).
Let P(i) denote the set of positive views of xi, containing the views transformed
from x with the same instance-level identity (e.g., augmentations of the original
image xi); N (i) denotes the set of negative views of xi, containing all the views
from other instances. The conventional InfoNCE loss function [34] used in CL
for a positive pair (xi, xj) is defined as:

LCL(xi, xj) = − log
exp(sim(zi, zj)/t)

exp(sim(zi, zj)/t) +
∑

k∈N (i) exp(sim(zi, zk)/t)
(1)

where xi serves as the anchor, sim(zi, zj) denotes a similarity metric (e.g., cosine
similarity) between zi and zj , and t is a temperature parameter. The final loss
of the CL problem is averaged over all positive pairs of instances.

Adversarial CL Adversarial CL can be regarded as an extension of CL by adding
adversarial samples into the positive sets P(·) to contrast. Adversarial CL is typ-
ically modeled as the following min-max optimization formulation to incorporate
instance-wise attack [33, 17]:

min
θ

Ex∈X max
||δ||∞≤ϵ

∑
i

∑
j∈P(i)

LCL(xi, xj), P(i)← P(i) ∪ {x̂i + δ} (2)

where x̂i is the view of xi used to generate adversarial samples, δ is the adversar-
ial perturbation whose infinity norm is constrained as less than ϵ. In the above
formulation, the inner maximization problem constructs adversarial samples by
maximizing the contrastive loss, and the outer minimization problem optimizes
the expected worst-case loss w.r.t. the feature encoder f .

2.2 Asymmetric InfoNCE: A Generic Learning Objective

Current Adversarial CL frameworks directly inherit CL’s conventional contrastive
loss (e.g., InfoNCE) to evaluate the similarity between adversarial and clean
views in a symmetric fashion. This can result in ineffective or even conflicting
updates during CL training as aforementioned. To address this challenge, we
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propose a generic Asymmetric InfoNCE loss (A-InfoNCE ) to incorporate the
asymmetric influences between different contrast instances, given by:

Lasym
CL (xi, xj ;α, λ

p, λn) = − log
λp
j ·exp(sim

α(zi,zj)/t)

λp
j ·exp(simα(zi,zj)/t)+

∑
k∈N(i) λ

n
k ·exp(simα(zi,zk)/t)

(3)
where simα(·) is a generalized similarity metric that enables the incorporation of
asymmetric relationships (a concrete instantiation is described in the next sec-
tion); λp and λn are asymmetric weighting factors for positive and negative pairs,
respectively. It is worth noting that although A-InfoNCE is proposed to address
the identity confusion issue in Adversarial CL, it can be easily extended to other
CL settings when the asymmetric characteristics between different views need
to be captured. A-InfoNCE can also generalized to many existing CL methods,
for example, P(i) and N (i) can be altered to different choices of positive and
negative views; simα(zi, zj) is also changeable to a symmetric similarity metric
for zi and zj . λ

p and λn control the weights of different positive/negative pairs.
Generalization strategies are itemized below:

– If simα(zi, zj) is a symmetric similarity metric and λp, λn = 1, it degrades
to the conventional InfoNCE loss used in CL [9].

– If P(i) is altered, it corresponds to positives sampling [41, 3, 42] . When we
add adversaries into P(i), it degenerates to the conventional Adversarial CL
objectives, where λp, λn = 1 with symmetric simα(zi, zj) [30, 26, 17].

– If we seek better N (i), it echos negative sampling methods [37, 27] such
as Moco [23], which maintains a queue of consistent negatives; or mimics
DCL [13] that debiases N (i) into true negatives.

– If we change λp and λn, it mirrors the pair reweighting works [13, 37] that
assign different weights to each pair according to a heuristic measure of
importance such as similarity.

While most existing methods adopt a symmetric similarity metric, we claim that
in some scenarios the asymmetric similarity perspective needs to be taken into
account, especially when the quality and property of different views vary signifi-
cantly. In this paper, we focus on the study of Adversarial CL, and demonstrate
the benefits of capturing the asymmetric relationships between adversaries and
clean views. Specifically, we design two instantiations to model the asymmetric
relationships between adversarial and clean samples, as detailed in next section.
Both instantiations can be integrated into the proposed A-InfoNCE framework.

3 Adversarial Asymmetric Contrastive Learning

This section explains the instantiations of the A-InfoNCE loss for Adversarial
CL. From the inferior-positive perspective, to reduce the impact of identity
confusion, we first design a new asymmetric similarity metric simα(zi, z

adv
j ) for

modeling the asymmetric relationships and weakening the learning signals from
adversarial examples. From the hard-negative perspective, we view adversaries
as hard negatives for other negative samples, and reweight each negative pairs
by assigning similarity-dependent weights to ease the identity confusion.
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3.1 Adversarial Samples as Inferior Positives

Adversarial samples with different identities may attract their anchors (clean
samples) in a contradicting manner to the exertion of CL. By weakening the
learning signal from these adversarial examples in positive contrast (as inferior
positives that attract the anchors less), we can effectively mitigate the undesired
pull from clean samples via an adaptive gradient stopping strategy.

Asymmetric Similarity Function. As the symmetric nature of InfoNCE
can bring conflicts in Adversarial CL, we design a new asymmetric similarity
function simα(zi, zj) for A-InfoNCE, by manipulating the scale of gradient for
each contrasted branch. We decompose it into two parts for each branch:

simα(zi, zj) = α · sim(zi, zj) + (1− α) · sim(zj , zi) (4)

where sim(a, b) means the one-sided similarity of a to b, i.e., when maximizing
sim(a, b), we freeze b and only move a towards b. This can be implemented by
stopping the gradient back-propagation for b and only optimizing a.

We use a hyperparameter α to control how much zi and zj head towards
each other. For a clean sample and an adversarial sample, we let α denote the
coefficient of the clean branch’s movement. If α is 0, it performs total gradient
freezing on the clean branch and only adversarial representations are optimized
through training. Our empirical analysis finds that α is relatively easy to tune
for boosted performance. We show that any value lower than 0.5 brings reason-
able performance boost (see Figure 2), when clean samples move less towards
adversaries, following the intrinsic asymmetric property of Adversarial CL.

Adaptive α-annealing. When the identity confusion is at play, it is necessary
to treat adversarial samples inferior to ensure model robustness. But as training
progresses, when model learns robust representations and the negative identity-
changing impact of adversarial perturbation wanes, we consider adversarial per-
turbation as strong augmentations, equal to other typical transformations [9].

The question is how to measure the reduction of instance confusion effect.
Here we take a geometry perspective and propose to adaptively tune the propor-
tional coefficient α on-the-fly based on Euclidean distance. Let di,j = ||zi− zj ||2
denote the distance between an original image and its adversarial view in the
representation space. Given αmin, dmax, αmax, dmin, the goal is for α to be
αmax when the distance approximates dmin, and αmin to be close to dmax. Dur-
ing training, we first compute the current representation distance d, then use a
simple linear annealing strategy to compute α:

α = αmin + (dmax − d)
αmax − αmin

dmax − dmin
(5)

dmin and αmin can be treated as hyperparameters. αmax is 0.5, indicating adver-
sarial perturbation is equal to other transformations and simα(zi, zj) degrades
to the symmetric similarity. Moreover, we use the first N epochs as a warm-up
to compute the average distance as dmax, in which period α is fixed.
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Adversarial CL Loss with Inferior Positives. With the above asymmetric
similarity function simα(·) and theA-InfoNCE loss function Lasym

CL (xi, xj ;α, λ
p, λn),

the complete Adversarial CL loss with inferior positives (IP) can be written as:

LIP =
∑
i

∑
j∈P(i)

Lasym
CL (xi, xj ; 0.5, 1, 1) + γ ·

∑
i

∑
j∈P(i)

Lasym
CL (xi, x

adv
j ;α, 1, 1) (6)

where the first part stands for standard CL loss that maximizes the similarity
between two clean views, which is symmetric (α = 0.5) with λp = λn = 1,
degrading to the conventional InfoNCE loss. The second part is a robust CL
loss that maximizes the agreement between clean and adversarial views, but
uses the asymmetric similarity function (4) with a hyperparameter α that gives
weaker learning signals to the counterparts of inferior adversarial samples. The
hyperparameter γ balances the robustness and accuracy objectives.

3.2 Adversarial Samples as Hard Negatives

Besides inferior positives, we also propose an alternative view of adversaries
as hard negatives [37] that be pushed away from surrounding data points with
higher weights. This can potentially assuage the confusion brought by adversar-
ial samples of the current instance residing too close to the negative samples
of the same instance (as illustrated in Figure 1 (d)). Furthermore, this strat-
egy encourages the model towards more robustness-aware, by giving adversarial
samples possessing undiscriminating features higher weights in the pretraining
stage, further enhancing Adversarial CL.

In practice, we assign a weight of similarity to each pair. To set a basis for
weight assigning, we adopt a simple and adaptive weighting strategy used in [37],
i.e., taking each pair’s similarity as its weight, with wi,j = exp(sim(zi, zj)/t).
By doing so, the adversaries with bad instance-level identity (greater similarity
to negative samples) can be automatically assigned with higher weights. The
weights can adaptively decay as the instance identity recovers during training.

However, as the commonly-used N (i) is uniformly sampled from the entire
data distribution p(x) [13] (e.g., SimCLR [9] uses other instances in the current
batch as negative samples), simply taking similarities as weights may heavily re-
pel semantically-similar instances whose embeddings should be close. To estimate
the true negatives distribution p−(x) , we take advantage of PU-learning [15, 16]
and resort to DCL,HCL [13, 37] to debias negative sampling.

PU-learning [15] decomposes the data distribution as: p(x) = τp+(x) + (1−
τ)p−(x), where p+(x), p−(x) denote the distribution of data from the same or
different class of x, and τ is the class prior. Thus p−(x) can be rearranged
as p−(x) =

(
p(x) − τp+(x)

)
/(1 − τ). We can use all instances and positive

augmentations containing adversarial samples of x to estimate p(x) and p+(x),
respectively. Following [13], we debias the negative contrast part in (3) as:

1

1− τ

( ∑
k∈N (i)

wn
i,k · exp(simα(zi, zk)/t)−

N

M
· τ

∑
j∈P(i)

wp
i,j · exp(sim

α(zi, zj)/t)
)

(7)
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where M,N are the numbers of postives and negatives, wn
i,k is the aforemen-

tioned weights for negatives, wp
i,j is a expandable weight for positives (set as 1 in

our implementation, other choices can be further explored in the future work).

Adversarial CL Loss with Hard Negatives. We substitute (7) into the
A-InfoNCE loss function (3) and rearrange it, acquiring the instantiation of A-
InfoNCE loss with hard negatives (HN), with concrete forms of λp and λn as:

LHN =
∑
i

∑
j∈P(i)

Lasym
CL (xi, xj ;α,

M − (M +N)τ

M −Mτ
wp

i,j ,
1

1− τ
wn

i,k), k ∈ N (i) (8)

Due to the lack of class information, we treat τ as a hyperparameter and set
as [13] suggested.

Combined Adversarial CL Loss. Finally, we can view adversaries both as
inferior positives and hard negatives for other negative samples. This leads to
following combined Adversarial CL loss:

LIP+HN =
∑
i

∑
j∈P(i)

Lasym
CL (xi, xj ; 0.5,

M − (M +N)τ

M −Mτ
wp

i,j ,
1

1− τ
wn

i,k) +

γ ·
∑
i

∑
j∈P(i)

Lasym
CL (xi, x

adv
j ;α,

M − (M +N)τ

M −Mτ
wp

i,j ,
1

1− τ
wn

i,k), k ∈ N (i)

(9)

4 Experiments

To demonstrate the effectiveness and generalizability of the proposed approach,
we present experimental results across different datasets and model training
strategies. Our methods are compatible with existing Adversarial CL frame-
works, and can be easily incorporated by replacing their CL loss. We choose
two baselines and replace their loss with LIP (in Equation 6), LHN (8) and
LIP+HN (9) for evaluation.

Datasets. We mainly use CIFAR-10 and CIFAR-100 for our experiments.
Each dataset has 50,000 images for training and 10,000 for test. STL-10 is
also used for transferability experiments. Following previous work [17], we use
ResNet-18 [24] as the encoder architecture in all experiments.

Baselines. We compare with two baselines: RoCL [30], the first method to
combine CL and AL; and AdvCL [17], the current state-of-the-art framework.
During experiments, we observe severe overfitting of AdvCL when training 1000
epochs (experiment setting in the original paper), with performance inferior to
training for 400 epochs. Thus, we pre-train 400 epochs on AdvCL at its best-
performance setting. All other settings are the same as original papers except for
some hyperparameter tuning. Our methods are also compatible with some recent
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Table 1. Results for replacing the objectives of the two baselines with LIP , LHN and
LIP+HN , in Standard Accuracy (SA) and Robust Accuracy (RA). The pre-trained
methods are evaluated under the Linear Probing (LP), Adversarial Linear Finetun-
ing (ALF) and Adversarial Full Finetuning (AFF) strategies. Supervised methods are
trained under conventional adversarial training scheme.

Dataset
Pre-training
Methods

Finetuning Strategies

Linear Probing
Adversarial Linear

Finetuning

Adversarial Full

Finetuning

SA RA SA RA SA RA

CIFAR
10

Supervised
AT [33] - - - - 78.99 47.41 1

TRADES [47] - - - - 81.00 53.27 2

Self-

Supervised

RoCL [30] 83.84 38.98 79.23 47.82 77.83 50.54 3

w/ LIP 87.63 41.46 84.15 50.08 78.97 50.29 4

w/ LHN 84.14 40.00 79.40 48.31 78.84 51.73 5

w/ LIP+HN 85.69 42.96 81.91 50.90 80.06 52.95 6

AdvCL [17] 81.35 51.00 79.24 52.38 83.67 53.35 7

w/ LIP 82.37 52.33 80.05 53.22 84.12 53.56 8

w/ LHN 81.34 52.61 78.69 53.20 83.44 54.07 9

w/ LIP+HN 83.15 52.65 80.41 53.19 83.93 53.74 10

CIFAR
100

Supervised
AT [33] - - - - 49.49 23.00 11

TRADES [47] - - - - 54.59 28.43 12

Self-

Supervised

RoCL [30] 55.71 18.49 49.30 25.84 51.19 26.69 13

w/ LIP 59.30 21.34 54.49 30.33 52.39 27.84 14

w/ LHN 58.77 21.17 56.38 28.03 55.85 29.57 15

w/ LIP+HN 59.74 22.54 57.57 29.22 55.79 29.92 16

AdvCL [17] 47.98 27.99 47.45 28.29 57.87 29.48 17

w/ LIP 49.48 28.84 45.39 28.40 59.44 30.49 18

w/ LHN 49.44 29.01 47.32 28.69 58.41 29.93 19

w/ LIP+HN 50.59 29.12 45.72 28.45 58.70 30.66 20

work like SwARo [43] and CLAF [36], by modeling the asymmetry between clean
and adversarial views as aforementioned.

Evaluation. Following [26] and [17], we adopt three finetuning strategies to
evaluate the effectiveness of contrastive pre-training: 1) Linear Probing (LP):
fix the encoder and train the linear classifier; 2) Adversarial Linear Finetuning
(ALF): adversarially train the linear classifier; 3) Adversarial Full Finetuning
(AFF): adversarially train the full model. We consider two evaluation metrics:
1) Standard Accuracy (SA): classification accuracy over clean images; 2) Robust
Accuracy (RA): classification accuracy over adversaries via PGD-20 attacks [33].
Robustness evaluation under more diverse attacks is provided in the appendix.
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Table 2. Transferring results from CIFAR-10/100 to STL-10, compared with Ad-
vCL [17], evaluated in Standard accuracy (SA) and Robust accuracy (RA) across dif-
ferent finetuning methods with ResNet-18.

Dataset
Pre-training
Methods

Finetuning Strategies

Linear Probing
Adversarial Linear

Finetuning
Adversarial Full

Finetuning

SA RA SA RA SA RA

CIFAR10
↓

STL10

AdvCL [17] 64.45 37.25 60.86 38.84 67.89 38.78

w/ LIP 64.83 37.30 61.95 38.90 68.25 39.03

w/ LHN 65.24 38.18 62.83 39.70 67.88 39.75

w/ LIP+HN 67.19 37.00 61.34 39.35 67.95 39.12

CIFAR100

↓
STL10

AdvCL [17] 52.28 30.01 49.84 32.14 63.13 35.24

w/ LIP 52.65 31.33 50.18 33.15 63.26 35.34

w/ LHN 51.88 31.29 50.73 33.62 62.91 34.88

w/ LIP+HN 53.41 31.30 51.10 33.23 63.69 35.09

4.1 Main Results

In Table 1, we report standard accuracy and robust accuracy of each model,
learned by different pre-training methods over CIFAR-10 and CIFAR-100. Fol-
lowing previous works [30, 26, 17] and common practice in contrastive learning [9,
23], we first use unlabeled images in CIFAR-10/-100 to pre-train, then introduce
labels to finetune the model. As shown in Table 1, our methods achieve no-
ticeable performance improvement over baselines in almost all scenarios, when
replacing the original loss with our proposed adversarial CL loss.

In comparison with RoCL, LIP brings significant performance boost on both
standard and robust accuracy consistently across different training methods (row
4 vs. 3, row 14 vs. 13) (except for RA of AFF on CIFAR10). Comparing to Ad-
vCL, LIP also brings noticeable margin (row 8 vs. 7, row 18 vs. 17). This can be
attributed to that LIP aims to lower the priority of adversaries and prevent clean
samples moving towards other instances, which results in better instance discrim-
ination and improves clean [45] and robust accuracy. LHN also yields substantial
boost on robust and standard accuracy (e.g., row 15 vs. 13). We hypothesize this
is due to that LHN helps alert the model to adversarial samples by assigning
higher weights for adversaries in negative contrast. When combined together, in
most settings both standard and robust accuracy are further boosted, especially
for Linear Probing. This is because directly mitigating the negative impact of
identity confusion by LIP and helping adversarial get rid of false identities by
LHN can complement each other, bringing further performance boost.

4.2 Transferring Robust Features

Learning robust features that are transferable is a main goal in self-supervised
adversarial learning. It is of great significance if models pre-trained with a huge
amount of unlabeled data possess good transferability by merely light-weight
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finetuning. For example, Linear Probing is often 10× quicker than conventional
adversarial training, with only a linear classifier trained.

Here we evaluate the robust transferability of the proposed approach, by
transfering CIFAR-10 and CIFAR-100 to STL-10, i.e., use unlabeled images in
CIFAR-10/-100 to pretrain, then use STL-10 to finetune and evaluate the learned
models. As shown in Table 2, our methods yield both clean and robust accuracy
gains in most settings, up to 1.48% (33.62% vs. 32.14%) in robust accuracy and
2.74% (67.19% vs. 64.45%) in clean accuracy.

4.3 Ablation studies

We design a basic adversarial contrastive model, named CoreACL, to study the
effect of each component in our proposed methods. CoreACL only contains the
contrastive component with three positive views: two clean augmented views
and one adversarial view of the original image.

Fixed α for Asymmetric Similarity Function. We first use fixed α without
adaptive annealing to explore the effectiveness of inferior positives. Figure 2

Fig. 2. Deep probing for asymmetric similarity function
with different α.

presents the results with
different α values when
training models for 200
epochs. Recall that α
represents the tendency
of the clean sample head-
ing towards the adver-
sarial sample. α < 0.5
means clean samples move
less toward the adver-
saries (vice versa for α >
0.5), and α = 0.5 de-
generates to the origi-
nal symmetric similarity
function form.

Compared with symmetric CoreACL (α = 0.5), our approach achieves bet-
ter robustness and accuracy when α < 0.5 (adversarial examples are treated
as inferior positives). Intriguingly, when α = 1.0, the extreme case when only
clean samples are attracted by adversaries, we observe the presence of a trivial
solution [12], that is all images collapse into one point. This validates our ob-
servation that adversaries with false identities are indeed pulling their positives
towards other instances in the positive contrasts, with the risk of drawing all
samples together. It is also worth noting that when α < 0.2, performance begins
to drop, showing that a small but non-zero α is the optimal setting empirically.

Fixed α vs. α-Annealing. As shown in Table 3, compared to CoreACL, fixed
α obtains higher clean accuracy (81.29% vs. 78.90%) but with no gain on robust
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accuracy. Adaptive annealing α achieves both higher robust accuracy (50.24%
vs. 51.27%) and better clean accuracy (79.46% vs. 78.90%).

Table 3. Ablation studies, evaluated
in SA, RA and time cost. Trained for
400 epochs on 2 Tesla V100 GPUs.

Methods SA RA Time Cost
(s/epoch)

CoreACL 78.90 50.27 96

w/fixed α 81.29 50.24 96

w/annealing α 79.46 51.37 101

w/LIP+HN 81.19 51.31 101

AdvCL 81.35 51.00 182

Comparison with AdvCL. Table 3
reports the performance and computa-
tion cost comparisons with AdvCL. Core-
ACL with LIP+HN achieves similar per-
formance to AdvCL, which is equivalent
to integrate additional components (high
frequency view and pseudo-supervision)
into CoreACL. The computation time
of AdvCL is almost twice than that of
w/LIP+HN, which could due to extra com-
putation on contrasting high frequency
views and the pseudo-labeled adversarial
training. Our methods only need to compute pair-wise Euclidean distance for
α-annealing in LIP , and no extra cost introduced in LHN .

Effect of Hard Negatives. To investigate the effect of hard negatives, we

Table 4. Ablation studies for AdvCL with hard negatives
(AdvCL-HN), evaluated under Linear Probing (LP), Adversar-
ial Linear Finetuning (ALF) and Adversarial Full Finetuning
(AFF).

Methods
LP ALF AFF

SA RA SA RA SA RA

AdvCL-HN 81.34 52.96 78.69 53.20 83.44 54.07

w/o debias 81.52 51.61 78.89 52.34 83.73 54.01

w/o reweight 76.93 50.01 73.49 49.86 81.74 52.60

evaluate each component
(negatives debiasing [13],
reweighting [37]) as shown
in Table 4. With negatives-
debiasing removed, we
observe decrease in ro-
bust accuracy, with slightly
increased standard ac-
curacy. We hypothesize
that without debiasing,
semantically similar ad-
versarial representations
that should be mapped closely are pushed away instead. In addition, the re-
moval of negatives reweighting results in a sharp performance drop, showing
that viewing adversarial views as hard negatives with higher weights plays a key
role in discriminating adversarial samples.

4.4 Qualitative Analysis

Figure 3 shows the distribution of normalized Euclidean distance over all nega-
tive pairs. We take AdvCL [17] as the baseline and compare it with its enhanced
versions with our methods. Generally, our methods can shift the original distri-
bution curve right (larger distance), meaning that treating adversaries as infe-
rior positives or hard negatives encourages the model to separate negative pairs
further apart and induce better instance discrimination. This suggests that our
proposed methods effectively mitigate the negative impacts of identity confusion.
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Fig. 3. Histograms of Euclidean distance (normalized) distribution of all negative pairs
learned by different objectives in (a) CIFAR10 (first row) and (b) CIFAR100 (second
row). Baseline is AdvCL [17]; IP: baseline with Inferior Positives; HN: baseline with
Hard Negatives. On each dataset, our methods are better at differentiating different
instances (with larger distance between negative pairs).

Figure 4 provides 2-D visualization (t-SNE [32] on CIFAR-10) for the em-
beddings learnt by SimCLR [9], RoCL [30] and RoCL enhanced by LIP (RoCL-
IP). Each class is represented in one color. Compared to SimCLR, RoCL rep-
resentations are corrupted by adversaries and exhibit poor class discrimination.
RoCL-IP yields better class separation compared with RoCL. This shows that
asymmetric similarity consideration eases instance-level identity confusion.

5 Related Work

Contrastive Learning CL has been widely applied to learn generalizable fea-
tures from unlabeled data [9, 23, 41, 21, 11, 6, 3, 34, 10, 7, 29]. The basic idea is in-

Fig. 4. t-SNE visualizations in a global view on CIFAR-10 validation set. The em-
beddings are learned by different self-supervised pre-training methods (SimCLR(a),
RoCL(b) and RoCL-IP(c)) (colored figure).
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stance discrimination [45]. Representative works include CMC [41], SimCLR[9]
, MoCo[23], SwAV[6], BYOL[21]. There is also a stream of work focusing on
refined sampling on different views for improved performance [41, 27, 13, 37, 40].
For example, DCL[13] proposed to debias the assumption that all negative pairs
are true negatives. HCL[37] extended DCL and proposed to mine hard negatives
for contrastive learning, whose embeddings are uneasy to discriminate.

Adversarial Training Adversarial training (AT) stems from [19] and adopts a
min-max training regime that optimizes the objective over adversaries gener-
ated by maximizing the loss [33, 47, 38, 46, 44, 48, 18, 35]. Some recent work in-
troduced unlabeled data into AT [25, 8, 5, 1, 30]. By leveraging a large amount
of unlabeled data, [5, 1] performed semi-supervised self-training to first gener-
ate pseudo-supervisions, then conducted conventional supervised AT. Our work
explores how to learn robust models without any class labels.

Adversarial Contrastive Learning Some recent studies applied CL on adver-
sarial training [30, 26, 17, 20], by considering adversaries as positive views for
contrasting, such that the learned encoder renders robust data representations.
RoCL [30] was the first to successfully show robust models can be learned in
an unsupervised manner. AdvCL [17] proposed to empower CL with pseudo-
supervision stimulus. Same as CL, these Adversarial CL methods perform sym-
metric contrast for all pairs, which could potentially induces conflicts in CL and
AT training objectives. We are the first to investigate the asymmetric properties
of Adversarial CL, by treating adversaries discriminatingly.

6 Conclusions

In this work, we study enhancing model robustness using unlabeled data and
investigate the identity confusion issue in Adversarial CL, i.e., adversaries with
different identities attract their anchors together, contradicting to the objective
of CL. We present a generic asymmetric objective A-InfoNCE, and treat adver-
saries discriminatingly as inferior positives or hard negatives, which can overcome
the identify confusion challenge. Comprehensive experiments with quantitative
and qualitative analysis show that our methods can enhance existing Adversarial
CL methods effectively. Further, it lies in our future work to extend the proposed
asymmetric form to other CL settings to take into consideration the asymmetric
characteristics between different views.

Acknowledgement

This work was supported in part by the National Key R&D Program of China
under Grant 2021ZD0112100, partly by Baidu Inc. through Apollo-AIR Joint
Research Center. We would also like to thank the anonymous reviewers for their
insightful comments.



Adversarial Contrastive Learning via Asymmetric InfoNCE 15

References

1. Alayrac, J.B., Uesato, J., Huang, P.S., Fawzi, A., Stanforth, R., Kohli, P.: Are labels
required for improving adversarial robustness? Advances in Neural Information
Processing Systems 32 (2019)

2. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In: International confer-
ence on machine learning. pp. 274–283. PMLR (2018)

3. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximiz-
ing mutual information across views. Advances in neural information processing
systems 32 (2019)

4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 ieee symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

5. Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J.C., Liang, P.S.: Unlabeled
data improves adversarial robustness. Advances in Neural Information Processing
Systems 32 (2019)

6. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems 33, 9912–9924 (2020)

7. Chen, S., Niu, G., Gong, C., Li, J., Yang, J., Sugiyama, M.: Large-margin con-
trastive learning with distance polarization regularizer. In: International Confer-
ence on Machine Learning. pp. 1673–1683. PMLR (2021)

8. Chen, T., Liu, S., Chang, S., Cheng, Y., Amini, L., Wang, Z.: Adversarial ro-
bustness: From self-supervised pre-training to fine-tuning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 699–708
(2020)

9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: III, H.D., Singh, A. (eds.) Proceed-
ings of the 37th International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 119, pp. 1597–1607. PMLR (13–18 Jul 2020),
https://proceedings.mlr.press/v119/chen20j.html

10. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised
models are strong semi-supervised learners. Advances in neural information pro-
cessing systems 33, 22243–22255 (2020)

11. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum con-
trastive learning. arXiv preprint arXiv:2003.04297 (2020)

12. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
15750–15758 (2021)

13. Chuang, C.Y., Robinson, J., Lin, Y.C., Torralba, A., Jegelka, S.: Debiased con-
trastive learning. Advances in neural information processing systems 33, 8765–8775
(2020)

14. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boosting adversarial
attacks with momentum. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 9185–9193 (2018)

15. Du Plessis, M.C., Niu, G., Sugiyama, M.: Analysis of learning from positive and
unlabeled data. Advances in neural information processing systems 27 (2014)

16. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data.
In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. pp. 213–220 (2008)



16 Q. Yu et al.

17. Fan, L., Liu, S., Chen, P.Y., Zhang, G., Gan, C.: When does contrastive learning
preserve adversarial robustness from pretraining to finetuning? Advances in Neural
Information Processing Systems 34 (2021)

18. Gan, Z., Chen, Y.C., Li, L., Zhu, C., Cheng, Y., Liu, J.: Large-scale adversar-
ial training for vision-and-language representation learning. Advances in Neural
Information Processing Systems 33, 6616–6628 (2020)

19. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

20. Gowal, S., Huang, P.S., van den Oord, A., Mann, T., Kohli, P.: Self-supervised
adversarial robustness for the low-label, high-data regime. In: International Con-
ference on Learning Representations (2020)
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