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8 Appendix

8.1 Proof of Theorem [II

Proof. Due to the symmetry of the data distribution in Eq. (5], if we want to
get the error rate of a linear classifier y = sign(zTw), we only have to calculate
the integral of the Gaussian x ~ N (., Xx) over a half-space segmented by the
classifier. Suppose that the half-space that goes through the origin is given by
2, ={xr € R¥zTw > 0}, (17)
based on the probability density of the Gaussian, the integral can be written as:
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To solve the integral , we need the coordinate transform as:
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With the transformation , the integral becomes:
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where the integral over {2 can be evaluated by the error function.

Due to the monotony of the error equation, Eq. can reach the optima
when ¢ achieves its optima. According to the definition of ¢ in Eq. , we have
that the minima of ¢ can be achieved at w = X 1,u*, which exactly corresponds
to the the optima of objective @ Thus, the Bayesian error rate of the classifier
can be derived as:
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w = X ', which completes the proof.
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where ¢ = _\/ﬁ’

8.2 Proof of Propositions [1] and

Propositions [1] and [2| are directly referred from [13]. Corresponding proof can be
found in [I3].

8.3 Experiment Setting

Training: For both CIFAR10 and SVHN datasets, we used very similar training
schemes for different models. The images were first normalized to [0, 1]. ResNet
[11] and Wide ResNet [33] with different number of layers were employed as
the basic feature extractor. The standard perturbation size for the adversarial
training was both set to be ¢ = %. For all the implemented methods, the
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Attack: l-norm, e = 0.031 Dataset: CIFAR10
Model Total Epoch Learning Rate Decay Dynamic p (7 in FAT)
Natural N/A
Standard AT 120 Decay at {60, 70, 90} epoch, N/A
FAT to {0.01, 0.001, 0.0005}. 7: {0,1,2,3} increased at {50, 75, 90} epoch.
DAAT p: {0.05, 0.2, 0.3} increased at {75, 90} epoch.
TRADES 85 Decay at {60, 70} epoch, N/A
DAAT-TRADES to {0.01, 0.001}. p: {0.05, 0.15, 0.2, 0.25} increased at {30, 50, 70} epoch.
MART 90 Decay at {60, 70} epoch, N/A
DAAT-MART to {0.01, 0.001}. p: {0.05, 0.15, 0.25} increased at {20, 40, 60} epoch.
Attack: loo-norm, e = 0.031 Dataset: SVHN
Model Total Epoch Learning Rate Decay Dynamic p (7 in FAT)
Natural N/A
Standard AT 120 Decay at {60, 70, 90} epoch, N/A
FAT to {0.001, 0.0001, 0.00005}. 7: {0,1,2,3} increased at {30, 50, 70} epoch.
DAAT p: {0.05, 0.15, 0.2, 0.25} increased at {30, 50, 70} epoch.
TRADES 5 Decay at {30, 60, 70} epoch, N/A
DAAT-TRADES to {0.001, 0.0001, 0.00005}. |p: {0.05, 0.15, 0.2, 0.25} increased at {30, 50, 70} epoch.
MART 90 Decay at {60, 70} epoch, N/A
DAAT-MART to {0.001, 0.0001}. p: {0.05, 0.15, 0.25} increased at {20, 40, 60} epoch.

Table 2: Implementation and training details for different models.

adversaries were initialized with the uniform random start, and the maximum
PGD step T' = 10, step size a = § to make sure that the worst-case adversarial
examples could be obtained. All the DNN models for CIFAR10 were optimized
with SGD with the initial learning rate of 0.1, the momentum of 0.9, and the
weight decay of 0.0002. For SVHN, the initial learning rate was set to be 0.01.
The batch size during training was set to be 128 for both datasets. For better
performance, learning rate decay was applied at different epochs. Note that, for
the implementation of some baselines, we did not directly use the learning rate
decay scheme as introduced in the original paper because it may cause severe
overfitting problem after the learning rate was decayed. More training details for
different models can be found in Table 2l

Attacking: We used prevalent attack types, including FGSM, PGD-T', C&W [5]
optimized by PGD, to evaluate the proposed DAAT method. The black-box attack
was also employed for verification. The perturbation size of different attacks for
both datasets was set to be ¢ = %. To obtain stronger adversaries, the step
size during the attacking was set to be a = {5 which was much smaller than
that during training, and the number of perturbation steps was also increased to
T = 20, 40 respectively to achieve different strength of attacks.

8.4 Investigation on the Calibration Network c

The performance of ¢(-) plays a critical role in the natural generalization of
the robust model. It can be imagined that if the calibration network does not
generalize well on the clean examples (e.g., not well-trained on the natural data,
or trained with the adversarial data), it is not capable to provide instructive
information to determine a proper perturbation size that does not hurt the
natural accuracy too much while keeping the robustness. To investigate the effect
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Attack: loo-norm FGSM, e = 0.031 Dataset: CIFAR10

Model Nat. Acc. Adv. Acc.
DAAT calibrated by ¢| 88.31 64.14 + 0.17
DAAT calibrated by f| 85.94 63.51 + 0.23
DAAT g + ¢ 89.62 58.64 + 0.16

Table 3: Performance of different models to investigate the influence of the
calibration network. The first two rows are DAAT models calibrated by the
naturally trained ¢ and adversarially trained f, respectively. The third row is the
DAAT model whose classifier is replaced by c.

of the calibration network, we first evaluate the model’s natural accuracy and
robustness with a ¢(-) which is well-trained on the natural data. As in Table
the DAAT model calibrated by c¢ significantly outperforms the DAAT model
calibrated by f. A rational reason is that the classifier f is trained with the
adversarial data, thus the adjustment provided by f is based on the decision
boundary of the adversaries which is not helpful to the natural accuracy. The
evidence consists in the model at the third row whose classifier is replaced by
c. The calibration network ¢ empowers the DAAT model with higher natural
accuracy but with remarkably lower robustness, which indicates that c is capable
to provide knowledge about the better natural decision boundary and does not
fit well on the adversaries. Although we need to train an auxiliary network c
per epoch, we can rescue the natural accuracy by a large margin at a small cost
(about ten seconds per epoch compared with the standard AT). Even more to
the point, FAT also utilizes the adversarially trained classifier as the model in
the third row to generate friendly adversaries in practice, which explains why
DAAT generally outperforms FAT on natural accuracy.

8.5 Learning Curves

In this subsection, we plot more learning curve pairs between the baseline models
and DA AT-enhanced models for a better demonstration of the performance im-
provement. As we can see from Fig. [7], the natural accuracy of the proposed DAAT
method can usually converge faster and better than the baselines. Meanwhile, the
DAAT models can also achieve higher robustness. Note that, the models shown in
Fig. [Tal[7]] are all trained from scratch. However, as in Fig. [T, the MART model
on the SVHN dataset cannot be properly trained at the first few epochs, which
may lead to a worse convergence. Thus, for better performance, we employed
a natural pretrained model to fine-tune the MART and DAAT-MART models.
The result is shown in Fig. [7gl As we can see from the figure, the convergence
of training is much faster and better, and the DAAT-MART model can still
outperform the baseline.
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8.6 Extended Experiments

Network: ResNet18, Attack: lo-norm, ¢ = 0.031, Dataset: CIFAR10

Attacks White-box Black-box (PDG-20)
Methods Clean | FGSM PGD-20 PGD-40 C&W-20 C&W-40|Non-Robust AT

TRADES g =1.0 85.40% | 63.04% 49.22% 47.26% 48.43% 46.79% 84.17%  62.47%
DAAT-TRADES 8 = 1.0/86.81%63.62% 49.47% 47.54% 48.87% 47.21% | 85.62% 64.08%

Network: ResNet18, Attack: l-norm, ¢ = 0.031, Dataset: SVHN

Attacks White-box Black-box (PDG-20)
Methods Clean | FGSM PGD-20 PGD-40 C&W-20 C&W-40|Non-Robust AT

TRADES g =1.0 92.69% | 71.11% 54.54% 52.20% 50.33% 48.29% 87.54%  61.38%
DAAT-TRADES § = 1.0/193.74%|71.55% 54.47% 52.16% 50.76% 48.67% | 88.69% 62.08%

Table 4: Robust accuracy of TRADES and DAAT-TRADES 8 = 1.0 models on
CIFARI10 and SVHN under different attacks.

TRADES 5 = 1.0: In the TRADES model, the trade-off parameter § is for
adjusting the attention between accuracy and robustness. We have reported the
experimental results of TRADES 3 = 6.0 in Section [6} In this subsection, we
further investigate the performance of TRADES 8 = 1.0. As shown in Table [4]
the natural accuracy of TRADES model grows with the decreasing 3, while the
robustness decreases. However, no matter what the g is, DAAT can consistently
help TRADES improve the natural accuracy while keeping or even boosting the
robustness.

Wide ResNet-32-10: In Table |5, we also employ a larger network architecture
(e.g., Wide ResNet-32-10) for evaluation. We use the same test setting as in
[35]. As we can see from the table, DAAT model achieves remarkable robustness
improvement especially on stronger attacks compared with AT and FAT.
Comparison with [1I] [1] indeed share a similar motivation as our work, however
the methodology is different. Compared with the simple addition and subtraction
operations to ¢;s, the proportional dynamic update rule of DAAT and calibration
net guarantee a better performance. In our paper, we mainly compared with
the published works. Here, we also compare with [I] in Table [6] for completeness.
DAAT can outperform TAAT [1I] in terms of both natural and robust accuracy.

8.7 Attackable and Robust Samples

In Fig. [ it is obvious that for the DAAT model, there are not only a large
number of adversaries which are on the surface of the perturbation ball but
also a considerable number of adversaries which are close to the perturbation
ball centre. The former set of natural examples is more attackable since the
prediction can be changed with a small size of perturbation. On the contrary, the
latter set of natural examples is more robust since it takes a larger perturbation
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Attack: lo-norm, e = 0.031 Dataset: CIFAR10
Model | Clean | FGSM |PGD-20| C&W-30
AT [35] 87.30% | 56.10% | 45.80% 46.80%
FAT [35]| 89.34% | 65.52% | 46.13% 46.82%
DAAT (89.56%66.99%|50.53%| 51.04%

Table 5: Evaluation of Wide ResNet-32-10 on CIFARI10.

Attack: loo-norm, ¢ = 0.031 Net: ResNet18
Model | Clean |PGD-10|PGD-100/PGD-1000
TAAT [1]] 87.26% | 43.08% | 41.16% | 41.16%
DAAT |88.31%|48.10%| 46.05% | 46.01%

Table 6: Compared with IAAT [I] on CIFARIO.

to alter the prediction. In Fig. [8] we demonstrate some samples of the natural
examples in different classes from the attackable set and robust set, respectively.
From Fig. |8 we can find that the attackable examples generally contain more
complex background and blurred textures, which means that they are more
difficult to be correctly classified and are more easily to be attacked. The robust
natural examples usually have a clean background and a clear outline where the
intra-class characteristics are better preserved. Thus, larger perturbations are
supposed to be applied to change the prediction.

8.8 Extra Time Consumption

We evaluate the extra time consumption of our calibration scheme in Table [7]
We can find that DAAT takes approximately 20 minutes more time for retraining
¢ with natural data, which is acceptable compared with the whole adversarial
training process. Although by naturally training both g and ¢ can achieve 0.37%
improvement on natural accuracy, it can cause a 6x slowdown. Thus, we believe
our method is a satisfying trade-off between the performance and computational
cost.

Attack: lo-norm, Net: ResNet18, Dataset: CIFAR10

Calibration Network Clean Robust | Extra Time
Naturally trained g + ¢ | 88.67% | 48.26% | ~ 120min

Naturally trained ¢ 88.31% | 48.89% | ~ 20min

Table 7: Extra time consumption of different calibration schemes.
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8.9 Compared with Non-adversarial Training Defenses.

Adversarial training is not the only way to improve the model’s adversarial
robustness. Some methods attempt to robustify the model by smoothing the
geometry of the classification landscape [25] or network pruning [17], etc. In
Table [8) we compare DAAT with multiple non-adversarial training defenses. We
can find that our method can significantly outperform these methods in terms of
both robustness and accuracy.

Attack: lo-norm, Net: ResNet18, Dataset: CIFAR10

Method Clean Robust
CURE [25] 83.11% 38.50%
DNR [I7] 87.32% 40.41%
DAAT 88.31% 48.89%

Table 8: Comparison with non-adversarial training methods.
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Fig. 7: Learning curve pairs between the baseline models and DAAT-enhanced
models.
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Fig.8: Samples of attackable and robust natural examples. The [, distance
between the attackable natural examples and their corresponding adversaries is
less than 0.0001, while it is exactly the preset perturbation size 0.031 for the
robust natural examples.



