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Abstract. Adversarial robustness is critical for deep learning models
to defend against adversarial attacks. Although adversarial training is
considered to be one of the most effective ways to improve the model’s ad-
versarial robustness, it usually yields models with lower natural accuracy.
In this paper, we argue that, for the attackable examples, traditional
adversarial training which utilizes a fixed size perturbation ball can create
adversarial examples that deviate far away from the original class towards
the target class. Thus, the model’s performance on the natural target
class will drop drastically, which leads to the decline of natural accu-
racy. To this end, we propose the Data-Adaptive Adversarial Training
(DAAT) which adaptively adjusts the perturbation ball to a proper size
for each of the natural examples with the help of a natural trained cal-
ibration network. Besides, a dynamic training strategy empowers the
DAAT models with impressive robustness while retaining remarkable
natural accuracy. Based on a toy example, we theoretically prove the
recession of the natural accuracy caused by adversarial training and show
how the data-adaptive perturbation size helps the model resist it. Finally,
empirical experiments on benchmark datasets demonstrate the significant
improvement of DAAT models on natural accuracy compared with strong
baselines.

Keywords: Adversarial training, Adversarial attack, Adversarial robust-
ness

1 Introduction

Deep learning has led to significant advances across a broad range of tasks, such
as computer vision [11], natural language processing [6]. However, the pervasive
brittleness of deep neural networks (DNNs) against adversarial examples [27]
has raised particular worrisome of the applications of deep learning. Adversarial
examples can induce significant change to the output of DNNs even though they
are generated by perturbing the clean data only with “imperceptible” noise. The
real-world especially security-related tasks (e.g., autonomous driving [3]) require
reliability and robustness of DNN models against adversarial attacks.

A large body of approaches has been proposed to defend the adversarial
attacks. Adversarial training [9,21] is regarded as one of the most effective
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adversarial defense methods. The fundamental philosophy behind adversarial
training is to encourage the similarity of predictions between the clean input
and its neighborhoods. For example, the standard adversarial training [21] first
generates adversarial examples within an lp-norm perturbation ball of radius
ϵ, and then imposes the model to have the correct prediction of the adversary.
Although subsequent methods such as [14] utilize more sophisticated loss to
generate adversaries, they basically share the same training strategy.

Despite the empirical success of adversarial training, recent works show that
the improvement of robustness comes at the cost of natural accuracy [29,34].
This problem has inspired many works to study the intrinsic trade-off between
robustness and accuracy. For example, TRADES [34] explicitly sets a trade-off
coefficient on the natural and adversarial training loss to balance the performance
of accuracy and robustness. FAT [35] searches for the least adversarial data to
moderate the influence of the adversarial training on natural accuracy. However,
the origin of the trade-off is still arguable and the solution to improving the
degraded accuracy while keeping the robustness still leaves open.

In this paper, we try to reconsider the trade-off problem from a novel perspec-
tive. When generating the adversarial examples, traditional adversarial training
methods adhere to the principle that the generated adversaries should be pro-
jected to a ball with a fixed size around the natural examples. Given sufficient
update, the final adversaries tend to appear on the surface of the perturbation
ball, since the generation is oriented by the gradient ascending direction which is
generally away from the clean example. On the one hand, for the clean data which
are more resistive to the adversarial attacks, the generated adversarial example
within the perturbation ball is still similar to the original class; however, on the
other hand, for the natural example which is more attackable, the generated
adversary can extremely diverge from its natural counterpart. At worst, there
may be some clean examples from other classes existing in the perturbation ball
if the ball is large enough as illustrated in Fig. 1. If trained with such adversarial
examples which excessively overstep the decision boundary, the natural accuracy
of the model will be inevitably degraded.

To this end, we propose a novel adversarial training scheme named Data-
Adaptive Adversarial Training (DAAT) which adaptively adjusts the perturba-
tion ball to a proper size for each of the natural examples. The data-adaptive
perturbation size is upper-bounded by the initial preset size and it aims at
avoiding generating excessively overstepping examples. Concretely, if the attacker
generates an adversary which crosses the line into another category too much,
DAAT will shrink the perturbation ball to pull it back, while if the generated
adversaries are so benign that can be easily classified, DAAT will enlarge the
perturbation ball to give more elbow room to the attacker. The specific perturba-
tion size is determined by a calibration network that is trained merely with the
natural data so as not to overfit the adversaries. Therefore, the generalization
ability on the natural examples can be better preserved. Besides, to exploit more
informative adversaries, we dynamically enlarge the margin of the data-adaptive
perturbation ball during different training stages. Empirical experiments demon-
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Fig. 1: Illustration of how the adversarial training with a fixed size perturbation
ball can cause the degradation of the natural accuracy.

strate that the dynamic training strategy plays a significant role in improving
the robustness of DAAT models.

2 Related Work

2.1 Adversarial Defense

A large body of research has been conducted to improve the model’s defensive
power against adversarial examples from various perspectives. For example,
many works [10,8,24,12,18] try to detect the adversarial examples and reject
them. Another branch of works [31,32,19] view the adversarial examples as
contaminated natural examples and aim at recovering the clean examples by
employing denoising or feature squeezing methods. However, several detectors
and denoisers have been shown to have a limited benefit on certain kinds of
attacks [4]. Currently, adversarial training is considered to be one of the most
effective defense strategies. The key idea of adversarial training is to train the
non-robust model with the generated adversaries. Based on the seminal work [21],
many works try to improve the performance of the standard adversarial training
by utilizing resultful tools from other domains, such as logit pairing [14], metric
learning [23], self-supervised learning [15]. However, most of the aforementioned
improvements only focus on how to better align the adversaries with their natural
counterparts. Thus, a side effect with the increasing robustness is that the natural
accuracy will decline rapidly.

2.2 Decline of the Natural Accuracy

[29] first finds that the natural accuracy may be at odd with robustness. [29]
claims that the natural trained model and adversarially trained model may learn
different features for classification. This idea is further confirmed by [13]. [34] later
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proposes TRADES which uses a trade-off parameter β to balance the training
between the natural and adversarial examples. However, TRADES only aims at
adjusting the attention between accuracy and robustness, but not at harmonizing
the conflict between them. FAT [35] assumes that the reason for the decline of
natural accuracy is that the adversaries are so invasive that some of them have
crossed over the original decision boundary by a large margin. By generating
adversarial examples which are weaker, FAT shows a remarkable improvement of
natural accuracy. Nonetheless, the objective of FAT encourages the attacker to
find the weakest adversarial examples under certain constraints which cannot
provide sufficient information to improve the robustness. Thus, the empirical
robust accuracy of FAT is usually much lower. Besides, FAT employs the model
trained on the adversaries to determine the strength of attack which may be
overfitting to the adversaries. Parallel to our work, [1] also shares a similar
idea of instance adaptive adversarial training. However, we employ different
adjustment strategies, and the natural trained calibration network guarantees
better performance of our method. We defer the empirical comparison of DAAT
and [1] to the Appendix.

3 Review of Standard Adversarial Training

We denote S = {(xi, yi)}ni=1 as the training dataset, where xi ∈ Rd and yi ∈ RK .
In this paper, we consider a multiclass classification task f(g(·; θ);ω) : Rd → RK ,
where g(·; θ) is a feature extractor parameterized by θ and f(·;ω) is a classifier
parameterized by ω. The perturbation ball around an input example x is defined
as:

Bp(x, ϵ) := {x′| ∥x− x′∥p ≤ ϵ}, (1)

where ϵ is a preset perturbation size, and ∥·∥p refers to the lp-norm metric. In the
experimental section, except where explicitly stated, we typically choose the l∞
norm for training and evaluation as it commonly leads to a smaller perturbation
size.

Adversarial example x′ is an example in the perturbation ball around a
natural example x, i.e., x′ ∈ Bp(x, ϵ). The harmfulness of the adversarial example
is reflected in that it can alter the prediction of a model for the original natural
example as follow:

argmax
k

f(g(x′))k ̸= argmax
k

f(g(x))k, (2)

where f(g(·))k is the predicted probability of the k-th class. The existence
of the adversarial example reflects the sensitivity of the model to adversarial
perturbations. Adversarial training can be a natural way to smooth the prediction
of the model within the perturbation ball [21]. The objective of the standard
adversarial training can be formulated as follow:

min
ω,θ

E
[

max
x′∈Bp(x,ϵ)

L (f(g(x′); θ);ω), y)

]
, (3)
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where L is the loss function to measure the difference between the ground-truth
label and prediction (e.g., soft-max cross-entropy loss).

From Eq. (3) we can find that the standard adversarial training implies a
minimax game between the attacker and defender. The attacker aims at generating
the adversarial examples which maximize the loss within the perturbation ball,
while the defender tries to correct the misclassification on the generated attack.
However, in practice, the inner maximization is generally intractable due to
the extremely high dimension of the input space. Thus, the Projected Gradient
Descent (PGD) method [21] is proposed to approximate the inner maximization
by generating the worst-case example within T -step iterations. A PGD iteration
can be written as follow:

xt+1 = ProjBp(x,ϵ)

[
xt + αsign

(
∇xtL(f(g(xt); θ);ω), y)

)]
, (4)

where ProjBp(x,ϵ) is to project the generated example back to Bp(x, ϵ) and α is
the step size. The last step output is utilized as the final adversarial example,
i.e., x′ := xT . It can be imagined that with the increasing iteration step, the
generated examples will deviate from the origin further and further.

4 Adversarial Perturbation Size Matters

In standard adversarial training, the perturbation size is usually set to be the
same for every example. Empirically, given sufficient PGD iteration steps, the
generated adversarial example is more likely to be located on the surface of
the perturbation ball (see experiments in Section 6.3). According to [36], more
attackable/robust data are closer to/farther away from the decision boundary.
Therefore, as illustrated in Fig. 1, the generated adversaries of the attackable
data may cross the decision boundary to another class leading to the accuracy
decline. Similar idea is also mentioned in [28].

In what follows, we theoretically demonstrate how standard accuracy is
influenced by the standard adversarial training based on a toy example. Different
from the setup of [13] to study the robust and non-robust feature, we adopt the
toy experiment to illustrate how adversarial training hurts accuracy. We consider
a binary classification problem where the input-label pairs (x, y) are sampled
from a distribution D as follows:

y
u.a.r.∼ {−1, 1}, x ∼ N (y · µ∗,Σ∗). (5)

Our goal is to correctly classify new examples which are sampled from D. Based
on the maximum likelihood classification criteria, our learning objective can be
formulated as:

min
µ,Σ

E(x,y)∼D [L(x; y · µ,Σ)] , (6)

where L(x; y ·µ,Σ) denotes the negative log-likelihood function of Gaussian. Due
to the symmetry of the data distribution, the resulting optimal linear classifier
can be easily obtained as follow:

y = argmax
y

L(x; y · µ̂, Σ̂) = sign(x⊺Σ̂−1µ̂), (7)
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where (µ̂, Σ̂) are the estimated parameters of the Gaussian. With the classifier
(7), we have the following theorem:

Theorem 1. When the optima of objective (6) is obtained, classifier (7) can
achieve the Bayesian error rate as

err∗ = 1− 1√
2π

∫ ∞

c

exp

(
−1

2
x2

)
dx,

where c = − µ⊺
∗w√

w⊺Σ∗w
, w = Σ−1

∗ µ∗, and the integral can be evaluated by the error

function.

The proof of Theorem 1 can be found in the Appendix. It indicates that the
model which is only trained with the natural data according to the maximum
likelihood rule can achieve the highest natural accuracy. Next, we will investigate
how standard adversarial training leads to a reduction of natural accuracy.
According to the standard adversarial training objective as Eq. (3), we can derive
the robust objective of this toy experiment as follow:

min
µ,Σ

E(x,y)∼D

[
max

δ∈Bp(0,ϵ)
L(x+ δ; y · µ,Σ)

]
. (8)

By solving Eq. (8) within the l2-norm perturbation ball, we have the following
propositions:

Proposition 1. Given the robust objective in Eq. (8), the optimal perturbation
δ∗ with respect to input x can be derived as:

δ∗ = (λΣ − I)−1(x− µ),

where λ is set such that ∥δ∗∥2 = ϵ.

A straightforward result of Proposition 1 is that the optimal adversarial pertur-
bation can be obtained at the surface of the perturbation ball. Imagine that for
the more attackable examples which are closer to the natural decision boundary,
the generated adversaries are more likely to cross the decision boundary with a
sufficiently large perturbation size.

Proposition 2. For a fixed tr(Σ∗) = k, the objective (8) can be optimized at:

µr = µ∗, Σr =
k

d
I,

where d is the dimension of the input space.

Proposition 2 further demonstrates the consequence of the improper perturbation
size for these more attackable examples. Although the mean of the robust model
is the same as that of the natural trained model (i.e., µr = µ∗), the covariance
matrix becomes proportional to the identity matrix. As a result, the classifier
induced by the standard adversarial learning will transit to:

yr = sign(x⊺Σ−1
r µr) = sign(x⊺µ∗), (9)
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(a) AT with ϵ = 1 (b) AT with ϵ = 3 (c) AT with ϵ = 5

(d) DAAT with ϵ = 1 (e) DAAT with ϵ = 3 (f) DAAT with ϵ = 5
Fig. 2: An empirical illustration of the toy example. The contour lines depict the
natural data distribution, the red and blue dots in different subfigures are the
generated adversaries with increasing perturbation size (i.e., ϵ = 1, 3, 5 from left
to right). The yellow circles are the overstepping examples, and the green ones
are the corresponding examples adjusted by the adaptive perturbation ball. The
blue dashed and orange lines are natural and robustified decision boundaries,
respectively.

which is perpendicular to the line between the two mean points. If Σ∗ ̸= I,
according to Theorem 1, the natural error of classifier (9) will be enlarged .

We give an empirical illustration of the toy examples in Fig. 2. The subfigures
in the left column depict the standard adversarial training process. It is obvious
that with the increasing perturbation size, more and more adversaries are crossing
the optimal natural classifier, causing the induced robust classifier to have a lower
and lower natural accuracy. In contrast, the adversaries in the right column are
constrained in the adaptive perturbation balls which ensures that the adversaries
can be concentrated around the original decision boundary. Consequently, the
induced model has a lower natural accuracy decline.

5 Data-Adaptive Adversarial Training

As discussed in the previous sections, the fixed perturbation size employed in
the standard adversarial training is not appropriate for every training example. For
the examples which are far away from other classes, the adversaries in the ϵ-large
perturbation ball can smooth the output of the neighborhoods around the natural
examples which is beneficial to the robustness. On the contrary, for the natural
examples which are closer to the decision boundary, the adversaries generated
within the ϵ-large perturbation ball are likely to cross the decision boundary into
another class. If the model is still trained on these overstepping adversaries, it is
not difficult to imagine that the model will be biased to misclassified the natural
examples from the target classes, which leads to the accuracy decline.

To solve the problem above, we propose the Data-Adaptive Adversarial
Training (DAAT) method in this section. The basic idea of DAAT is to apply an
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Algorithm 1 Data-Adaptive Adversarial Training (DAAT)

Input: Initialized feature extractor g(·), classifier f(·), calibration network c(·),
training data S = {(xi, yi)}ni=1, initialized perturbation size ϵ0i = ϵ, number of steps
T , margin ρ, temperature τ , number of epochs E, minibatch size m
Output: Adversarial robust network f(g(·))
for epoch = 1, . . . , E do

for mini-batch = 1, . . . , M do
Sample a mini-batch {(xi, yi)}mi=1 from S
Train c(·) with the natural data by 1

m

∑m
i=1 L (c(g(xi)), yi)

Generate data-adaptive adversarial example by x′
i ←

ΠT
Bp(xi,ϵ

e
i )

[
αsign

(
∇xt

i
L(f(g(xt

i)), y)
)
+ x′

i

]
Train f(g(·)) with the adversarial examples by 1

m

∑m
i=1 L (f(g(x

′
i)), yi)

Obtain the similarity si by Eq. (13)
Update the data-adaptive perturbation size ϵe+1

i by Eq. (12)
end for

end for

adaptive perturbation size ϵi to different training data xi so that the generated
adversaries can be constrained and do not deviate too far away from the clean
one. Thus, DAAT generates the adversary x′i within a calibrated perturbation
ball Bp(xi, ϵi) as:

x′i = argmax
x′
i∈Bp(xi,ϵi)

L (f(g(x′i)), yi) . (10)

A critical point of DAAT is how to determine the adjustment of perturbation size.
Recall that the job of ϵi is to constrain x′i not to overstep the natural decision
boundary, thus we employ a calibration network c(·;ψ) to estimate how far the
generated adversary x′i has crossed over the decision boundary. Naturally, the
adjusted ϵi should satisfy:

max
y

c(g(x′i))y − c(g(x′i))yi ≤ ρ, x′i ∈ Bp(xi, ϵi), (11)

where the constraint (11) makes sure that x′i which generated in Bp(xi, ϵi) will not
overstep the natural decision boundary by a margin larger than ρ, otherwise the
perturbation size ϵi is supposed to be scaled down. Note that, c(·) is supposed to be
trained only with the natural examples, thus it can judge x′i from the perspective
of the natural decision boundary. If we replace c(·) with the adversarially trained
f(·), the calibrated ϵi will adapt to the adversarial decision boundary, which
cannot provide accurate information.

Specific strategy to satisfy the constraint (11) is still an open question. In
this paper, the proposed DAAT estimates the perturbation size as follow:

ϵe+1
i := min{ϵ, ρ

si
· ϵei}, (12)

si := max
y

σ [c(g(x′i))/τ ]y − σ [c(g(x′i))/τ ]yi , (13)

where σ(·) is the softmax operation, τ ≥ 1 is the temperature coefficient to
smooth the output of c(·), e denotes the training epoch, si ∈ (0, 1) in (13) is to
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Fig. 3: Investigation of the fixed (ρ, τ) pairs and dynamic ρ strategy.

measure how far x′i has overstepped the decision boundary, and ρ is a margin.
Thus, if an adversary x′i has crossed the decision boundary too far (e.g., ρ/si < 1),
the perturbation bound will be shrunken in the next epoch and vice versa. In the
following experiments, we also try different adjustment strategies for comparison.
To sum up, the final objective of DAAT can be formulated as follows:

min
ψ

E(x,y) [L (c(g(x);ψ), y)] + min
ω,θ

E(x′,y) [L (f(g(x′); θ), y)] , (14)

x′i ∈ Bc(xi, ϵi) = {x′i| ∥xi − x′i∥ ≤ ϵi, max
y

c(g(x′i))y − c(g(x′i))yi ≤ ρ}, (15)

where Bc represents the calibrated perturbation ball. The detailed training routine
of DAAT is summarized in Algorithm 1 for convenience.

6 Experiment

In this section, our proposed DAAT is evaluated on benchmark datasets, including
CIFAR10 [16], and SVHN [26]. Strong baselines including AT [22], TRADES [34],
MART [30] and FAT [35] are employed to verify the advantages of DAAT. The
models are tested under prevalent attack types, including FGSM, PGD-T , C&W
[5] optimized by PGD, and the commonly used benchmark attack AutoAttack
(AA) [7]. Moreover, comprehensive experiments are conducted to investigate the
thorough capability of DAAT. Due to space limitation, the training and attacking
details for DAAT and baselines are all deferred to the Appendix. Implementation
is available at here1.

6.1 Investigation of Hyper-parameters

As we mentioned in Section 5, the margin ρ and temperature τ are two important
hyper-parameters that affect the performance of DAAT. For the sake of optimal

1 https://github.com/eccv2022daat/daat.git
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performance, we first investigate the model’s response to different hyper-parameter
pairs. We conducted a grid search to investigate the influence of hyper-parameters.
The searching spaces for ρ and τ are {0.01, 0.05, 0.1, 0.2, 0.4} and {1, 2, 3},
respectively. Fig. 3 demonstrates the FSGM robust accuracy and natural accuracy
of the model trained with different hyper-parameter pairs. As we can see from
Fig. 3a and 3b, for a fixed τ , the robustness of the model generally increases with
the growing ρ, while the natural accuracy of the model declines. A convincing
reason for this trend is that the job of ρ is to control how much the prediction
confidence of the adversarial examples can exceed that of the correct class (i.e.,
Eq. (13)). Consequently, if ρ is set to be larger, the generated adversary will be
further away from its natural counterpart, which leads to the decreasing of the
natural accuracy but the promoting of the robustness, and vice versa.

Fig. 3 illustrates that the optimal model for robust and natural accuracy
can be both achieved at τ = 2, but with different ρ values. To harmonize the
conflict, we devise a novel training scheme by employing a dynamic ρ during
different stages of training. Specifically, the model is initially trained with a small
value of ρ with which only mild adversaries can be generated. As a consequence,
the model can better generalize to the natural examples so that the induced
calibration network can provide informative knowledge for the perturbation size
adjustment. Then, ρ will be gradually enlarged to make sure that the model can
adapt to stronger attacks. Meanwhile, with the help of the adaptive perturbation
size, the natural accuracy would be retained as much as possible. In Fig. 3c,
we plot the learning curves of the models trained with ρ = 0.05, ρ = 0.4, and
dynamic ρ which is initialized with 0.05 and then enlarged to 0.2 and 0.3 at #75
and #90 epoch, respectively. From the learning curves, we can find that DAAT
with dynamic ρ inherits the advantages of the fixed ρ models, e.g., it achieves
a high level of natural accuracy while enjoying remarkable robustness. In the
following experiments, we will all employ the dynamic ρ to train DAAT models
unless otherwise specified.

6.2 White-box and Black-box Attacks

In this subsection, we evaluate the proposed DAAT method with both white-box
and black-box attacks. The powerful ResNet18 was employed as the basic feature
extractor2. For comparison, we combined the baselines with the DAAT training
scheme denoted as the DAAT- models to investigate the performance promotion
that DAAT brings.
White-box attack: The white-box attack assumes that all the information
about the model is completely exposed to the attacker. As shown in Table 1,
thanks to the data-adaptive perturbation size, the proposed DAAT achieves
significantly higher natural accuracy compared with the baselines. Especially in
the SVHN dataset, DAAT has a natural accuracy of 93.82% which is much closer
to that of the natural trained model. Meanwhile, most of the DAAT-enhanced
models’ robustness is also improved or keep comparable. We attribute this benefit

2 Experimental results with more network architectures are deferred to the Appendix.
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Network: ResNet18, Attack: l∞-norm, ϵ = 0.031, Dataset: CIFAR10

Methods

Attacks White-box Black-box (PDG-20)

Clean FGSM PGD-20 PGD-40 C&W-20 AA Non-Robust AT

Natural 94.63% 17.32% 0% 0% 0% 0% – 70.80%

Standard AT 84.66% 62.83% 47.83% 46.26% 46.24% 43.66% 83.67% –

FAT 88.26% 63.73% 46.52% 43.73% 45.34% 43.28% 86.40% 64.11%

DAAT 88.31% 64.56% 48.89% 46.93% 49.43% 44.32% 86.79% 64.25%

TRADES 81.98% 63.24% 53.70% 52.48% 50.93% 49.22% 80.22% 62.08%

DAAT-TRADES 83.55% 64.55% 54.57% 53.28% 51.30% 49.83% 82.05% 63.02%

MART 80.67% 63.75% 53.87% 52.19% 50.25% 49.73% 79.78% 61.44%

DAAT-MART 83.87% 65.75% 54.02% 52.63% 50.32% 49.82% 82.16% 62.01%

Network: ResNet18, Attack: l∞-norm, ϵ = 0.031, Dataset: SVHN

Methods

Attacks White-box Black-box (PDG-20)

Clean FGSM PGD-20 PGD-40 C&W-20 AA Non-Robust AT

Natural 96.02% 45.38% 0.90% 0.30% 0.83% 0% – 54.41%

Standard AT 92.74% 72.58% 54.89% 52.33% 52.10% 51.09% 88.35% –

FAT 93.53% 70.48% 52.98% 49.85% 49.73% 50.63% 89.11% 61.12%

DAAT 93.82% 73.03% 56.24% 53.72% 53.06% 52.33% 89.50% 61.84%

TRADES 88.99% 69.68% 57.38% 55.69% 51.74% 50.82% 83.98% 60.84%

DAAT-TRADES 90.28% 71.07% 58.59% 56.60% 51.33% 50.59% 85.19% 61.16%

MART 89.91% 70.65% 58.00% 56.17% 51.47% 50.12% 84.89% 60.72%

DAAT-MART 92.16% 73.81% 59.68% 57.42% 51.81% 50.66% 87.49% 61.28%

Table 1: Robust accuracy on CIFAR10 and SVHN under different attacks.

to the dynamic ρ, for it can provide the model with a learning environment
as Curriculum Learning [2], with which the robustness can be smoothly and
better improved. It is undeniable that the FAT method can achieve comparable
natural accuracy as DAAT, however, the robustness of the FAT trained model
seems to suffer a severe decline. A possible explanation is that the objective of
FAT replaces the inner maximization in Eq. 3 with a minimization objective
under certain constraints. Thus, FAT cannot find the most effective adversaries to
improve the robustness with the early-stopped PGD technique [35]. In comparison,
although DAAT also shrinks the perturbation space, it still tries to find the most
informative adversaries in a smaller perturbation ball.

Black-box attack: In the black-box attack setting, the attacker has no access
to the target model. The attacker has to generate adversaries by attacking a
surrogate model.

In this paper, we employ the natural trained model and the standard AT model
as the surrogate models. As in the last two columns in Table 1, an interesting
trend is that the models with higher robustness towards the white-box attacks
(e.g., TRADES, MART) usually have lower robustness towards the black-box
attacks. We suspect that this is probably because the robustness towards a
specific kind of attack will impede the transferability of robustness. Nonetheless,
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the DAAT-enhanced models can generally keep or surpass the robustness against
black-box attacks compared with their baselines.

6.3 Distribution of Adversaries

104

105
Standard AT (Nat acc: 84.66%, PGD-20 acc: 49.03%)

104

105
FAT (Nat acc: 88.42%, PGD-20 acc: 46.22%)

0.00 0.01 0.02 0.03

101

103

0.00 0.01 0.02 0.03 
DAAT (Nat acc: 88.31%, PGD-20 acc: 48.89%)

0.00 0.01 0.02 0.03 0.04

101

103

0.00 0.01 0.02 0.03
1.25 DAAT (Nat acc: 86.93%, PGD-20 acc: 51.72%)

Fig. 4: Histograms of the distance between the adversarial examples for training
and the natural examples. The horizontal and vertical axes represent the distance
to the natural example and the number of examples, respectively.
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(b) DAAT model natural data.

Fig. 5: T-SNE visualizations of natural representations obtained from AT and
DAAT models. The darker points in the right figure are the examples whose
data-adaptive perturbation size is smaller than the preset ϵ.

Traditional adversarial training methods usually search the worst-case adver-
sarial example in a fixed size perturbation ball. As a consequence, the generated
adversaries tend to appear on the surface of the perturbation ball. However,
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DAAT explicitly restrains the perturbation space of the adversaries, thus the
adversaries should be more broadly distributed in the preset perturbation ball.
For verification, we plot the histograms representing the distance between the ad-
versarial examples and their corresponding natural examples during the training
in Fig. 4.

What we can find from the first histograms is that the adversaries generated
by the standard AT are all located on the surface of the perturbation ball,
which means that for the relatively attackable data, the generated adversaries
may change too much. That may explain why the natural accuracy of AT
usually significantly declines. Surprisingly, just as the standard AT method, the
adversarial examples generated by FAT are also on the perturbation ball surface
even with the early stopping technique. However, the robustness of FAT is still
comparatively lower since it does not aim at looking for the strongest adversaries.
In contrast, the adversaries generated by DAAT are widely distributed throughout
the l∞-norm perturbation ball. Thus, DAAT is able to achieve a significantly
higher natural accuracy while keeping robustness. Note that, for a fair comparison
with the baselines, the DAAT is upper bounded by the preset perturbation size ϵ
as in Eq. (12). Nonetheless, for some robust natural examples, the upper bound
ϵ may be too small to find an informative adversarial example. Thus, we further
enlarge the upper bound to 1.25ϵ to see the adversary distribution of the enlarged
DAAT model. As we can see in the fourth histogram, some of the adversarial
examples generated by the enlarged DAAT method can be found outside the
perturbation ball, which implies that for the robust natural examples, the most
useful adversaries lie outside the preset ball. This may explain why the enlarged
DAAT model is more robust than the DAAT model.

Besides, in Fig. 5, we further visualize the representations of the natural data
extracted from AT model and DAAT model via T-SNE [20]. As we can see from
the figure, the data clusters derived by DAAT are more separable. Moreover, the
darker points in Fig. 5b represent the natural examples whose adversaries are
generated in a shrunken perturbation ball. Interestingly, these points are usually
at the edge of the clusters, which indicates that the attackable examples are near
the natural decision boundary.

6.4 DAAT with Different Calibration Strategies.

As we discuss in Section 5, the adjustment of the perturbation size is an open
problem. In this subsection, we investigate the influence of different adjustment
strategies on the performance of DAAT.
Piecewise DAAT: A direct idea is the piecewise DAAT, which assigns a
piecewise perturbation size (i.e., ϵ ∈ {0, 2

255 ,
4

255 ,
6

255 ,
8

255}) for an adversary
based on the output of the calibration network. For comparison, we first plot the
learning curves of the AT models trained with the aforementioned perturbation
sizes in Fig. 6a. It is obvious that the AT model with a larger fixed perturbation
size can achieve higher robustness but lower natural accuracy. However, the
piecewise DAAT can not only keep outstanding robustness but also slightly
promote natural accuracy.
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Fig. 6: Learning curves of AT models with different preset ϵs and DAAT models
with different perturbation size adjustment strategies.

Linear DAAT: Linear DAAT employs a linear mapping to derive the adjusted
perturbation size as follows:

ϵe+1
i := min{ϵ, (1− si + ρ) · ϵ}, (16)

where si is the same as Eq. (13), ρ is the margin value. We plot the learning
curves of DAAT with different adjustment strategies in Fig. 6b. As we can
see from the figure, the default DAAT trained with Eq. (12) receives the best
empirical performance. A possible reason is that Eq. (12) utilizes the historical
information of ϵei which can smooth the variation of the perturbation size to
stabilize the training process. More discussion about the calibration network can
be found in the Appendix.

7 Conclusions

In this paper, we first find that, in adversarial training, the decline of the natural
accuracy may come from the fixed perturbation size, since one perturbation
size does not fit all training data. Thus, we propose a novel adversarial training
strategy DAAT which adaptively adjusts the perturbation size for each training
data. To achieve better natural accuracy, the adjustment is performed by a natural
trained calibration network, and a dynamic training strategy further empowers the
DAAT models with impressive robustness. Although the experimental results have
demonstrated the empirical superiority of our method, the better perturbation
size adjustment strategy is still an open problem to explore.

Acknowledgements

This work was supported in part by the Australian Research Council under Project
DP210101859 and the University of Sydney Research Accelerator (SOAR) Prize.



Abbreviated paper title 15

References

1. Balaji, Y., Goldstein, T., Hoffman, J.: Instance adaptive adversarial training:
Improved accuracy tradeoffs in neural nets. arXiv preprint arXiv:1910.08051 (2019)

2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In:
Proceedings of the 26th annual international conference on machine learning. pp.
41–48 (2009)

3. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

4. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: Bypassing
ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. pp. 3–14 (2017)

5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 ieee symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

6. Collobert, R., Weston, J.: A unified architecture for natural language process-
ing: Deep neural networks with multitask learning. In: Proceedings of the 25th
international conference on Machine learning. pp. 160–167 (2008)

7. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In: ICML (2020)

8. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial samples
from artifacts. arXiv preprint arXiv:1703.00410 (2017)

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

10. Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (statis-
tical) detection of adversarial examples. arXiv preprint arXiv:1702.06280 (2017)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

12. Hendrycks, D., Gimpel, K.: Early methods for detecting adversarial images. In:
ICLR (2017)

13. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial
examples are not bugs, they are features. In: NeurIPS. pp. 125–136 (2019)

14. Kannan, H., Kurakin, A., Goodfellow, I.: Adversarial logit pairing. arXiv preprint
arXiv:1803.06373 (2018)

15. Kim, M., Tack, J., Hwang, S.J.: Adversarial self-supervised contrastive learning.
Advances in Neural Information Processing Systems 33, 2983–2994 (2020)

16. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

17. Kundu, S., Nazemi, M., Beerel, P.A., Pedram, M.: A tunable robust pruning frame-
work through dynamic network rewiring of dnns. arXiv preprint arXiv:2011.03083
(2020)

18. Li, X., Li, F.: Adversarial examples detection in deep networks with convolutional
filter statistics. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 5764–5772 (2017)

19. Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J.: Defense against adversarial
attacks using high-level representation guided denoiser. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 1778–1787 (2018)

20. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine
learning research 9(11) (2008)



16 S. Yang and C. Xu

21. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: ICLR (2018)

22. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: International Conference on Learning
Representations (2018), https://openreview.net/forum?id=rJzIBfZAb

23. Mao, C., Zhong, Z., Yang, J., Vondrick, C., Ray, B.: Metric learning for adversarial
robustness. Advances in Neural Information Processing Systems 32 (2019)

24. Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial
perturbations. In: ICLR (2017)

25. Moosavi-Dezfooli, S.M., Fawzi, A., Uesato, J., Frossard, P.: Robustness via curvature
regularization, and vice versa. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9078–9086 (2019)

26. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011)

27. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)
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