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A Preliminary

We first briefly review the recent certified robustness scheme [4] for a general
classification problem by classifying data point in Rd to classes in Y. Given an
arbitrary base classifier f , it can be converted to a “smoothed” classifier [4] g
by adding isotropic Gaussian noise to the input x:

g(x) = argmax
c∈Y

P(f(x+ ϵ) = c), where ϵ ∼ N (0, σ2I) (1)

Lemma 1. (Neyman-Pearson Lemma) Let X and Y be random variables in
Rd with densities µX and µY . Let f : Rd → {0, 1} be a random or deterministic
function. Then:

(1) If S = {z ∈ Rd : µY (z)
µX(z) ≤ t} for some t > 0 and P(f(X) = 1) ≥ P(X ∈

S), then P(f(Y ) = 1) ≥ P(Y ∈ S);

(2) If S = {z ∈ Rd : µY (z)
µX(z) ≥ t} for some t > 0 and P(f(X) = 1) ≤ P(X ∈

S), then P(f(Y ) = 1) ≤ P(Y ∈ S).

With Lemma 1, Cohen [4] derives the certified radius when the classifier is
smoothed with the Gaussian noise. As shown in Theorem 1, when the smoothed
classifier’s prediction probabilities satisfy Equation (2), the prediction result is
guaranteed to be the most probable class cA when the perturbation is limited
within a radius R in ℓ2-norm.

Theorem 1. (Randomized Smoothing with Gaussian Noise [4]) Let f :
Rd → Y be any deterministic or random function, and let ϵ ∼ N (0, σ2I). Denote
g as the smoothed classifier in Equation (1), and the most probable and the second
probable classes as cA, cB ∈ Y, respectively. If the lower bound of the class cA’s
prediction probability pA ∈ [0, 1], and the upper bound of the class cB’s prediction
probability pB ∈ [0, 1] satisfy:

P(f(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ϵ) = c) (2)

Then g(x+ δ) = cA for all ||δ||2 ≤ R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (3)



2 Hanbin Hong et al.

where Φ−1 is the inverse of the standard Gaussian CDF.

Proof. See detailed proof in [4].

B Proofs

B.1 Proof of Theorem 1

Proof. We prove the theorem based on Neyman-Pearson Lemma (Lemma 1).

Let x := x0 + ϵ be the random variable that follows any continuous distri-
bution. δ be the perturbation added to the input image. y = x0 + ϵ + δ is the
perturbed random variable. Thus, x and y are random variables with densities
µx and µy. Define sets:

A := {z :
µy(z)

µx(z)
≤ tA} (4)

B := {z :
µy(z)

µx(z)
≥ tB} (5)

where tA and tB are picked to suffice:

P(x ∈ A) = pA (6)

P(x ∈ B) = pB (7)

Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

P(f(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ϵ) = c) (8)

Since P(f(x + ϵ) = cA) ≥ pA = P(x ∈ A) and A = {z : µY (z)
µX(z) ≤ tA}, using

Neyman-Pearson Lemma (Lemma 1), we have:

P(f(y) = cA) ≥ P(y ∈ A) (9)

Similarly, we have:
P(f(y) = cB) ≤ P(y ∈ B) (10)

To guarantee P(f(y) = cA) ≥ P(f(y) = cB), we need

P(f(y) = cA) ≥ P(y ∈ A) ≥ P(y ∈ B) ≥ P(f(y) = cB) (11)

In summary, to guarantee the certified robustness on class A, Equation (4),
(5), (6), (7), (11) must be satisfied. The conditions can be rewritten as:

P(
µy(x)

µx(x)
≤ tA) = pA (12)

P(
µy(x)

µx(x)
≥ tB) = pB (13)
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P(
µy(y)

µx(y)
≤ tA) ≥ P(

µy(y)

µx(y)
≥ tB) (14)

where Equation (12) is from Equation (4) and Equation (6), Equation (13) is
from Equation (5) and Equation (7), and Equation (14) is from Equation (11).

Considering the relationship y = x+ δ, we can derive:

µy(x) = µx(x− δ) (15)

µx(y) = µx(x+ δ) (16)

µy(y) = µx(y − δ) = µx(x) (17)

Thus, the conditions (11), (12) and (13) can be rewritten as:

P(
µx(x− δ)

µx(x)
≤ tA) = pA (18)

P(
µx(x− δ)

µx(x)
≥ tB) = pB (19)

P(
µx(x)

µx(x+ δ)
≤ tA) ≥ P(

µx(x)

µx(x+ δ)
≥ tB) (20)

Any perturbation δ satisfying these conditions will not fool the smoothed
classifier. In this case, these conditions construct a robustness area in δ space.
If we want to find a ℓp ball within which the prediction is constant, the lp ball
should be in this robustness area. Therefore, the certified radii is the minimum
||δ||p on the boundary of this robustness area. In this case, the ℓp ball is exactly
the maximum inscribed ball in the robustness area. Also, x can be replace by ϵ
in these conditions since it is in the fraction, which means the optimization is
independent to the input if given pA and pB . Therefore, the whole optimization
problem is summarized as:

minimize
δ

R = ||δ||p

subject to P(
µx(x− δ)

µx(x)
≤ tA) = pA,

P(
µx(x− δ)

µx(x)
≥ tB) = pB ,

P(
µx(x)

µx(x+ δ)
≤ tA) = P(

µx(x)

µx(x+ δ)
≥ tB)

If the noise is isotropic, each dimension is independent,

µx(x) =

d∏
i=1

µx(xj) (21)

Thus, conditions for the isotropic noise can be rewritten as:
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P(
d∏

j=1

µx(xj − δj)

µx(xj)
≤ tA) = pA (22)

P(
d∏

j=1

µx(xj − δj)

µx(xj)
≥ tB) = pB (23)

P(
d∏

j=1

µx(xj)

µx(xj + δj)
≤ tA) = P(

d∏
j=1

µx(xj)

µx(xj + δj)
≥ tB) (24)

Thus, this completes the proof.

B.2 Binary Case for Theorem 2

Theorem 2. (Universal Certified Robustness (Binary Case)) Let f :
Rd → Y be any deterministic or random function, and let ϵ follows any con-
tinuous distribution. Let g be defined as in (1). Suppose the most probable class
cA ∈ Y and the lower bound of the probability pA satisfy:

P(f + ϵ) = cA ≥ pA ≥ 1

2
(25)

Then g(x+ δ) = cA for all ||δ||p ≤ R, where R is given by the optimization:

minimize
δ

R = ||δ||p

subject to P(
µx(x− δ)

µx(x)
≤ tA) = pA,

P(
µx(x)

µx(x+ δ)
≤ tA) =

1

2

B.3 UniCR (Binary Case)

Similar to the binary case of Theorem 2, the binary case of the two-phase opti-
mization can be easily derived:

R = ||λδ||p, where δ ∈ argmin
δ

||λδ||p

s.t. λ = argmin
λ

|K|

P(
µx(x− λδ)

µx(x)
≤ tA) = pA

K = P(
µx(x)

µx(x+ λδ)
≤ tA)−

1

2

pA ≥ 1

2
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B.4 UniCR Bound

The certified radius R approximated by the two-phase optimization is tight
if achieving the optimality. Under this assumption, we analysis the confidence
bound for the certification. We follow [4] to compute the probabilities pA and
pB using Monte Carlo method with sample number n. The confidence is 1−α0,

where pA >= α
1/n
0 . To estimate the auxiliary parameters tA and tB , we use

Dvoretzky–Kiefer–Wolfowitz inequality [6] to bound the CDFs of the random

variables µx(x−λδ)
µx(x)

and µx(x)
µx(x+λδ) , then determine the tA and tB using Algorithm

1.

Lemma 2. (Dvoretzky–Kiefer–Wolfowitz inequality(restate)) Let X1, X2, ..., Xn

be real-valued independent and identically distributed random variables with cu-
mulative distribution function F (·), where n ∈ N.Let Fn denotes the associated
empirical distribution function defined by

Fn(x) =
1

n

n∑
i=1

1{Xi<=x}, x ∈ R (26)

The Dvoretzky–Kiefer–Wolfowitz inequality bounds the probability that the
random function Fn differs from F by more than a given constant ∆ ∈ R+ :

P(sup
x∈R

|Fn(x)− F (x)| > ∆) ≤ 2e−2n∆2

(27)

We use the Lemma 2 to estimate the CDFs in algorithm 1. In the robustness
condition, we need to estimate 4 probabilities with confidence 1−2e−2n∆2

as well
as the pA and pB with confidence 1−α0. Therefore, the confidence that deriving
the correct radius is at least (1− α0)

2(1− 2e−2n∆2

)4. In Figure 1, we show the
confidence on a varying number of samples when ∆ = 0.1 and α0 = 0.999. As
the number of samples increases to around 400 (all our experiments use more
than 400 samples), our confidence is very close to Cohen’s confidence [4]. Thus,
the confidence is nearly 1 in all our experiments.

B.5 Optimization Convergence

We analysis the convergence of the two-phase optimization and the certification
accuracy in this section. On one hand, the optimality of the scalar optimization
can be asymptotically achieved by binary search. On the other hand, it is hard
to find the minimum ||λδ||p in the highly-dimensional space, but some special
symmetry in the direction of δ (e.g., spherical symmetry that is also found in [18,
17]), can help approximate the certified radius. The detailed algorithms are pre-
sented in Section 3.1. The defense performance of such universally approximated
certified robustness against different real-world attacks is the same as certified
robustness (as shown in Appendix D.2). Thus, such negligible approximation
error is close to 0, but result in many significant new benefits in return.
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Fig. 1. Confidence vs. number of Monte Carlo samples.

C Algorithms

C.1 Computing tA and tB

We present the algorithm to compute the pA and pB in Algorithm 1.

Algorithm 1 Computing tA and tB
Input: Lower bound of the probabilities, pA; upper bound of the probabilities, pB ;

perturbation scalar, λ; perturbation, δ; noise PDF, µx; number of samples in the
Monte Carlo method, n

Output: The auxiliary parameters, tA and tB
1: Sample n noise ϵ ∈ Rn×d from a discrete version of PDF.
2: Calculate µx(x−λδ)

µx(x)
using these n samples of noise, µx, λ and δ

3: Estimate the CDF Φ of µx(x−λδ)
µx(x)

using Monte Carlo method

4: return tA = Φ−1(pA) and tB = Φ−1(pB), with inverse CDF Φ

C.2 Scalar Optimization

We use the binary search to find a scale factor that minimizes |K| (the distance
between δ and the robustness boundary). When K = 0, the perturbation δ is
exactly on the robustness boundary. Fixing the direction of δ, we find two scalars
such that K > 0 and K < 0. Specifically, we start from a scalar λa and compute
K. If K > 0, then the scaled perturbation λaδ is within the robustness boundary,
thus we enlarge the scalar to find a λb such that K < 0 and vice versa. After
that, we iteratively compute the K using λ = 1

2 (λa + λb): if K > 0, we let
λa = λ; otherwise, we let λb = λ. We repeat this iteration until K is less than
a threshold or the number of iterations is sufficiently large. The procedures are
summarized in Algorithm 2.



UniCR 7

Algorithm 2 Scalar Optimization

Input: Lower bound of the probabilities, pA; upper bound of the probabilities, pB ;
perturbation scalar, λ; perturbation, δ; noise PDF, µx; number of samples in Monte
Carlo method, n; threshold for K, Km; number of iterations for binary search, N

Output: The scalar λ that minimizes |K|
1: Find initial scalar λa and λb such that K > 0 and K < 0
2: λ = (λa + λb)/2
3: Compute K using λ
4: while N > 0 and |K| > Km do
5: if K > 0 then
6: λa = λ
7: else
8: λb = λ
9: λ = (λa + λb)/2
10: Compute K using λ
11: N=N-1
12: return λ

C.3 Direction Optimization

We show how to initialize the positions for different ℓp norms in PSO. Since some
noise follows PDFs with symmetry [18, 17], we set the initial position of parti-
cles by considering this, e.g., setting the initial positions w.r.t. ℓp for p ∈ R+ as
[0, ..., 0, a, 0, ..., 0] and the initial positions w.r.t. ℓ∞ as [a, a, a, ..., a], where a is a
small random number. Although the search space is highly-dimensional, empir-
ical results show that the radius given by PSO can accurately approximate the
theoretical radius given by other methods, e.g., Cohen’s [4] (see Figure 4 in main
context). Notice that, for more complicated PDFs without symmetry (which is
indeed difficult for deriving the certified radius), PSO can also approximate the
certified radius with more particles and iterations.

C.4 Noise Optimization Algorithms

With the UniCR for estimating the certified radius, we can further tune the noise
PDF to each input or the classifier. Specifically, let µ(x,α) denote the noise PDF,
where α is a set of hyper-parameters in the function, i.e., α = [α1, α2, ..., αm].
We simply use grid-search algorithm to find the best hyper-parameters in the
classifier smoothing (C-OPT). For the input noise optimization (I-OPT), we use
the Hill-Climbing algorithm to find the optimal hyper-parameters in the function
for each input. During the algorithm execution, hyper-parameter for the input is
iteratively updated if a better solution is found in each round, until convergence.
The procedures for the Hill Climbing algorithm are summarized in Algorithm 3.
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Algorithm 3 I-OPT with Hill Climbing

Input: Input data, x; PDF of noise distribution, µx; universally approximated certi-
fied robustness, UniCR(·); initial hyper-parameters α; optimization range of hyper-
parameters, [L,H]; optimization step of hyper-parameters, S

Output: The optimal hyper-parameters, αoptimal

1: Initialize the certified radius R0 = UniCR(x, µ(α))
2: For each hyper-parameter αi in α:
3: if Li < αi + Si < Hi then
4: R′ = UniCR(x, µ(α|αi = αi + Si))
5: if R′ > R0 then
6: α is updated with αi = αi + Si

7: R0 = R′

8: else if Li < αi − Si < Hi then
9: R′ = UniCR(x, µ(α|αi = αi − Si))
10: R0 = R′

11: if R′ > R then
12: α is updated with αi = αi − Si

13: R0 = R′

14: else
15: break
16: else
17: break
18: return αoptimal = α

D More Experimental Results

D.1 Metrics

We show the illustration of Robustness Score in Figure. 2

D.2 Defense against Real Attacks

We evaluate our UniCR’s defense accuracy against a diverse set of state-of-
the-art attacks, including universal attacks [3], white-box attacks [5, 15], and
black-box attacks [1, 2]. We compare UniCR with other state-of-the-art certified
schemes [17, 4, 13] against ℓ1, ℓ2 and ℓ∞ perturbations. The certified radius R for
each image in the test set (10, 000 images in total) are computed beforehand,
and the perturbation generation is constrained by ||δ||p = R for all the attack
methods. We define the defense accuracy as the rate that the smoothed classifier
can successfully defend against the perturbations with the ℓp size identical to
the the certified radius:

accd = E||δ||p=R[

∑
g(x+ δ) = cA

N
] (28)

where cA = g(x), N is the total test number. In this defense study, we use 500
samples for both Monte Carlo method and testing.
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Fig. 2. An example of the Robustness
Score.

Table 1 shows the defense accu-
racy on the smoothed classifier. The
attack with ”∗” is re-scaled to the
required norm (perturbation size R)
based on their perturbation formats.
UniCR universally provides a 100%
defense accuracy against all the ℓ1, ℓ2
and ℓ∞ perturbations generated by all
the state-of-the-art attacks. These re-
sults validate our universally approxi-
mated certified robustness ensures the
same defense performance as certified
robustness in practice.

Table 1. Defense against real attacks on CIFAR10 (results on MNIST & ImageNet
are similar and not included due to space limit).

Defense Accuracy (%) Gaussian* Procedural* [3] Auto-PGD [5] Wasserstein* [15] Square* [1] HSJ* [2]
Teng’s [13] ℓ1-norm R 100.00 100.00 100.00 100.00 100.00 100.00

Our ℓ1-norm R 100.00 100.00 100.00 100.00 100.00 100.00
Cohen’s [4] ℓ2-norm R 100.00 100.00 100.00 100.00 100.00 100.00

Our ℓ2-norm R 100.00 100.00 100.00 100.00 100.00 100.00
Yang’s [17] ℓ∞-norm R 100.00 100.00 100.00 100.00 100.00 100.00

Our ℓ∞-norm R 100.00 100.00 100.00 100.00 100.00 100.00

D.3 List of PDFs

The PDFs used in our experimental are summarized in Table 2.

Table 2. List of noise distributions.

Distribution Probability Density Function

Gaussian ∝ e−|x/α|2

Laplace ∝ e−|x/α|

Hyperbolic Secant ∝ sech(|x/α|)
General Normal ∝ e−|x/α|β

Cauthy ∝ α2

x2+α2

Pareto ∝ 1

(1+|x/α|)β+1

Laplace-Gaussian Mix. ∝ βe−|x/α|1 + (1 − β)e−|x/α|2

Exponential Mix. ∝ e−β|x/α|1−(1−β)|x/α|2

D.4 Efficiency for Radius Derivation

We show the runime of our algorithms on deriving the certified radius for the
inputs with various input dimensions in Figure 3. For the common input dimen-
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sions, e.g., 24 × 24 for MNIST, 3 × 32 × 32 for CIFAR10, and 3 × 224 × 224
for ImageNet, it takes less than 10 seconds for certifying an image on average.
Comparing with the theoretical certified radius deriving, our method’s running
time is undoubtedly larger since their radius is pre-derived. However, with the
significant benefits on the universality and the automatically deriving, we believe
the cost of the extra running time is worthwhile and acceptable in practice.
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Fig. 3. Runtime of UniCR vs. input sizes (with RTX3080 GPU).

D.5 Any p (besides 1, 2, ∞)
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Existing methods [4, 13] usually focus on the certified radius in a specific
norm, e.g., ℓ1, ℓ2 or ℓ∞ norms. Some methods [18, 17] provide certified robust-
ness theories for multiple norms but specific settings are usually needed for
deriving the certified radii in different norms. None of the existing methods can
automatically compute the certified radius in any ℓp norm. In this section, we
show our UniCR can automatically approximate the certified radii for various p,
in which p is a real number greater than 0.

In the experiments, we set the probability pA = 0.9 and draw the lines
of certified radius w.r.t. different p for p > 0. We show the results computed
with different noise distributions in Figure 4. We observe that when p ∈ (0, 2],
the certified radius for different p are approximately identical. This finding also
matches the theoretical results in Yang et al. [17], in which the certified radii in
ℓ1 and ℓ2 norm are exactly the same for multiple distributions. When p > 2, we
observe that the certified radius decreases as p increases.

D.6 Evaluations on Complicated PDFs

We provide a fine-grained evaluation on the complicated distributions [12], e.g.,
General Normal, Laplace-Gaussian Mixture, and Exponential Mixture noises
with various β. It shows that the Gaussian (i.e., β = 2 for General Normal, β = 0
for Laplace-Gaussian Mixture and Exponential Mixture) is the optimal noise in
these β setting. We also observe the “crash” on Laplace-based distributions when
pA is small.

D.7 Certification on Non-Smoothed Classifier

Table 3. Certified accuracy on standard classifier.

radius R 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Yang’s [17] vs. ℓ1-norm 10.6 10.4 10.4 9.8 8.8 8.2 5.4 2.2 1.0

Ours vs. ℓ1-norm 98.8 47.0 22.4 17.8 13.8 10.2 7.0 3.8 1.0
Cohen’s [4] vs. ℓ2-norm 10.6 10.4 10.4 9.6 8.8 8.2 5.6 2.2 1.2

Ours vs. ℓ2-norm 98.8 46.0 22.4 17.6 13.8 9.8 7.0 3.8 1.2
Yang’s [17] vs. ℓ∞-norm (at R/255) 10.6 10.6 10.6 10.4 10.4 10.4 10.4 10.4 10.4

Ours vs. ℓ∞-norm (at R/255) 98.6 92.4 69.4 61.6 53.6 46.0 37.8 27.4 24.4

Besides certifying inputs with the smoothed classifier, our input noise opti-
mization (I-OPT) can certify input with a standard classifier without degrading
the classifier accuracy on clean data (on the contrary, existing works have to
trade off such accuracy for certified defenses).

Specifically, since our I-OPT allows the noise for the input certification to be
different from the noise used in training, a special case of the training noise is
no noise (σ = 0). This means that we can certify a naturally-trained classifier
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Fig. 5. pA-R curves of General Normal, Laplace-Gaussian Mixture, and Exponential
Mixture noise with a varying β.

(standard classifier). This provides an obvious benefit that the classifier can still
execute normal classification on clean data with high accuracy since the standard
classifier is trained without noise. Also, with I-OPT, we can tune the noise for the
input to maintain the prediction accuracy. Thus, any classifier can be certifiably
protected against perturbations without degrading the general performance on
clean data.

To maintain the performance on standard classification, we add a condition
while performing I-OPT:

g(x+ δ) = f(x) (29)

We show this application on a standard ResNet110 classifier trained on CI-
FAR10 (see Table 3). For the baselines, we use Gaussian noise (σ = 0.35) and its
corresponding theoretical radius [17, 4] for certification. Our method uses I-OPT



UniCR 13

with General Normal noise and initializes it with the same σ. While approximat-
ing the certified radius with UniCR, we generate 4, 000 samples with the Monte
Carlo method on CIFAR10.

The table shows that over 98.6% of the inputs are certified by our method
with a radius R > 0. This means that over 98.6% of the samples are certifiably
protected while only 10.6% of inputs are certified by the baselines, which is nearly
the accuracy by random guessing. This significant improvement emerges since the
I-OPT could optimize the noise PDF for each input even though the classifier is
not trained with noise (non-smoothed classifier). Although the certified radii are
low compared to smoothly-trained classifiers, it provides a certifiable protection
on perturbed data while maintaining the high accuracy for classifying clean data.

E Visual Examples of I-OPT

We present some examples of I-OPT on the ImageNet dataset against ℓ1, ℓ2 and
ℓ∞ perturbations, respectively (see Figure 6). In the first case (ℓ1 perturbations),
without executing the I-OPT, our UniCR certifies the input with a radius R =
1.24. Our I-OPT optimizes the distribution as the right-most figure shows, then
the certified radius is improved to 1.48 with our UniCR. Similarly, in the rest
cases, we show I-OPT can improve the certified radius significantly by optimizing
the noise distribution. Especially, we improve the radius from 0.35 to 1.30 in the
second case.

F Discussions

F.1 Universal Certified Robustness

It might be impractical to make a universal framework satisfy all the theoretical
conditions w.r.t. all ℓp perturbations, especially p can be any positive real num-
ber. Thus, we admit that UniCR may not strictly satisfy certified robustness
all the time due to the approximated optimization. However, extensive empir-
ical results confirm that our derived radii highly approximate the theoretical
certified radii against different ℓp perturbations. In addition, the defense per-
formance against real attacks also illustrate that our method is as reliable as
different theoretical certified radii. We believe that with the negligible error in
practice, UniCR can be deployed as a universal framework to significantly ease
the process of achieving certified robustness in different scenarios.

F.2 Certifying Perturbed Data with Randomized Smoothing

Randomized smoothing usually assumes that the input is clean and empirical
defenses [11, 7] are not applied, if the input data is perturbed before certifica-
tion, then certification in I-OPT might be inaccurate. Indeed, the certification
in traditional randomized smoothing (e.g., [4]) methods also depend on the in-
puts (since pA is different for different inputs), they might be inaccurate if the
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Original Not Optimized, 𝑅 = 1.24 Optimized, 𝑅 = 1.48 Noise Distribution

ℓ𝟏

Original Not Optimized, 𝑅 = 0.63 Optimized, 𝑅 = 0.93

ℓ𝟐

Noise Distribution

Original Not Optimized, 𝑅 =
0.71

255
Optimized, 𝑅 =

0.85

255
Noise Distribution

ℓ∞

ℓ𝟏

Original Not Optimized, 𝑅 = 0.35 Optimized, 𝑅 = 1.30

ℓ𝟐

Original Not Optimized, 𝑅 = 1.03 Optimized, 𝑅 = 1.44

Noise Distribution

Noise Distribution

Noise DistributionOriginal Not Optimized, 𝑅 =
0.79

255
Optimized, 𝑅 =

0.96

255
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Fig. 6. Example images of applying I-OPT (based on UniCR) for smoothed classifier
against different ℓp perturbations on the ImageNet dataset. From the left to right, the
first figure shows the original image. The second and third figures show the smoothed
image without I-OPT and with I-OPT, respectively. The fourth figure shows the cor-
responding distributions before/after I-OPT.
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input data is perturbed, either. Thus, randomized smoothing focuses on certi-
fying clean inputs rather than correcting perturbed inputs. We will study this
interesting problem on certifying both clean and perturbed inputs in the future.

F.3 Can existing methods adopt noise optimization?

A question here is that if the noise optimization can improve the certified ra-
dius, can the theoretical methods provide personalized randomization for each
input? The personalized randomization is actually not adaptable in the theoreti-
cal methods since they cannot automatically derive the certified radius for differ-
ent noise distributions, especially for uncommon distributions, e.g., e−|x/0.5|1.5 .
Instead, our UniCR can automatically derive the certified radius for any distri-
bution within the continuous parameter space.

F.4 Extensions

We evaluate our UniCR on the image classification. Indeed, our UniCR is a
general method that can be directly applied to other tasks, e.g., video classifica-
tion [10, 16], graph learning (e.g., node/graph classification [14] and community
detection [8]), and natural language processing [9].
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