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Abstract. We study certified robustness of machine learning classifiers
against adversarial perturbations. In particular, we propose the first uni-
versally approximated certified robustness (UniCR) framework, which
can approximate the robustness certification of any input on any classi-
fier against any ℓp perturbations with noise generated by any continuous
probability distribution. Compared with the state-of-the-art certified de-
fenses, UniCR provides many significant benefits: (1) the first universal
robustness certification framework for the above 4 “any”s; (2) automatic
robustness certification that avoids case-by-case analysis, (3) tightness
validation of certified robustness, and (4) optimality validation of noise
distributions used by randomized smoothing. We conduct extensive ex-
periments to validate the above benefits of UniCR and the advantages of
UniCR over state-of-the-art certified defenses against ℓp perturbations.

Keywords: Adversarial Machine Learning; Certified Robustness; Ran-
domized Smoothing

1 Introduction

Machine learning (ML) classifiers are vulnerable to adversarial perturbations [36,
5, 7, 6]). Certified defenses [47, 27, 4, 19, 21, 38, 12, 37] were recently proposed to
ensure provable robustness against adversarial perturbations. Typically, certified
defenses aim to derive a certified radius such that an arbitrary ℓp (e.g., ℓ1, ℓ2
or ℓ∞) perturbation, when added to a testing input, cannot fool the classifier, if
the ℓp-norm value of the perturbation is within the radius. Among all certified
defenses, randomized smoothing [35, 32, 11] based certified defense has achieved
the state-of-the-art certified radius and can be applied to any classifier. Specifi-
cally, given a testing input and any classifier, randomized smoothing first defines
a noise distribution and adds sampled noises to the testing input; then builds a
smoothed classifier based on the noisy inputs, and finally derives certified radius
for the smoothed classified, e.g., using the Neyman-Pearson Lemma [11].

However, existing randomized smoothing based (and actually all) certified
defenses only focus on specific settings and cannot universally certify a classifier
against any ℓp perturbation or any noise distribution. For example, the certified
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Table 1. Comparison with highly-related works.

Classifier Smoothing Noise Perturbations Tightness Optimizable Analysis-free

Lecuyer et al. [32] Any Gaussian/Laplace Any ℓp, p ∈ R+ Loose No No
Cohen et al. [11] Any Gaussian ℓ2 Strictly Tight No No
Teng et al. [43] Any Laplace ℓ1 Strictly Tight No No

Dvijotham et al. [16] Any f-divergence-constrained Any ℓp, p ∈ R+ Loose No No
Croce et al. [12] ReLU-based No Any ℓp for p >= 1 Loose No No
Yang et al. [51] Any Multiple types Any ℓp, p ∈ R+ Strictly Tight No No
Zhang et al. [52] Any ℓp-term-constrained ℓ1, ℓ2, ℓ∞ Strictly Tight No Yes

Ours (UniCR) Any Any continuous PDF Any ℓp, p ∈ R+ Approx. Tight Yes Yes

radius derived by Cohen et al. [11] is tied to the Gaussian noise and ℓ2 pertur-
bation. Recent works [51, 52, 12] propose methods to certify the robustness for
multiple norms/noises, e.g., Yang et al. [51] propose the level set and differential
method to derive the certified radii for multiple noise distributions. However,
the certified radius derivation for different norms is still subject to case-by-case
theoretical analyses. These methods, although achieving somewhat generalized
certified robustness, are still lack of universality (See Table 1 for the summary).

In this paper, we develop the first Universally Approximated Certified Robust
ness (UniCR) framework based on randomized smoothing. Our framework can
automate the robustness certification for any input on any classifier against
any ℓp perturbation with noises generated by any continuous probability density
function (PDF). As shown in Figure 1, our UniCR framework provides four
unique significant benefits to make certified robustness more universal, practical
and easy-to-use with the above four “any”s. Our key contributions are as follows:
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Fig. 1. Our Universally Approximated Certified Robustness (UniCR) framework.

1. Universal Certification. UniCR is the first universal robustness certifica-
tion framework for the 4 “any”s.

2. Automatic Certification. UniCR provides an automatic robustness certi-
fication for all cases. It is easy-to-launch and avoids case-by-case analysis.

3. Tightness Validation of Certified Radius. It is also the first framework
that can validate the tightness of the derived certified radius in existing
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certification methods [35, 32, 11] or future methods based on any continuous
noise PDF. In Section 3, we validate the tightness of the state-of-the-art
certification methods (e.g., see Figure 4).

4. Optimality Validation of Noise PDFs. UniCR can also automatically
tune the parameters in noise PDFs to strengthen the robustness certifica-
tion against any ℓp perturbations. For instance, On CIFAR10 and ImageNet
datasets, UniCR improves as high as 38.78% overall performance over the
state-of-the-art certified defenses against all ℓp perturbations. In Section 5,
we show that Gaussian noise and Laplace noise are not the optimal random-
ization distribution against the ℓ2 and ℓ1 perturbation, respectively.

2 Universally Approximated Certified Robustness

In this section, we propose the theoretical foundation for universally certifying a
testing input against any ℓp perturbations with noise from any continuous PDF.

2.1 Universal Certified Robustness

Consider a general classification problem that classifies input data in Rd to
a class belonging to a set of classes Y. Given an input x ∈ Rd, an any (base)
classifier f that maps x to a class in Y, and a random noise ϵ from any continuous
PDF µx. We define a smoothed classifier g as the most probable class over the
noise-perturbed input:

g(x) = argmax
c∈Y

P(f(x+ ϵ) = c) (1)

Then, we show that the input has a certified accurate prediction against any lp
perturbation and its certified radius is given by the following theorem.

Theorem 1. (Universal Certified Robustness) Let f : Rd → Y be any de-
terministic or random classifier, and let ϵ be drawn from an arbitrary continuous
PDF µx. Denote g as the smoothed classifier in Equation (1), the most probable
and second probable classes for predicting a testing input x via g as cA, cB ∈ Y,
respectively. If the lower bound of the class cA’s prediction probability pA ∈ [0, 1],
and the upper bound of the class cB’s prediction probability pB ∈ [0, 1] satisfy:

P(f(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ϵ) = c) (2)

Then, we guarantee that g(x + δ) = cA for all ||δ||p ≤ R, where R is called the
certified radius and it is the minimum ℓp-norm of all the adversarial pertur-
bations δ that satisfies the robustness boundary conditions as below:

P(µx(x− δ)

µx(x)
≤ tA) = pA, P(µx(x− δ)

µx(x)
≥ tB) = pB ,

P( µx(x)

µx(x+ δ)
≤ tA) = P( µx(x)

µx(x+ δ)
≥ tB) (3)

where tA and tB are auxiliary parameters to satisfy the above conditions.
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Fig. 2. An illustration to Theorem 1. The conditions in Theorem 1 construct a
“Robustness Boundary” in δ space. In case of a perturbation inside the robust-
ness boundary, the smoothed prediction can be certifiably correct. From left to right,
the figures show that the minimum ||δ||1, ||δ||2 and ||δ||∞ on the robustness boundary
are exactly the certified radius R in ℓ1, ℓ2 and ℓ∞-norm, respectively.

Proof. See the detailed proof in Appendix B.1.

Robustness Boundary. Theorem 1 provides a novel insight that meeting cer-
tain conditions is equivalent to deriving the certified robustness. The conditions
in Equation (3) construct a boundary in the perturbation δ space, which is de-
fined as the “robustness boundary”. Within this robustness boundary, the pre-
diction outputted by the smoothed classifier g is certified to be consistent and
correct. The robustness boundary, rather than the certified radius, is actually
more general to measure the certified robustness since the space constructed
by each certified radius (against any specific ℓp perturbation) is only a subset
of the space inside the robustness boundary. Figure 2 illustrates the relation-
ship between certified radius and the robustness boundary against ℓ1, ℓ2 and ℓ∞
perturbations.

Notice that, given any continuous noise PDF, the corresponding robustness
boundary for all the ℓp-norms would naturally exist. Each maximum ℓp ball is
a subspace of the robustness boundary, and gives the certified radius for that
specific ℓp-norm. Thus, all the certified radii can be universally derived, and
Theorem 1 provides a theoretical foundation to certify any input against any ℓp
perturbations with any continuous noise PDF.
All ℓp Perturbations. Although we mainly introduce UniCR against ℓ1, ℓ2 and
ℓ∞ perturbations, our UniCR is not limited to these three norms. We emphasize
that any p ∈ R+ (See Appendix D.5) can be used and our UniCR can derive
the corresponding certified radius since our robustness boundary gives a general
boundary in the δ perturbation space.

2.2 Approximating Tight Certified Robustness

The tight certified radius can be derived by finding a perturbation δ on the
robustness boundary that has a minimum ∥δ∥p (for any p ∈ R+). However, it
is challenging to either find a perturbation δ that is exactly on the robustness
boundary, or find the minimum ||δ||p. Here, we design an alternative two-phase
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Fig. 3. An illustration to estimating the certified radius. The scalar optimization ( 1○)
and direction optimization ( 2○) effectively find the minimum ||δ||p within the robust-
ness boundary, which is the certified radius R.

optimization scheme to accurately approximate the tight certification in practice.
In particular, Phase I is to suffice the conditions such that δ is on the robustness
boundary, and Phase II is to minimize the ℓp-norm.

We perform Phase I by the “scalar optimization”, where any perturbation
δ will be λ-scaled to the robustness boundary (see 1○ in Figure 3). We per-
form Phase II by the “direction optimization”, where the direction of δ will be
optimized towards a minimum ∥λδ∥p (see 2○ in Figure 3). In the two-phase op-
timization, the direction optimization will be iteratively executed until finding
the minimum ||λδ||p, where the perturbation δ will be scaled to the robust-
ness boundary beforehand in every iteration. Thus, the intractable optimization
problem in Equation 3 can be converted to:

R = ||λδ||p,
s.t. δ ∈ argmin

δ
||λδ||p, λ = argmin

λ
|K|,

P(µx(x− λδ)

µx(x)
≤ tA) = pA, P(µx(x− λδ)

µx(x)
≥ tB) = pB ,

K = P( µx(x)

µx(x+ λδ)
≤ tA)− P( µx(x)

µx(x+ λδ)
≥ tB). (4)

The scalar optimization in Equation (4) aims to find the scale factor λ that scales
a perturbation δ to the boundary so that |K| approaches 0. With the scalar λ for
ensuring that the scaled δ is nearly on the boundary, the direction optimization
optimizes the perturbation δ’s direction to find the certified radius R = ||λδ||p.
We also present the theoretical analysis on the certification confidence and the
optimization convergence in Appendix B.4 and B.5, respectively.

3 Deriving Certified Radius within Robustness Boundary

In this section, we will introduce how to universally and automatically derive
the certified radius against any ℓp perturbations within the robustness boundary
constructed by any noise PDF. In particular, we will present practical algorithms
for solving the two-phase optimization problem to approximate the certified ra-
dius, empirically validate that our UniCR approximates the tight certified radius
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derived by recent works [11, 51, 43], and finally discuss how to apply UniCR to
validate the radius of existing certified defenses.

3.1 Calculating Certified Radius in Practice

Following the existing randomized smoothing based defenses [11, 43], we first use
the Monte Carlo method to estimate the probability bounds (pA and pB). Then,
we use them in our two-phase optimization scheme to derive the certified radius.
Estimating Probability Bounds. The two-phase optimization needs to esti-
mate the probabilities bounds pA and pB and compute two auxiliary parameters
tA and tB (required by the certified robustness based on the Neyman-Pearson
Lemma in Appendix A). Identical to existing works [11, 43], the probabilities
bounds pA and pB are commonly estimated by the Monte Carlo method [11].
Given the estimated pA and pB as well as any given noise PDF and a perturba-
tion δ, we also use the Monte Carlo method to estimate the cumulative density
function (CDF) of fraction µx(x− λδ)/µx(x). Then, we can compute the auxil-
iary parameters tA and tB . Specifically, the auxiliary parameters tA and tB can
be computed by tA = Φ−1(pA) and tB = Φ−1(pB), where Φ−1 is the inverse
CDF of the fraction µx(x−λδ)/µx(x). The procedures for computing tA and tB
are detailed in Algorithm 1 in Appendix C.
Scalar Optimization. Finding a perturbation δ that is exactly on the robust-
ness boundary is computationally challenging. Thus, we alternatively scale the
δ to approach the boundary. We use the binary search algorithm to find a scale
factor that minimizes |K| (the distance between δ and the robustness boundary).
The algorithm and detailed description are presented in Appendix C.2.
Direction Optimization. We use the Particle Swarm Optimization (PSO)
method [29] to find δ that minimizes the ℓp-norm after scaling to the robustness
boundary. In each iteration of PSO, the particle’s position represents δ, and the
cost function is fPSO(δ) = ||λδ||p, where the scalar λ is found by the scalar
optimization. The PSO aims to find the position δ that can minimize the cost
function. To pursue convergence, we choose some initial positions in symmetry
for different ℓp-norms. Empirical results show that the radius obtained by PSO
with these initial positions can accurately approximate the tight certified radius.
We show how to set the initial positions in Appendix C.3.

In our experiments, the certification (deriving the certified radius) can be
efficiently completed on MNIST [31], CIFAR10 [30] and ImageNet [40] datasets
(less than 10 seconds per image), as shown in Appendix D.4.
Certified Radius Comparison with State-of-The-Arts. We compare the
certified radius obtained by our two-phase optimization method and that by the
state-of-the-arts [11, 51, 43] and the comparison results are shown in Figure 4.
Note that the certified radius is a function of pA (the prediction probability of
the top-1 class). The pA-R curve can well depict the certified radius R w.r.t. pA.
We observe that our pA-R curve highly approximates the tight theoretical curves
in existing works, e.g., the Gaussian noise against ℓ2 and ℓ∞ perturbations [11,
51], Laplace noise against ℓ1 perturbations [43], as well as General Normal noise
and General Exponential noise derived by Yang et al. [51]’s method.
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Fig. 4. pA-R curve comparison of our method and state-of-the-arts (i.e., Teng et al.
[43], Cohen et al. [11], Lecuyer et al. [32] and Yang et al. [51]). We observe that the
certified radius obtained by our UniCR is close to that obtained by the state-of-the-arts.
These results demonstrate that our UniCR can approximate the tight certification to
any input in any ℓp norm with any continuous noise distribution. We also evaluate our
UniCR’s defense accuracy against a diverse set of attacks, including universal attacks
[10], white-box attacks [13, 48], and black-box attacks [1, 6], and against ℓ1, ℓ2 and ℓ∞
perturbations. The experimental results show that UniCR is as robust as the state-of-
the-arts (100% defense accuracy) against all the types of the real attack. The detailed
experimental settings and results are presented in Appendix D.2.

Tightness Validation of Certified Radius. Since our UniCR accurately ap-
proximates the tight certified radius, it can be used as an auxiliary tool to
validate whether an obtained certified radius is tight or not. For example, the
certified radius derived by PixelDP [32]3 is loose, because [32]’s pA-R curve in
Figure 4(b) is far below ours. Also, Yang et al. [51] derives a low bound certified
radius for Pareto Noise (Figure 4(d))— It shows that this certified radius is not
tight either since it is below ours. For those theoretical radii that are slightly
above our radii, they are likely to be tight.

Moreover, due to the high university, our UniCR can even derive the certified
radii for complicated noise PDFs, e.g., mixture distribution in which the certi-
fied radii are difficult to be theoretically derived. In Section 5.2, we show some
examples of deriving radii using UniCR on a wide variety of noise distributions
in Figure 6-8. In most examples, the certified radii have not been studied before.

3 PixelDP [32] adopts differential privacy [17], e.g., Gaussian mechanism to generate
noises for each pixel such that certified robustness can be achieved for images.
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4 Optimizing Noise PDF for Certified Robustness

UniCR can derive the certified radius using any continuous noise PDF for ran-
domized smoothing. This provides the flexibility to optimize a noise PDF for
enlarging the certified radius. In this section, we will optimize the noisy PDF in
our UniCR framework for obtaining better certified robustness.

4.1 Noise PDF Optimization

All the existing randomized smoothing methods [11, 43, 51, 52] use the same noise
for training the smoothed classifier and certifying the robustness of testing in-
puts. The motivation is that: the training can improve the lower bound of the
prediction probability over the the same noise as the certification. Here, the
question we ask is: Must we necessarily use the same noise PDF to train the
smoothed classifier and derive the certified robustness? Our answer is No.

𝛿

𝜇𝑥

𝜇𝑥′

𝑅′

𝑅

Fig. 5. An illustration to noise PDF optimization (take
ℓ2-norm perturbation as an example). The noise dis-
tribution is tuned from µx to µ′

x, which enlarges the
robustness boundary. Thus, UniCR can find a larger
certified radius R′.

We study the master
optimization problem that
uses UniCR as a function
to maximize the certified
radius by tuning the noise
PDF (different randomiza-
tion), as shown in Figure
5. To defend against cer-
tain ℓp perturbations for a
classifier, we consider the
noise PDF as a variable
(Remember that UniCR
can provide a certified ra-
dius for each noise PDF),
and study the following
two master optimization
problems with two differ-
ent strategies:

1. Classifier-Input Noise Optimization (“C-OPT”): finding the optimal noise
PDF and injecting the same noise from this noise PDF into both the training
data to train a classifier and testing input to build a smoothed classifier.

2. Input Noise Optimization (“I-OPT”): Training a classifier with the standard
noise (e.g., Gaussian noise), while finding the optimal noise PDF for the
testing input and injecting noise from this PDF into the testing input only.

4.2 C-OPT and I-OPT

Before optimizing the certified robustness, we need to define metrics for them.
First, since I-OPT only optimizes the noise PDF when certifying each testing
input, a “better” randomization in I-OPT can be directly indicated by a larger



UniCR 9

certified radius for a specific input. Second, since C-OPT optimizes the noise
PDF for the entire dataset in both training and robustness certification, a new
metric for the performance on the entire dataset need to be defined.

Existing works [52, 51] draw several certified accuracy vs. certified radius
curves computed by noise with different variances (See Figure 10 in Appendix
D.1). These curves represent the certified accuracy at a range of certified radii,
where the certified accuracy at radius R is defined as the percent of the testing
samples with a derived certified radius larger than R (and correctly predicted
by the smoothed classifier). To simply measure the overall performance, we use
the area under the curve as an overall metric to the certified robustness, namely
“robustness score”. Then, we design the C-OPT method based on this metric.
Specifically, the robustness score Rscore is formally defined as below:

Rscore =

∫ +∞

0

max
σ

(Accσ(R))dR, σ ∈ Σ, (5)

where Accσ(R) is the certified accuracy at radius R computed by the noises with
variance σ, and Σ is a set of candidate σ.

Notice that our UniCR can automatically approximate the certified radius
and compute the robustness score w.r.t. different noise PDFs, thus we can tune
the noise PDF towards a better robustness score. From the perspective of op-
timization, denoting the noise PDF as µ, the C-OPT and the I-OPT problems
are defined as maxµ Rscore for a classifier and maxµ R for an input, respectively.
Algorithms for Noise PDF Optimization. We use grid-search in C-OPT to
search the best parameters of the noise PDF. We use Hill-Climbing algorithms in
I-OPT to find the best parameters of the noise PDF around the noise distribution
used in training while maintaining the certified accuracy.
Optimality Validation of Noise PDF. Finding an optimal noise PDF against
a specific ℓp perturbation is important. Although Gaussian distribution can be
used for defending against ℓ2 perturbations with tight certified radius, there is no
evidence showing that Gaussian distribution is the optimal distribution against
ℓ2 perturbations. Our UniCR can also somewhat validate the optimality of using
different noise PDFs against different ℓp perturbations. For instance, Cohen et
al. [11]’s certified radius is tight for Gaussian noise against ℓ2 perturbations
(see Figure 4(b)). However, it is validated as not-optimal distribution against ℓ2
perturbations in our experiments (see Table 2).

5 Experiments

In this section, we thoroughly evaluate our UniCR framework, and benchmark
with state-of-the-art certified defenses. First, we evaluate the universality of
UniCR by approximating the certified radii w.r.t. the probability pA using a
variety of noise PDFs against ℓ1, ℓ2 and ℓ∞ perturbations. Second, we validate
the certified radii in existing works (results have been discussed and shown in
Section 3). Third, we evaluate our noise PDF optimization on three real-world
datasets. Finally, we compare our best certified accuracy on CIFAR10 [30] and
ImageNet [40] with the state-of-the-art methods.
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5.1 Experimental Setting

Datasets. We evaluate our performance on MNIST [31], CIFAR10 [30] and
ImageNet [40], which are common datasets to evaluate the certified robustness.
Metrics. We use certified accuracy[11] and the robustness score (Equation (5))
to evaluate the performance of proposed methods.
Experimental Environment. All the experiments were performed on the NSF
Chameleon Cluster [28] with Intel(R) Xeon(R) Gold 6126 2.60GHz CPUs, 192G
RAM, and NVIDIA Quadro RTX 6000 GPUs.

5.2 Universality Evaluation

As randomized smoothing derives certified robustness for any input and any
classifier, our evaluation targets “any noise PDF” and “any ℓp perubations”.

The certified radii of some noise PDFs, e.g., Gaussian noise against ℓ2 per-
turbations [11], Laplace noise against ℓ1 perturbations [43], Pareto noise against
ℓ1 perturbations [51], have been derived. These distributions have been verified
by our UniCR framework in Figure 4, where our certified radii highly approxi-
mate these theoretical radii. However, there are numerous noise PDFs of which
the certified radii have not been theoretically studied, or they are difficult to
derive. It is important to derive the certified radii of these distributions in order
to find the optimal PDF against each of the ℓp perturbations. Therefore, we use
our UniCR to approximately compute the certified radii of numerous distribu-
tions (including some mixture distributions, see Table 7 in Appendix D.3), some
of which have not been studied before. Specifically, we evaluate different noise

PDFs with the same variance, i.e., σ = Eϵ∼µ[
√

1
d ||ϵ||

2
2] = 1. For those PDFs with

multiple parameters, we set β as 1.5, 1.0 and 0.5 for General Normal, Pareto,
and mixture distributions, respectively. Following Cohen et al. [11], and Yang et
al. [51], we consider the binary case (Theorem 3) and only compute the certified
radius when pA ∈ (0.5, 1.0].

In Figure 6-8, we plot the R-pA curves for the noise distributions listed in
Table 7 in Appendix D.3 against ℓ1, ℓ2 and ℓ∞ perturbations. Specifically, we
present the ℓ∞ radius scaled by ×255 to be consistent with the existing works
[52]. We observe that for all ℓp perturbations, the Gaussian noise generates the
largest certified radius for most of the pA values. All the noise distribution has
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Table 2. Classifier-input noise optimization (C-OPT). We show the Robustness Score

w.r.t. different β settings of General Normal distribution (∝ e−|x/α|β ). The σ is set to
1.0 for all distributions by adjusting the α parameter in General Normal.

β 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3 4.00 5.00

vs. ℓ1 1.8999 2.6136 2.8354 2.7448 2.5461 2.4254 2.3434 2.2615 2.2211 2.1730 2.1081 2.0679 1.9610 1.8925
vs. ℓ2 0.0000 0.0003 1.0373 1.5954 1.9255 2.0882 2.1746 2.1983 2.2081 2.1771 2.1184 2.0655 1.8857 1.7296
vs. ℓ∞ 0.0000 0.0109 0.0420 0.0641 0.0771 0.0839 0.0871 0.0879 0.0880 0.0870 0.0847 0.0825 0.0758 0.0693

very close R-pA curves except the Cauthy distribution. We also notice that
when pA is low against ℓ2 and ℓ∞ perturbations, our UniCR cannot find the cer-
tified radius for the Laplace-based distributions, e.g., Laplace distribution, and
Gaussian-Laplace mixture distribution. This matches the findings on injecting
Laplace noises for certified robustness in Yang et al. [51]—The certified radii for
Laplace noise against ℓ2 and ℓ∞ perturbations are difficult to derive.

We also conduct experiments to illustrate UniCR’s universality in deriving
ℓp norm certified radius for any real number p > 0 in Appendix D.5. Besides,
we also conduct fine-grained evaluations on General Normal, Laplace-Gaussian
Mixture, and Exponential Mixture noises with various β parameters (See Figure
13 in Appendix D.6), and we can draw similar observations from such results.

5.3 Optimizing Certified Radius with C-OPT

We next show how C-OPT uses UniCR to improve the certification against any ℓp
perturbations. Recall that tight certified radii against ℓ1 and ℓ2 perturbations can
be derived by the Laplace [43] and Gaussian [11] noises, respectively. However,
there does not exist any theoretical study showing that Laplace and Gaussian
noises are the optimal noises against ℓ1 and ℓ2 perturbations, respectively. [51, 52]
have identified that there exists other better noise for ℓ1 and ℓ2 perturbations.
Therefore, we use our C-OPT to explore the optimal distribution for each ℓp
perturbation. Since the commonly used noise, e.g., Laplace and Gaussian noises,

are only special cases of the General Normal Distribution (∝ e−|x/α|β ), we will
find the optimal parameters α and β that generate the best noises for maximizing
certified radius against each ℓp perturbation.

In the experiments, we use the grid search method to search the best param-
eters. We choose β as the main parameter, and α will be set to satisfy σ = 1.
Specifically, we evaluate C-OPT on the MNIST dataset, where we train a model
on the training set for each round of the grid search and certify 1, 000 images in
the test set. Specifically, for each pair of parameters α and β in the grid search,
we train a Multiple Layer Perception on MNIST with the smoothing noise. Then,
we compute the robustness score over a set of σ = [0.12, 0.25, 0.50, 1.00]. When
approximating the certified radius with UniCR, we set the sampling number as
1, 000 in the Monte Carlo method. The results are shown in Table 2.

We observe that the best β for ℓ1-norm is 0.75 in the grid search. It indicates
that the Laplace noise (β = 1) is not the optimal noise against ℓ1 perturbations.
A slightly smaller β can provide a better trade-off between the certified radius
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Table 3. Average Certified Radius with Input Noise Optimization (I-OPT) against ℓ1,
ℓ2 and ℓ∞ perturbations on ImageNet.

Top ℓ1 radius 20% 40% 60% 80% 100%
Yang’s Gaussian [51] 2.44 2.10 1.59 1.19 0.95
Ours with I-OPT 2.36 2.11 1.64 1.23 0.98
Top ℓ2 radius 20% 40% 60% 80% 100%

Cohen’s Gaussian [11] 2.43 2.10 1.58 1.19 0.95
Ours with I-OPT 2.36 2.11 1.64 1.23 0.98

Top ℓ∞ radius ×255 20% 40% 60% 80% 100%
Yang’s Gaussian [51] 1.60 1.38 1.04 0.78 0.63
Ours with I-OPT 1.75 1.54 1.20 0.90 0.72

and accuracy (measured by the robustness score). When β < 1.0, the radius is
observed to be larger than the radius derived with Laplace noise at pA ≈ 1 (see
Figure 13(a)). Since pA on MNIST is always high, the noise distribution with
β = 0.75 will give a larger radius at most cases. Furthermore, we observe that
the best performance against ℓ2 and ℓ∞ are given by β = 2.25, showing that the
Gaussian noise is not the optimal noise against ℓ2 and ℓ∞ perturbations, either.

5.4 Optimizing Certified Radius with I-OPT

The optimal noises for different inputs are different. We customize the noise for
each input using the I-OPT. Specifically, we adapt the hyper-parameters in the
noise PDF to find the optimal noise distribution for each input (the classifier is
smoothed by a standard method such as Cohen’s [11]).

We perform I-OPT for noise PDF optimization with a Gaussian-trained
ResNet50 classifier (σ = 1) on ImageNet. We compare our derived radius with
the theoretical radius in [51, 11]. We use the General Normal distribution to
generate the noise for input certification since it provides a new parameter di-

mension for tuning, and tune the parameters α and β in e−|x/α|β . The Gaussian
distribution is only a specific case of the General Normal distribution with β = 2.
In the two baselines [51, 11], they set σ = 1 and β = 2, respectively. In the I-
OPT, we initialize the noise with the same setting, but optimize the noise for
each input. The Monte Carlo sample is set to 1, 000 for ImageNet.

Table 3 presents the average values of the top 20%-100% certified radius (the
higher the better). It shows that our I-OPT significantly improves the certi-
fied radius over the tight certified radius since it provides a personalized noise
optimization to each input (see Figure 14 in Appendix E for the illustration).

5.5 Best Performance Comparison

In this section, we compare our best performance with the state-of-the-art cer-
tified defense methods on the CIFAR10 and ImageNet datasets. Following the
setting in [11], we use a ResNet110 [23] classifier for the CIFAR10 dataset and
a ResNet50 [23] classifier for the ImageNet dataset. We evaluate the certifica-
tion performance with the noise PDF of a range of variances σ. The σ is set to
vary in [0.12, 0.25, 0.5, 1.0] for CIFAR10 and [0.25, 0.5, 1.0] for ImageNet. We also
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Table 4. Certified accuracy and robustness score against ℓ1, ℓ2 and ℓ∞ perturbations
on CIFAR10. Ours: General Normal with I-OPT.

ℓ1 radius 0.50 1.00 1.50 2.00 2.50 Rscore

Teng’s Laplace [43] 39.2 17.2 10.0 6.0 2.8 0.5606
Ours 45.8 22.4 14.8 8.2 3.6 0.7027

ℓ2 radius 0.50 1.00 1.50 2.00 2.50 Rscore

Cohen’s Gaussian [11] 38.6 17.4 8.6 3.4 1.6 0.5392
Ours 48.4 26.8 16.6 6.8 2.0 0.7141

ℓ∞ radius 2
255

4
255

6
255

8
255

10
255

Rscore

Yang’s Gaussian [51] 43.6 21.8 10.8 5.6 2.6 0.0098
Ours 53.4 30.4 21.2 13.2 5.6 0.0136

Table 5. Certified accuracy and robustness score against ℓ1, ℓ2 and ℓ∞ perturbations
on ImageNet (Teng’s Laplace [43] is not available). Ours: General Normal with I-OPT.

ℓ1 radius 0.50 1.00 1.50 2.00 2.50 Rscore

Yang’s Gaussian [51] 58.8 45.6 34.6 27.0 0.0 1.0469
Ours 63.4 49.6 36.8 29.6 6.6 1.1385

ℓ2 radius 0.50 1.00 1.50 2.00 2.50 Rscore

Cohen’s Gaussian [11] 58.8 44.2 34.0 27.0 0.0 1.0463
Ours 62.6 49.0 36.6 28.6 2.0 1.0939

ℓ∞ radius 0.25
255

0.50
255

0.75
255

1.00
255

1.25
255

Rscore

Yang’s Gaussian [51] 63.6 52.4 39.8 34.2 28.0 0.0027
Ours 69.2 57.4 47.2 38.2 33.0 0.0031

present the Robustness Score based on this set of variances. We use the General
Normal distribution and perform the I-OPT. The distribution is initialized with
the same setting in the baselines, e.g., β = 1 (or 2) for Laplace (Gaussian) base-
line. We benchmark it with the Laplace noise [43] on CIFAR10 when against ℓ1
perturbations; and the Gaussian noise [11, 51] on both CIFAR10 and ImageNet
against all ℓp perturbations. For both our method and baselines, we use 1, 000
and 4, 000 Monte Carlo samples on ImageNet and CIFAR10, respectively, due to
different scales, and the certified accuracy is computed over the certified radius
of 500 images randomly chosen in the test set for both CIFAR10 and ImageNet.

The results are shown in Table 4 and 5. Both on CIFAR10 and ImageNet, we
observe a significant improvement on the certified accuracy and robustness score.
Specifically, on CIFAR10, our robustness score outperforms the state-of-the-arts
by 25.34%, 32.44% and 38.78% against ℓ1, ℓ2 and ℓ∞ perturbations, respectively.
On ImageNet, our robustness score outperforms the state-of-the-arts by 8.75%,
4.55% and 14.81% against ℓ1, ℓ2 and ℓ∞ perturbations, respectively.

6 Related Work

Certified Defenses. Existing certified defenses methods can be classified into
leveraging Satisfiability Modulo Theories [41, 4, 18, 27], mixed integer-linear pro-
gramming [8, 19, 3], linear programming [47, 49], semidefinite programming [38,
39], dual optimization [14, 15], global/local Lipschitz constant methods [21, 44,
2, 9, 24], abstract interpretation [20, 37, 42], and layer-wise certification [37, 42,
22, 46, 53], etc. However, none of these methods is able to scale to large models
(e.g., deep neural networks) or is limited to specific type of network architec-
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ture, e.g., ReLU based networks. Randomized smoothing was recently proposed
certified defenses [32, 35, 11, 25, 45] that is scalable to large models and appli-
cable to arbitrary classifiers. Lecuyer et al. [32] proposed the first randomized
smoothing-based certified defense via differential privacy [17]. Li et al. [35] pro-
posed a stronger guarantee for Gaussian noise using information theory. The
first tight robustness guarantee against l2-norm perturbation for Gaussian noise
was developed by Cohen et al. [11]. After that, a series follow-up works have
been proposed for other ℓp-norms, e.g., ℓ1-norm [43], ℓ0-norm [34, 33, 26], etc.
However, all these methods are limited to guarantee the robustness against only
a specific ℓp-norm perturbation.
Universal Certified Defenses. More recently, several works [52, 51] aim to
provide more universal certified robustness schemes for all ℓp-norms. Yang et al.
[51] proposed a level set method and a differential method to derive the upper
bound and lower bound of the certified radius, while the derivation is relying
on the case-by-case theoretical analysis. Zhang et al. [52] proposed a black-box
optimization scheme that automatically computes the certified radius, but the
solvable distribution is limited to ℓp-norm-constrained. Our UniCR framework
can automate the robustness certification for any classifier against any lp-norm
perturbation with any noise PDF.
Certified Defenses with Optimized Noise PDFs/Distributions. Yang
et al. [51] proposed to use the Wulff Crystal theory [50] to find optimal noise
distributions. Zhang et al. [52] claimed that the optimal noise should have a more
central-concentrated distribution from the optimization perspective. However, no
existing works provide quantitative solutions to find optimal noise distributions.
We propose the C-Opt and I-Opt schemes to quantitatively optimize the noisy
PDF in our UniCR framework and provide better certified robustness. Table 1
summarizes the differences in all the closely-related works.

7 Conclusion

Randomize smoothing has achieved great success in certifying the adversarial
robustness. However, the state-of-the-art methods lack universality to certify
robustness. We propose the first randomized smoothing-based universal certi-
fied robustness approximation framework against any ℓp perturbations with any
continuous noise PDF. Extensive evaluations on multiple image datasets demon-
strate the effectiveness of our UniCR framework and its advantages over the
state-of-the-art certified defenses against any ℓp perturbations.
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10. Co, K.T., Muñoz-González, L., de Maupeou, S., Lupu, E.C.: Procedural noise
adversarial examples for black-box attacks on deep convolutional networks. In:
ACM SIGSAC conference on computer and communications security (2019)

11. Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via random-
ized smoothing. In: International Conference on Machine Learning (2019)

12. Croce, F., Hein, M.: Provable robustness against all adversarial $l p$-perturbations
for $p\geq 1$. In: ICLR. OpenReview.net (2020)

13. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In: International conference on machine learning.
pp. 2206–2216. PMLR (2020)

14. Dvijotham, K., Gowal, S., Stanforth, R., et al.: Training verified learners with
learned verifiers. arXiv (2018)

15. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: UAI (2018)

16. Dvijotham, K.D., Hayes, J., Balle, B., Kolter, J.Z., Qin, C., György, A., Xiao,
K., Gowal, S., Kohli, P.: A framework for robustness certification of smoothed
classifiers using f-divergences. In: ICLR (2020)

17. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3-4), 211–407 (2014)

18. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis.
pp. 269–286. Springer (2017)

19. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018)

20. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: Safety and robustness certification of neural networks with abstract in-
terpretation. In: IEEE S & P (2018)



16 Hanbin Hong et al.

21. Gouk, H., Frank, E., Pfahringer, B., Cree, M.J.: Regularisation of neural networks
by enforcing lipschitz continuity. Machine Learning 110(2), 393–416 (2021)

22. Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arand-
jelovic, R., Mann, T.A., Kohli, P.: On the effectiveness of interval bound prop-
agation for training verifiably robust models. CoRR abs/1810.12715 (2018),
http://arxiv.org/abs/1810.12715

23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

24. Hein, M., Andriushchenko, M.: Formal guarantees on the robustness of a classifier
against adversarial manipulation. In: Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. pp. 2266–2276 (2017)

25. Jia, J., Cao, X., Wang, B., Gong, N.Z.: Certified robustness for top-k predictions
against adversarial perturbations via randomized smoothing. In: International Con-
ference on Learning Representations (2019)

26. Jia, J., Wang, B., Cao, X., Liu, H., Gong, N.Z.: Almost tight l0-norm certified
robustness of top-k predictions against adversarial perturbations. In: ICLR (2022)

27. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification. pp. 97–117. Springer (2017)

28. Keahey, K., Anderson, J., Zhen, Z., Riteau, P., Ruth, P., Stanzione, D., Cevik, M.,
Colleran, J., Gunawi, H.S., Hammock, C., Mambretti, J., Barnes, A., Halbach, F.,
Rocha, A., Stubbs, J.: Lessons learned from the chameleon testbed. In: Proceedings
of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20). USENIX
Association (July 2020)

29. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95-international conference on neural networks. IEEE (1995)

30. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

31. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010)

32. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness
to adversarial examples with differential privacy. In: 2019 IEEE Symposium on
Security and Privacy (SP). pp. 656–672. IEEE (2019)

33. Lee, G., Yuan, Y., Chang, S., Jaakkola, T.S.: Tight certificates of adversarial ro-
bustness for randomly smoothed classifiers. In: NeurIPS. pp. 4911–4922 (2019)

34. Levine, A., Feizi, S.: Robustness certificates for sparse adversarial attacks by ran-
domized ablation. In: AAAI. pp. 4585–4593. AAAI Press (2020)

35. Li, B., Chen, C., Wang, W., Carin, L.: Second-order adversarial attack and certi-
fiable robustness. arXiv preprint arXiv:2006.00731 (2020)

36. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: International Conference on Learning
Representations (2018)

37. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: International Conference on Machine Learning
(2018)

38. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial
examples. arXiv preprint arXiv:1801.09344 (2018)

39. Raghunathan, A., Steinhardt, J., Liang, P.S.: Semidefinite relaxations for certifying
robustness to adversarial examples. In: NeurIPS (2018)



UniCR 17

40. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

41. Scheibler, K., Winterer, L., Wimmer, R., Becker, B.: Towards verification of arti-
ficial neural networks. In: MBMV. pp. 30–40 (2015)
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