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Abstract. The security of deep neural networks (DNNs) has attracted
increasing attention due to their widespread use in various applications.
Recently, the deployed DNNs have been demonstrated to be vulnerable
to Trojan attacks, which manipulate model parameters with bit flips to
inject a hidden behavior and activate it by a specific trigger pattern.
However, all existing Trojan attacks adopt noticeable patch-based trig-
gers (e.g., a square pattern), making them perceptible to humans and
easy to be spotted by machines. In this paper, we present a novel attack,
namely hardly perceptible Trojan attack (HPT). HPT crafts hardly per-
ceptible Trojan images by utilizing the additive noise and per-pixel flow
field to tweak the pixel values and positions of the original images, re-
spectively. To achieve superior attack performance, we propose to jointly
optimize bit flips, additive noise, and flow field. Since the weight bits of
the DNNs are binary, this problem is very hard to be solved. We han-
dle the binary constraint with equivalent replacement and provide an
effective optimization algorithm. Extensive experiments on CIFAR-10,
SVHN, and ImageNet datasets show that the proposed HPT can gen-
erate hardly perceptible Trojan images, while achieving comparable or
better attack performance compared to the state-of-the-art methods. The
code is available at: https://github.com/jiawangbai/HPT.

1 Introduction

Although deep neural networks (DNNs) have been showing state-of-the-art per-
formances in various complex tasks, such as image classification [47,43,17], facial
recognition [50,28,8,38], and object detection [13,42], prior studies have revealed
their vulnerability against diverse attacks [15,34,46,16,36,27,44,48,5]. One such
attack is the Trojan attack [32] happening in the deployment stage, in which
an attacker manipulates a DNN to inject a hidden behavior called Trojan. The
Trojan can only be activated by the specific trigger pattern.
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Fig. 1: Visualization of Trojan
images from TrojanNN [32],
TBT [40], and HPT. ‘Trans.’ in-
dicates the use of transparent
trigger proposed in [32]. Note
that ProFlip [6] uses the same
trigger pattern (a square pat-
tern) as TBT.

Trojan attacks on a deployed DNN alter the model parameters in the memory
using bit flip techniques, e.g., Row Hammer Attack [20,51], but do not tamper
with the training pipeline and have no extra forward or backward calculation
during inference. Then, the attacked DNN makes a target prediction on the
inputs with the trigger, while behaving normally on clean samples [32,40,6].
These dangerous properties pose severe threats to DNN-based applications after
model deployment. Therefore, it is necessary to study the Trojan attacks on the
deployed DNNs in order to recognize their flaws and solve related security risks.

A Trojan attack generally is composed of two subroutines: critical bits iden-
tification and specific trigger generation. Previous works [39,6] made efforts to-
wards reducing the number of bit flips by developing search strategies. After
flipping the identified bits, the attacker can activate the hidden behavior using
the Trojan images, which are any images embedded with a specific patch-based
trigger, such as a watermark pattern in [32] or a square pattern in [40,6]. How-
ever, due to these unnatural and noticeable triggers, the Trojan images can be
easily spotted by humans [37,9] and machines. For example, we construct a sim-
ple linear classifier to distinguish clean images and Trojan images crafted by
TBT [40] based on their Grad-CAM heatmaps [45] on ImageNet, resulting in
a 98.0% success rate. The transparent trigger [32] was proposed to reduce the
perceptibility, but leading to lower attack performance. Hence, how to inject less
perceptible Trojan with superior attack performance is a challenging problem.

To address the aforementioned problems, we propose the hardly perceptible
Trojan attack (HPT). Instead of applying the patch-based trigger predefined
by a mask, HPT tweaks the pixel values and positions of the original images to
craft Trojan images. Specifically, we modify pixel values by adding the pixel-wise
noise inspired by adversarial examples [49,15,34] and change pixel positions by
per-pixel flow field [10,19,63]. As shown in Figure 1, Trojan images of HPT are
less perceptible and harder to be distinguished from original images. It will be
further demonstrated in the human perceptual study in Section 4.3.

Since the value of each weight bit is ‘0’ or ‘1’, we cast each bit as a binary
variable. Integrating Trojan images generation and critical bits identification,
we formulate the proposed HPT as a mixed integer programming (MIP) prob-
lem, i.e., jointly optimizing bit flips, additive noise, and flow field. Moreover, we
constrain the modification on image pixels and the number of bit flips to yield a
hardly perceptible and practical attack [51,62]. To solve this MIP problem, we
reformulate it as an equivalent continuous problem [56] and present an effective
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Table 1: Summary of attributes of TrojanNN [32], TBT [40], ProFlip [6], and
HPT. ‘Trans.’ indicates the use of transparent trigger proposed in [32] and ‘ASR’
denotes the attack success rate.

Method High ASR A Small Set of Bit Flips Hardly Perceptible Trigger

TrojanNN ✓
TrojanNN (Trans.) ✓
TBT ✓
ProFlip ✓ ✓
HPT (Ours) ✓ ✓ ✓

optimization algorithm based on the standard alternating direction method of
multipliers (ADMM) [12,4]. We conduct extensive experiments on CIFAR-10,
SVHN, and ImageNet with 8-bit quantized ResNet-18 and VGG-16 architec-
tures following [40,6], which shows that HPT is hardly perceptible and achieves
superior attack performance. The attributes of compared methods and HPT are
summarized in Table 1.

The contributions are summarized as follows:

– For the first time, we improve Trojan attacks on the deployed DNNs to be
strong and hardly perceptible. We investigate the use of modifying the pixel
values and positions of the original images to craft Trojan images.

– We formulate the proposed HPT as a constrained MIP problem to jointly op-
timize bit flips, additive noise, and flow field, and further provide an effective
optimization algorithm.

– Finally, HPT obtains both hardly perceptible Trojan images and promising
attack performance, e.g., an attack success rate of 95% with only 10 bit flips
out of 88 million bits in attacking ResNet-18 on ImageNet.

2 Related Works and Preliminaries

Attacks on the Deployed DNNs. Recently, since DNNs have been widely
applied to security-critical tasks, e.g., facial recognition [14,55,53,59], their secu-
rity in the deployment stage has received extensive attention. Previous works as-
sume that the attacker can modify the weight parameters of the deployed DNNs
to achieve some malicious purposes, e.g., misclassifying certain samples [31,62].
Some physical techniques (e.g., Row Hammer Attack [20,51] and Laser Beam
Attack [1,7]) can precisely flip bits (‘0’→‘1’ or ‘1’→‘0’) in the memory without
accessing them. These techniques allow an attacker to attack a deployed DNN
by modifying its bit representation [60,52,41]. For instance, Rakin et al. [39] pre-
sented that an extremely small number of bit flips can crush a fully functional
DNN to a random output generator. After that, Bai et al. [3] proposed to attack
a specified sample into a target class via flipping limited bits. To mitigate the bit
flip-based attacks, some defense mechanisms [18,25,30,24] have been explored.

As a line of research, Trojan attacks [40,6] insert a hidden behavior in the
DNN using bit flip techniques, which can be activated by a designed trigger.
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Fig. 2: Pipeline of the proposed HPT, where the target class is ‘Goldfish’. (a)

Trojan Injection: optimizing θ̂, δ, and f jointly. (b) Inference: activating the
hidden behaviour using the Trojan image.

Specifically, an attacked DNN will make wrong predictions on the inputs with the
presence of the trigger, while behaving normally on original samples. Previous
works proposed to generate a specified pattern as the trigger (e.g., a square
pattern) [32,40,6]. Besides, to reduce the number of bit flips, heuristic strategies
are designed to identify the critical bits, e.g., neural gradient ranking in [40] or
progressive search algorithm in [6]. The results in [6] show that only a few bit
flips yield a high attack success rate, which further raises the security concerns.
Quantized DNNs. In the deployment stage, model quantization has been
widely adopted to reduce the storage requirements and accelerate the infer-
ence speed [29,21]. In this paper, we adopt a layer-wise Q-bit uniform quan-
tizer, which is identical to the Tensor-RT solution [33]. Given binary weight
parameters θ ∈ {0, 1}N×Q of a Q-bit quantized DNN g, each parameter is rep-
resented and stored as a signed integer in two’s complement representation, i.e.,
θi = [θi,Q; ...;θi,1] ∈ {0, 1}Q. For the l-th layer with the step size ∆l, the binary
representation θi can be converted into a real number, as follows:

Wi = (−2Q−1 · θi,Q +

Q−1∑
j=1

2j−1 · θi,j) ·∆l, (1)

where W ∈ RN denotes the floating-point weight parameters of the DNN. For
clarity, hereafter θ is reshaped from the tensor to the vector, i.e., θ ∈ {0, 1}NQ.
Threat Model. We consider the threat model used by previous bit flip-based
Trojan attack studies [40,6]. The attacker knows the location of the victim DNN
in the memory to implement precisely bit flips. We also assume that the attacker
has a small set of clean data and knows the architecture and parameters of the
victim DNN. Note that our attack does not have access to the training process
nor the training data. During inference, the attacker can activate the injected
Trojan by applying the generated trigger on the test samples.

3 Methodology

In this section, we firstly describe the hardly perceptible trigger used by HPT.
We then introduce the problem formulation and present an effective optimization
algorithm based on ADMM. Figure 2 shows the entire pipeline of HPT.
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3.1 Hardly Perceptible Trigger

Let x ∈ X denote a clean image, and x̂ denote its Trojan image, i.e., x with
a specific trigger pattern. X = [0, 1]HW×C is the image space, where H, W ,
C are the height, width, and channel for an image, respectively. To modify
the pixel values of the clean image, we apply additive noise δ to the image x.
Inspired by the adversarial examples [23], HPT requires δ ∈ Sn, where Sn = {δ :
||δ||∞ ⩽ ϵ} and ϵ denotes the maximum noise strength, so that x̂ is perceptually
indistinguishable from x.

To formulate changes of the pixel positions, we use f ∈ RHW×2 to rep-
resent per-pixel flow field, where f (i) = (∆u(i), ∆v(i)) denotes the amount
of displacement in each channel for each pixel x̂(i) within the Trojan image
at the position (û(i), v̂(i)). Thus, the value of x̂(i) is sampled from position
(u(i), v(i)) = (û(i) + ∆u(i), v̂(i) + ∆v(i)) within the original image. Since the
sampled position is not necessarily an integer value, we use the differentiable
bilinear interpolation [63] to generate the Trojan image considering four neigh-
boring pixels around the location (u(i), v(i)), denoted byN (u(i), v(i)). To preserve
high perceptual quality of the Trojan images, we enforce the local smoothness
of the flow field f based on the total variation [57,61]:

F(f) =
all pixels∑

p

∑
q∈N (p)

√
||∆u(p)−∆u(q)||22+||∆v(p)−∆v(q)||22. (2)

We introduce a hyper-parameter κ to restrict F(f), i.e., f ∈ Sf where Sf =
{f : F(f) ⩽ κ}.

Based on the additive noise δ and the flow field f , each pixel before the
clipping operation can be calculated as:

x̂(i) =
∑

q∈N (u(i),v(i))

(x(q)+δ(q))(1−|u(i)−u(q)|)(1−|v(i)−v(q)|). (3)

We can craft the Trojan image x̂ by calculating each pixel of x̂ according to
Eqn. (3) and performing the [0, 1] clipping to ensure that it is in the image
space, which is denoted as:

x̂ = T (x; δ,f). (4)

Note that x̂ is differentiable with respect to δ and f , enabling us to optimize
them by the gradient method. We obtain δ and f after the Trojan injection
stage and apply them on any image to craft its Trojan image during inference.

3.2 Problem Formulation

Suppose that the victim DNN is the well-trained Q-bit quantized classifier g :
X → Y, where Y = {1, ...,K} is the output space and K is the number of classes.

θ ∈ {0, 1}NQ is the original binary weight parameters and θ̂ ∈ {0, 1}NQ is the
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attacked parameters. As aforementioned, the attacker has a small set of clean
data D = {(xi, yi)}Mi=1. To keep the attack stealthiness, we reduce the influence
on original samples by minimizing the below loss:

Lcle(θ̂) =

M∑
i=1

ℓ(g(xi; θ̂), yi), (5)

where gj(xi; θ̂) indicates the posterior probability of the input with respect
to class j and ℓ(·, ·) denotes the cross-entropy loss. Recall that the malicious
purpose of Trojan attack is to classify the Trojan images into the target class t.
To this end, we formulate this objective as:

Ltro(δ,f , θ̂) =

M∑
i=1

ℓ(g(T (xi; δ,f); θ̂), t). (6)

Aligning with previous Trojan attacks [40,6], reducing the number of bit flips
is necessary to make the attack efficient and practical. HPT achieves this goal by
restricting the Hamming distance between θ and θ̂ less than b. Considering the
constraint on δ and f , we formulate the objective function of HPT as follows:

{δ∗,f∗,θ̂∗} = arg min
δ,f ,θ̂

Lcle(θ̂) + γLtro(δ,f , θ̂),

s.t. δ ∈ Sn, f ∈ Sf , θ̂ ∈ {0, 1}NQ, dH(θ, θ̂) ⩽ b,

(7)

where γ is the hyper-parameter to balance the two terms and d(θ, θ̂) computes
the Hamming distance between original and attacked parameters. Problem (7)

with the continuous variables δ and f and the binary variable θ̂ is a mixed
integer programming, which is generally very difficult to solve. Here, inspired
by a recent advanced work in integer programming [56], we equivalently replace
the binary constraint with the intersection of two continuous constraints, as
presented in Proposition 1.

Proposition 1. [56] Let 1NQ denote the NQ-dimensional vector filled with all
1s. The binary set {0, 1}NQ can be replaced by the intersection between Sb and
Sp, as follows:

θ̂ ∈ {0, 1}NQ ⇔ θ̂ ∈ (Sb ∩ Sp), (8)

where Sb=[0, 1]NQ indicates the box constraint and Sp={θ̂ : ||θ̂−1
21NQ||22= NQ

4 }
indicates the ℓ2-sphere constraint.

Based on Proposition 1, we can equivalently reformulate Problem (7) as
a continuous problem. Besides, we can calculate the Hamming distance using
||θ − θ̂||22 for the binary vectors. We obtain the following reformulation:

{δ∗,f∗,θ̂∗} = arg min
δ,f ,θ̂

Lcle(θ̂) + γLtro(δ,f , θ̂),

s.t. δ ∈ Sn, f ∈ Sf , θ̂ = z1, θ̂ = z2, ||θ − θ̂||22 − b+ z3 = 0,

z1 ∈ Sb, z2 ∈ Sp, z3 ∈ R+.

(9)
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In Eqn. (9), we use two additional variables z1 and z2 to separate the two

continuous constraints in Proposition 1, and transform ||θ − θ̂||22 ⩽ b into {||θ−
θ̂||22 − b+ z3 = 0; z3 ∈ R+}. Problem (7) can now be optimized by the standard
ADMM method.

3.3 Optimization

Using a penalty factor ρ > 0, the augmented Lagrangian function of Eqn. (9) is

L(δ,f , θ̂, z1, z2, z3,λ1,λ2, λ3)

= Lcle(θ̂) + γLtro(δ,f , θ̂)

+ λ⊤
1 (θ̂ − z1) + λ⊤

2 (θ̂ − z2) + λ⊤
3 (||θ − θ̂||22 − b+ z3)

+
ρ

2

[
||θ̂ − z1||22 + ||θ̂ − z2||22 + (||θ − θ̂||22 − b+ z3)

2
]

+ ISn
(δ)+ISf

(f)+ISb
(z1)+ISp

(z2)+IR+(z3),

(10)

where λ1 ∈ RNQ, λ2 ∈ RNQ, and λ3 > 0 are Lagrange multipliers for the
three equality constraints. IS(a) : a → {0,+∞} denotes the indicator function:
IS(a) = 0 if a belongs to a set S; otherwise, IS(a) = +∞.

We alternatively update all variables as shown in Algorithm 1. We start from
initializing all optimizable variables and the iteration index k (Line 2-4), where

the initialization of δ[0] and f [0] is specified later. We first update z
[k+1]
1 , z

[k+1]
2 ,

and z
[k+1]
3 with Eqn. (11)-(12) (Line 8-10), which project z

[k+1]
1 , z

[k+1]
2 , and

z
[k+1]
3 into their feasible sets:

ΠSb
(e1) = min(1,max(0, e1)), (11)

ΠSp(e1) =
(2e1 − 1NQ)

√
NQ

||e1||
+

1NQ

2
, (12)

ΠR+(e) = max(0, e), (13)

where e1 ∈ RNQ and e ∈ R. Next, we update δ[k+1],f [k+1], and θ̂[k+1] by
gradient descent with learning rates αδ, αf , and αθ̂, respectively (Line 12-14).

The projection functions for δ[k+1] and f [k+1] are defined as:

ΠSn
(e2) = min(−ϵ,max(e2, ϵ)), (14)

ΠSf
(e3) =

e3
F(e3)

, (15)

where e2 ∈ RHW×C and e3 ∈ RHW×2. We then update the Lagrange multipliers

λ
[k+1]
1 ,λ

[k+1]
2 , and λ

[k+1]
3 using gradient ascent (Line 16-18). When both ||θ̂ −

z1||22 and ||θ̂−z2||22 are smaller than a preset threshold or the maximum number
of iterations is reached, the optimization halts (Line 19).
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Algorithm 1: ADMM for solving Problem (7)

Input : Victim DNN model g with binary weight parameters θ, target class
t, a small set of clean data D = {(xi, yi)}Mi=1.

Output: δ∗,f∗, θ̂∗.
1 # Initialization

2 Initialize δ[0] and f [0];

3 Let θ̂[0] ← θ, z
[0]
1 ← θ, z

[0]
2 ← θ, z

[0]
3 ← 0, λ

[0]
1 ← 0NQ, λ

[0]
2 ← 0NQ, λ

[0]
3 ← 0;

4 Set k = 0;
5 repeat

6 # Update z
[k+1]
1 ,z

[k+1]
2 , z

[k+1]
3

7 until Stopping criterion is satisfied ;

8 z
[k+1]
1 ← ΠSb(θ̂

[k] + λ
[k]
1 /ρ);

9 z
[k+1]
2 ← ΠSp(θ̂

[k] + λ
[k]
2 /ρ);

10 z
[k+1]
3 ← ΠR+(−||θ − θ̂[k]||22 + b− λ

[k]
3 /ρ);

11 # Update δ[k+1],f [k+1], θ̂[k+1]

12 δ[k+1] ← ΠSn(δ
[k] − αδ · ∂L/∂δ);

13 f [k+1] ← ΠSf (f
[k] − αf · ∂L/∂f);

14 θ̂[k+1] ← θ̂[k] − αθ̂ · ∂L/∂θ̂;
15 # Update λ

[k+1]
1 ,λ

[k+1]
2 , λ

[k+1]
3

16 λ
[k+1]
1 ← λ

[k]
1 + ρ(θ̂[k+1] − z

[k+1]
1 );

17 λ
[k+1]
2 ← λ

[k]
2 + ρ(θ̂[k+1] − z

[k+1]
2 );

18 λ
[k+1]
3 ← λ

[k]
3 + ρ(||θ − θ̂[k+1]||22 − b+ z

[k+1]
3 );

19 k ← k + 1;

20 δ∗ ← δ[k],f∗ ← f [k], θ̂∗ ← θ̂[k];

21 return δ∗,f∗, θ̂∗.

Implementation Details. We implement the optimization process with the
following techniques. We initialize δ[0] and f [0] by minimizing the loss defined as
Eqn. (6) before joint optimization to stabilize the practical convergence. In the

step for θ̂, we only update the parameters of the last layer and fix the others.
We also update δ[k+1],f [k+1], and θ̂[k+1] with multi-steps gradients during each
iteration. Besides, as suggested in [56,26,11], increasing ρ from a smaller value
to an upper bound can avoid the early stopping.

4 Experiments

4.1 Setup

Datasets and Target Models. Following [40,6], we adopt three datasets:
CIFAR-10 [22], SVHN [35], and ImageNet [43]. The attacker has 128 clean im-
ages for CIFAR-10 and SVHN and 256 clean images for ImageNet, respectively.
Note that all attacks are performed using these clean images and evaluated on
the whole test set. Following [40,6], we evaluate attacks on two popular network
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Table 2: Performance comparison between TrojanNN [32], TBT [40], and HPT.
‘Trans.’ indicates the use of transparent trigger proposed in [32]. The target
class t is set as 0.

Dataset Model Method PA-TA (%) ASR (%) Nflip

CIFAR-10

ResNet-18
TA: 94.8%

TrojanNN 87.6 93.9 19215
TrojanNN (Trans.) 75.5 73.5 20160
TBT 87.5 90.2 540
TBT (Trans.) 71.4 56.6 548
HPT (Ours) 94.7 94.1 12

VGG-16
TA: 93.2%

TrojanNN 85.5 82.5 16400
TrojanNN (Trans.) 69.6 59.8 15386
TBT 80.7 83.2 601
TBT (Trans.) 70.5 53.9 583
HPT (Ours) 93.1 91.1 6

SVHN
VGG-16

TA: 96.3%

TrojanNN 76.0 82.5 17330
TrojanNN (Trans.) 59.9 71.7 18355
TBT 67.9 60.1 576
TBT (Trans.) 57.9 54.8 546
HPT (Ours) 94.2 78.0 26

ImageNet
ResNet-18
TA: 69.5%

TrojanNN 47.6 100.0 155550
TrojanNN (Trans.) 47.4 96.8 304744
TBT 68.8 100.0 611
TBT (Trans.) 64.1 88.6 594
HPT (Ours) 68.6 95.2 10

architectures: ResNet-18 [17] and VGG-16 [47], with a quantization level of 8-bit
(see Appendix B for results of HPT in attacking 4-bit quantized DNNs). In the
below experiments, the target class t is set as 0 unless otherwise specified.

Parameter Settings. To balance the attack performance and human percep-
tion, ϵ is set as 0.04 on all datasets, and κ is set as 0.01 on CIFAR-10 and SVHN,
and 0.005 on ImageNet. We initialize δ[0] and f [0] by minimizing loss defined as
Eqn. (6) for 500 iterations with the learning rate 0.01 on CIFAR-10 and SVHN,
and 1, 000 iterations with the learning rate 0.1 on ImageNet. Other parameter
settings can be found in Appendix A.

Evaluation Metrics. To measure the effect on clean images, we compare orig-
inal test accuracy (TA) with post-attack test accuracy (PA-TA), defined as the
accuracy of testing on clean images for the original and attacked DNN, respec-
tively. Attack success rate (ASR) denotes the percentage of Trojan images sam-
ples classified to the target class by the attacked DNN. Nflip is the number of
bit flips, i.e., the hamming distance between original and attacked parameters.
A more successful attack can achieve a higher PA-TA and ASR, while less Nflip.

Compared Methods. HPT is compared to TrojanNN [32], TBT [40], and
ProFlip [6] in our experiments. We also apply the transparent trigger [32] on
TrojanNN and TBT, denoted as ‘Trans.’. The watermark in [32] is chosen as
the trigger shape for TrojanNN. We use the same trigger pattern in [32,40], i.e.,
a square pattern located at the bottom right of the image. The trigger size of
all compared methods is measured by the proportion of input replaced by the
trigger, which is configured as the default value used in [32,40], i.e., 9.76% on
CIFAR-10 and SVHN, and 10.62% on ImageNet. We use the open-sourced code
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Figure 3. Visualization of clean and Trojan images generated by different methods. Top left: CIFAR-10; Bottom left: SVHN; Right:
ImageNet. Note that ProFlip uses the same trigger pattern (a square pattern) as TBT. Compared to other methods, the triggers of Trojan
images generated by HPT are most natural and unnoticeable in most cases.

Table 3. Performance comparison between ProFlip [6] and HPT.
The target class t is set as 2.

Dataset Model Method TA
(%)

PA-TA
(%)

ASR
(%) Nflip

CIFAR-10
ResNet-18 ProFlip 93.1 90.3 97.9 12

HPT (Ours) 94.8 94.8 98.7 10

VGG-16 ProFlip 89.7 88.1 94.8 16
HPT (Ours) 93.2 92.0 93.8 10

SVHN VGG-16 ProFlip 98.6 95.3 94.5 20
HPT (Ours) 96.3 94.0 82.2 23

ImageNet ResNet-18 ProFlip 69.0 67.6 94.3 15
HPT (Ours) 69.5 65.2 97.6 14

performs a large number of bit flips in all cases, due to
no limitation on the parameter modification. TBT reduces
the number of bit flips to about 600 using the proposed bit
search algorithm. Among them, HPT achieves the least
number of bit flips with a higher or at least competitive PA-
TA and ASR. It is worth noting that the transparent trigger
leads to a lower PA-TA and ASR for both TrojanNN and
TBT. For example, in attacking ResNet-18 on CIFAR-10,
TBT only achieves a 56.6% ASR, compared to the 90.2%
ASR without applying the transparent trigger, which indi-
cates that it is difficult to perform Trojan attacks with the
less perceptible trigger.

The results of ProFlip and HPT with the target class
t = 2 are shown in Table 3. The number of clean samples is
set as 256 for all cases. ProFlip is the most state-of-the-art
method basedon the well-designed progressive search algo-
rithm. However, ProFlip also uses the square pattern as the
trigger (as shown in Figure 4), making it easily perceptible
to humans. HPT has comparable performance to ProFlip,
especially on CIFAR-10 and ImageNet. Besides, we would

Clean ProFlip HPT (Ours)

Figure 4. Visualization of clean and Trojan images generated by
ProFlip and HPT. The example of ProFlip is from [6].

like to emphasize that, even with the hardly perceptible trig-
ger, HPT can achieve promising performance.

4.3. Human Perceptual Study

To quantify the visual perceptibility of Trojan images
generated by different attack methods, we conduct a hu-
man perceptual study in this section. We evaluate five Tro-
jan attack methods listed in Table 4. We randomly select
10 clean images from each dataset and generate the corre-
sponding Trojan images for these 30 images. In our study,
all original and Trojan images are shown to 15 participants.
These participants are asked to give a score ∈ {1, 2, 3, 4, 5}
for each Trojan image, where a higher score corresponds to
less perceptible Trojan images. More details of the human
perceptual study are provided in Appendix B.

In total, we collect 2,250 scores and summarize the re-
sults in Table 4. We also provide visualization examples
in Figure 3 (and an example of ProFlip from [6] in Figure
4). As can be observed, the scores of TrojanNN and TBT
are very low, due to the noticeable patches. By applying
the transparent trigger, all scores increase to over 2.0, how-
ever, these Trojan images can also be easily distinguished in
most cases. In contrast, HPT achieves the highest score on
all datasets (about 4.0). We also compare the mean square

6

Fig. 3: Visualization of clean and Trojan images generated by different methods.
Top left: CIFAR-10; Bottom left: SVHN; Right: ImageNet. Note that ProFlip
uses the same trigger pattern (a square pattern) as TBT. By comparison, the
triggers of Trojan images generated by HPT are most natural and unnoticeable.

Dataset Model Method TA (%) PA-TA (%) ASR (%) Nflip

CIFAR-10
ResNet-18

ProFlip 93.1 90.3 97.9 12
HPT (Ours) 94.8 94.8 98.7 10

VGG-16
ProFlip 89.7 88.1 94.8 16
HPT (Ours) 93.2 92.0 93.8 10

SVHN VGG-16
ProFlip 98.6 95.3 94.5 20
HPT (Ours) 96.3 94.0 82.2 23

ImageNet ResNet-18
ProFlip 69.0 67.6 94.3 15
HPT (Ours) 69.5 65.2 97.6 14

(a)

Clean ProFlip HPT (Ours)

(b)

Fig. 4: Comparison of ProFlip [6] and HPT: (a) Attack performance. The target
class t is set as 2; (b) Visualization of clean and Trojan images generated by
ProFlip and HPT. The example of ProFlip is from [6].

of TBT and implement TrojanNN following [40] to make the comparison fair.
We compare the results of ProFlip reported in [6].

4.2 Attack Results

We compare the attack performance of HPT with TrojanNN and TBT in Table
2. We can observe that TrojanNN performs a large number of bit flips in all cases,
due to no limitation on the parameter modification. TBT reduces the number
of bit flips to about 600 using the proposed bit search algorithm. Among them,
HPT achieves the least number of bit flips with a higher or at least competitive
PA-TA and ASR. It is worth noting that the transparent trigger leads to a
lower PA-TA and ASR for both TrojanNN and TBT. For example, in attacking
ResNet-18 on CIFAR-10, TBT only achieves a 56.6% ASR, compared to the
90.2% ASR without applying the transparent trigger, which indicates that it is
difficult to perform Trojan attacks with the less perceptible trigger.

The results of ProFlip and HPT with the target class t = 2 are shown in
Figure 4(a). The number of clean samples is set as 256 for all cases. ProFlip is
the most state-of-the-art method basedon the well-designed progressive search
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Table 3: Scores of human perceptual
study (ranging from 1 to 5). A higher
score corresponds to less perceptible Tro-
jan images.

Dataset TrojanNN
TrojanNN
(Trans.)

TBT
TBT

(Trans.)
HPT

CIFAR-10 1.1 3.4 1.0 2.8 3.9
SVHN 1.1 2.4 1.0 2.0 3.9

ImageNet 1.0 2.4 1.0 2.4 4.3

Average 1.1 2.7 1.0 2.4 4.0

Table 4: Performance of HPT with
different target classes t in attacking
ResNet-18 on CIFAR-10.

t
PA-TA
(%)

ASR
(%)

Nflip t
PA-TA
(%)

ASR
(%)

Nflip

0 94.7 94.1 12 5 94.8 92.7 11
1 94.7 98.9 14 6 94.7 92.4 11
2 94.8 97.3 9 7 94.8 88.8 11
3 94.8 98.7 6 8 94.6 96.5 14
4 94.7 94.6 12 9 94.8 95.1 10

algorithm. However, ProFlip also uses the square pattern as the trigger (as shown
in Figure 4(b)), making it easily perceptible to humans. HPT has comparable
performance to ProFlip, especially on CIFAR-10 and ImageNet. Besides, we
would like to emphasize that, even with the hardly perceptible trigger, HPT can
achieve promising performance.

4.3 Human Perceptual Study

To quantify the visual perceptibility of Trojan images generated by different at-
tack methods, we conduct a human perceptual study in this section. We evaluate
five Trojan attack methods listed in Table 3. We randomly select 10 clean images
from each dataset and generate the corresponding Trojan images for these 30
images. In our study, all original and Trojan images are shown to 15 participants.
These participants are asked to give a score ∈ {1, 2, 3, 4, 5} for each Trojan im-
age, where a higher score corresponds to less perceptible Trojan images. More
details of the human perceptual study are provided in Appendix C.

In total, we collect 2,250 scores and summarize the results in Table 3. We
also provide visualization examples in Figure 3 (and an example of ProFlip from
[6] in Figure 4(b)). As can be observed, the scores of TrojanNN and TBT are
very low, due to the noticeable patches. By applying the transparent trigger,
all scores increase to over 2.0, however, these Trojan images can also be easily
distinguished in most cases. In contrast, HPT achieves the highest score on all
datasets (about 4.0). We also compare the mean square error (MSE) between
original images and Trojan images (in the range [0, 255]) crafted by these five
attacks, where HPT obtains the lowest MSE on all datasets. The average MSE
of HPT is 97.1, while the second best result is 124.4 (TBT with the transparent
trigger). More details can be found in Appendix D. These results confirm that
HPT is hardly perceptible and is difficult to be spotted by humans.

4.4 Discussions

Sensitivity to Target Class. Table 4 shows the attack performance of HPT
with different target classes in attacking ResNet-18 on CIFAR-10. Besides the
target class, other settings are the same as those described in Section 4.1. The
results show that HPT achieves less than 15 bit flips and over 88% ASR for
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Table 5: ASR (%) for three attack modes.
‘Trigger’: optimizing the trigger without bit
flips; ‘Two Stage’: optimizing the trigger and
bit flips separately; ‘Joint Optimization’: op-
timizing the trigger and bit flips jointly.

Dataset Model Trigger
Two
Stage

Joint
Optimization

CIFAR-10
ResNet-18 90.9 93.2 94.1
VGG-16 87.0 90.5 91.1

SVHN VGG-16 64.7 74.6 78.0
ImageNet ResNet-18 70.5 89.2 95.2

Table 6: Results of HPT on two
types of feature squeezing de-
fense.

PA-TA
(%)

ASR
(%)

w/o defense 94.7 94.1

Averaging over each
pixel’s neighbors (2×2) 89.9 64.3

Collapsing the bit
depth (5 bit)

67.8 65.6

different target classes, with only little accuracy degradation on clean images.
Especially for the most vulnerable target class t = 6, HPT obtains a 98.7% ASR
by flipping only 6 bits. These results illustrate HPT is not sensitive to the target
class to some extent.
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Fig. 5: Numerical convergence
analysis of HPT.

Numerical Convergence Analysis. To an-
alyze the numerical convergence of our op-
timization algorithm, we plot the values of
||θ̂ − z1||22, ||θ̂ − z2||22, Lcle, and Ltro at differ-
ent iterations. As shown in Figure 5, the opti-
mization process can roughly be divided into
three stages. In the first stage, Ltro is reduced
to less than 0.002, resulting in a powerful at-
tack. Then, Lcle decreases to reduce the influ-
ence on the clean images. Finally, ||θ̂ − z1||22
and ||θ̂ − z2||22 are encouraged to approach 0
to satisfy the box and ℓ2-sphere constraint in
Proposition 1. The optimization halts within the maximum number of iterations
(3000), which demonstrates the practical convergence of our algorithm.
Effectiveness of Joint Optimization. We investigate the effectiveness of the
joint optimization by comparing it with two other attack modes: optimizing the
trigger without bit flips, optimizing the trigger and bit flips separately. The
results are shown in Table 5. For the ‘Trigger’ mode, we only optimize the
modification on the pixel values and positions of original images without bit flips,
resulting in a relatively low ASR. For the ‘Two Stage’ mode, we firstly optimize
the additive noise and flow field and then optimize the bit flips. We keep the PA-
TA of the ‘Two Stage’ mode similar to that of the ‘Joint Optimization’ mode by
tuning λ. The ASR results show that jointly optimizing bit flips, additive noise,
and flow field yields the strongest attack in all cases.

4.5 Potential Defenses

Since our attack happens after model deployment, defense methods which check
the training data or the model before deployment may not be effective to defend
our attack. Accordingly, we evaluate three potential defense mechanisms below.
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Table 7: Performance of HPT against the
defense method in [18].

b
TA
(%)

PA-TA
(%)

ASR
(%)

Nflip

w/o defense 10 94.8 94.7 94.1 12

w/ defense
10 88.6 88.6 86.6 12
40 88.6 88.5 93.2 43

Table 8: Performance of HPT with
different ϵ and κ.

ϵ
PA-TA

(%)
ASR
(%)

Nflip κ
PA-TA

(%)
ASR
(%)

Nflip

0.01 94.8 10.4 2 0.005 94.7 93.0 11
0.02 94.8 35.5 6 0.01 94.7 94.1 12
0.03 94.7 78.8 13 0.015 94.7 95.1 11
0.04 94.7 94.1 12 0.02 94.7 96.3 11
0.05 94.7 97.9 6 0.025 94.7 96.4 6

Firstly, we investigate the smoothing-based defense against our HPT, which
are originally designed for adversarial examples [15,54,2]. We test HPT on two
types of feature squeezing defense [58]: averaging over each pixel’s neighbors
and collapsing the bit depth. Table 6 shows that both can reduce the ASR to
about 65% and averaging over each pixel’s neighbors can maintain a relatively
high PA-TA. Therefore, we believe that how to design smoothing-based defense
methods for our Trojan attack is worthy of further exploration.

As a training technique, piece-wise clustering [18] encourages eliminating
close-to-zero weights to enhance model robustness against bit flip-based attacks.
We conduct experiments on CIFAR-10 with ResNet-18 and set the clustering
parameter in [18] as 0.02. As shown in Table 7, when all settings are the same as
those in Section 4.1 (i.e., b = 10), the ASR is reduced to 86.6% with the defense.
To achieve a higher ASR, we increase b to 40 and retain all other settings, but
resulting in 43 bit flips. As such, this observation inspires us to explore the
defense against HPT which can increase the required number of bit flips.

The visualization tools are helpful to inspect the DNN’s behavior. We use
Grad-CAM [45] to show heatmaps of clean images for the original model and
Trojan images generated by TrojanNN, TBT, and HPT for its corresponding
attacked model in Figure 6. One can see that the attacks based on the patch-
based trigger (TrojanNN and TBT) can be easily exposed, since the main focus
of the DNN stays on the trigger. However, due to the slight modification on
the pixel values and positions of original images, the heatmaps of HPT’s Trojan
images are more similar to these of clean images, i.e., localizing the main object
in the image. In other words, the proposed HPT is hard to be defended by
inspecting the DNN’s behavior using Grad-CAM.

4.6 Ablation Studies

Effect of ϵ and κ. For HPT, ϵ and κ constrain the magnitude of modification
on the pixel values and positions, respectively. Here, we investigate the effect
of ϵ and κ on the attack performance. We use ResNet-18 on CIFAR-10 as the
representative for analysis. In Table 8, we show the results of HPT under different
values of ϵ while κ is fixed at 0.01, and under different values of κ while ϵ is fixed
at 0.04. As expected, increasing ϵ and κ can improve ASR significantly. It is also
obvious that ϵ has a greater impact than κ on the attack performance. However, a
larger ϵ or κ generally reduces the visual quality of the Trojan images. Therefore,
there is a trade-off between the attack performance and the visual perceptibility.
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Clean HPTTrojanNN TBT

Fig. 6: Grad-CAM visualization of
clean images and Trojan images gener-
ated by different attacks on ImageNet.
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Fig. 7: Performance of HPT with varying
M , b, and γ.

Effect of M , b, and γ. We perform ablation studies on the size of the clean data
set M , the parameter for restricting the number of bit flips b, and the trade-off
parameter λ. All results are presented in Figure 7. To analyze the effect of M ,
we configure M from 32 to 512 and use other settings as those in Section 4.1. We
can see that increasing the size of clean data has a marked positive impact on
the ASR. Besides, even using only 32 clean images, HPT can obtain a high ASR
(about 90%), which allows the attacker to perform HPT without too many clean
images. When γ is fixed at 1,000, the plots of parameter b show that tuning b can
control the number of bit flips. Accordingly, the parameter b helps to perform
the Trojan attack when the budget of bit flips is fixed. We study the effect of γ
with b = 40. As shown in the plots, a larger γ encourages a higher ASR, while
a lower PA-TA and more bit flips. When other settings are fixed, attackers can
specify γ for their specific needs.

5 Conclusion

In this paper, we proposed HPT that can inject a hidden behavior into a DNN
after its deployment. It tweaks the pixel values and positions of original im-
ages to craft Trojan images. Based on an effective optimization algorithm, HPT
performs best in the human perceptual study and achieves promising attack
performance. To the best of our knowledge, HPT is the first Trojan attack on
the deployed DNNs, which leverages the hardly perceptible trigger. We hope
that our work opens a new domain of attack mechanisms and encourages future
defense research.

The main limitation of HPT is that we assume that the attacker has full
knowledge of the victim DNN, including its architecture, its parameters, and
the location in the memory, corresponding to the white-box setting. We will
further explore more strict settings than the white-box one in our future work.
Acknowledgments. This work is supported in part by the National Natural
Science Foundation of China under Grant 62171248, and the PCNL KEY project
(PCL2021A07).
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