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Abstract. The vulnerability of Deep Neural Networks, i.e., suscepti-
bility to adversarial attacks, severely limits the application of DNNs in
security-sensitive domains. Most of existing methods improve model ro-
bustness from weight optimization, such as adversarial training. However,
the architecture of DNNs is also a key factor to robustness, which is often
neglected or underestimated. We propose Robust Network Architecture
Search (RNAS) to obtain a robust network against adversarial attacks.
‘We observe that an adversarial perturbation distorting the non-robust
features in latent feature space can further aggravate misclassification.
Based on this observation, we search the robust architecture through re-
stricting feature distortion in the search process. Specifically, we define a
network vulnerability metric based on feature distortion as a constraint
in the search process. This process is modeled as a multi-objective bilevel
optimization problem and a novel algorithm is proposed to solve this
optimization. Extensive experiments conducted on CIFAR-10/100 and
SVHN show that RNAS achieves the best robustness under various ad-
versarial attacks compared with extensive baselines and SOTA methods.

Keywords: Adversarial examples; Network architecture search; Roubst
architecture

1 Introduction

In recent years, Deep Neural Networks (DNNs) have shown excellent perfor-
mance in various applications, such as image classification [20, 15], objective de-
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Fig.1: Adversarial robustness, Standard accuracy, and parameter numbers for
various architectures on CIFAR-10. All architectures are adversarially trained
using 7-step PGD and evaluated by AutoAttack. The bubbles’ size reflects the
model parameters. RNAS’s robustness and standard accuracy outperform other
architectures, even with fewer parameters.

tection [9], and semantic segmentation [3]. However, many investigations [35, 10]
show that DNNs are vulnerable to adversarial examples, i.e., images added by
some elaborately designed imperceptible perturbations may lead to the model’s
misclassification. At present, various techniques [10, 26, 2] have been proposed
to generate adversarial examples. Meanwhile, countermeasures [26, 40, 37] have
been proposed to defend against adversarial examples. However, most of the
methods focus on weight optimization, while neglects the influence of network
structures, e.g., adversarial training (AT) [26]. Nevertheless, recent studies reveal
that robustness is highly related to the network structure [11]. A fixed structure
may limit the further improvement of robustness. Therefore, in this paper, our
work focuses on searching for a robust network architecture.

To achieve higher robustness, we attempt to explore the relationship between
network architecture and adversarial examples. Ilyas et al. [18] claimed that the
existence of adversarial examples is due to the non-robust features of data, i.e.,
the intrinsic property of data. However, we suggest that adversarial perturbation
misleads the network through distorting the non-robust features in latent feature
space, which is also a property of networks. In other words, different network
architectures and their weights have different defensive abilities to this distor-
tion. Hence, we propose Robust Network Architecture Search (RNAS) based on
Differentiable Architecture Search (DARTS) [24] to obtain a robust architecture
through restraining the latent feature distortion. Specifically, we measure the la-
tent feature distortion by the difference of feature distribution between clean and
adversarial examples. This difference is quantified by KL divergence [21]. Based
on the feature distortion of each cell (a basic component of a network in DART'S),
we define network vulnerability. Specifically, we first define channel vulnerabil-
ity by the KL divergence between the channel output distribution of adversarial
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examples and their corresponding clean examples. Then, we define cell vulner-
ability as the mean of channel vulnerabilities in the cell’s output layer. Finally,
we define network vulnerability as the mean of all cells’ vulnerabilities. With
the above definitions, we can obtain a more robust architecture by constraining
network vulnerability in a search process. Inspired by DARTS, we transform an
original single-objective bilevel optimization into a multi-objective bilevel opti-
mization by imposing network vulnerability constraints. Then, we simplify this
optimization and solve it with our proposed iterative algorithm. We evaluate
the robustness of RNAS on CIFAR-10/100 [19], SVHN [29], and Tiny-ImageNet
based on extensive comparisons. Our contributions are summarized as follows:

— We suggest that the distortion of non-robust features in latent feature space
plays a key role in misclassification caused by adversarial examples. From
this observation, we propose a network vulnerability metric based on the dif-
ference between latent feature distribution of clean examples and adversarial
examples.

— We propose Robust Network Architecture Search (RNAS) using the network
vulnerability metric as a constraint to obtain a robust network architecture.
Meanwhile, we design an effective algorithm to solve this constrained multi-
objective optimization.

— Extensive experiments conduct on several public datasets show that RNAS
achieves SOTA performance in robust accuracy compared with RobNet-free,
DSRNA, and AdvRush.

2 Related works

Adversarial attacks and defends. Adversarial attack refers to a process of
deceiving the target model by applying a tiny perturbation to the original input,
i.e., adversarial examples. According to the available information, adversarial
attacks are divided into white-box attacks [44,28] and black-box attacks [30,
36]. Currently, the most classic white-box attack methods contain: Fast Gradient
Sign Method (FGSM) [10], Projected Gradient Descent (PGD) [26] and Carlini &
Wagner (C&W) [2]. Recently, Croce and Hein [6] proposed a reliable and stable
attack method: AutoAttack (AA). It is an automatic parameter-free method
for robustness evaluation. Four attack methods are integrated in AutoAttack,
including three white-box attacks: APGD [6] with cross entropy loss, targeted
APGD with difference-of-logits-ratio loss and targeted FAB [5], and a black-
box attack: SquareAttack [1]. Various adversarial defense methods have been
proposed to improve the robustness of DNN against adversarial attacks, such as
random smoothing [22], defensive distillation [31], and adversarial training [26,
40].

NAS for robustness network. NAS is proposed to automatically de-
sign the network architecture to replace traditional manually-designed methods.
Representative techniques include reinforcement learning [42], evolutionary al-
gorithms [32], and differentiable approaches [24]. One of the most representative
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differentiable methods is DARTS [24], which conducts search and evaluation at
the same time. Though NAS achieves excellent performance by automatically
searching the network architecture, it neglects the robust accuracy of the ob-
tained model [7].

At present, researchers focus on searching a more robust network architec-
ture through NAS [11]. They proved that robustness has a strong correlation
with structure. Dong et al.[8] discussed the relationship between robustness,
Lipschitz constant and architecture parameters. They proved that proper con-
straints of the architecture parameter can reduce Lipschitz constant, thereby
improve robustness. Hosseini et al.[14] defined two differentiable metrics to mea-
sure the architecture robustness based on verifiable lower bounds and Jacobian
norm bounds. The search process is based on the maximization of the robustness
metrics.

3 Preliminary

In our work, we use DARTS as our basic framework. DARTS is a differentiable
search framework and its search space is defined on cells. A cell is defined as
a directed acyclic graph (DAG) with N nodes {zo,x1,...,2nx_1}, where each
node represents a layer in the network. In an operation space O, each element
o() € O represents an operation in a layer (3x3 convolution, pooling, zero
operation, etc.). Within a cell, the goal of DARTS is to select an operation in
O to connect each node-pair. The information flow between node i and node j
is represented as an edge f(; ;), which is composed of operations weighted by an
architecture parameter a9 i.e.,

o) =%,

exp(ag’j))

—— - o(x; 1
0'€0; ; eXp(aE)Z,’J)) ( ) ( )
where z; is the output of the i-th node and ol is the weight of an operation
o(z;). A node’s input is the sum of all outputs of its previous nodes, i.e., z; =
ij fi.j(zi). The output of the cell xny_1 is concat(xo,z1,...xNn_2), Where
concat(-) represents concatenating all channels. A proxy network on the search
process is constructed by m cells.

The operation parameter of o(-) is denoted by 6. The search space of DARTS
is differentiable, so that # and « can be alternately updated with gradients in
the search process. When the search process converges, we retain the operation
with the largest « in each edge f(; ;) to compose the final cell structure. The
obtained cell is taken as a basic unit to form the target network by stacking
multiple cells together. The optimization of o and 6 are defined as follows [24]:

min L, (6% (@), @)

(2)

st. 0"(a) =arg mein Lirain(0, @)

where Lirqin and L, denote training loss and validation loss, respectively.
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Fig. 3: The latent feature distortion of VGG16 and ResNet18 on CIFAR-10/100.

4 Method

First, we analyze the mechanism of adversarial examples from the perspective of
feature distortion. Based on feature distortion, we define a network vulnerability
metric to guide the search process. Taking DARTS as the basic framework of
RNAS, we apply network vulnerability as a constraint to an architecture param-
eter . We formulize RNAS as a multi-objective bilevel optimization. Through
an iterative optimization algorithm, we can obtain a more robust network archi-
tecture than other methods.

4.1 Network vulnerability constraint

Ilyas et al. [18] claimed that in classification tasks, the network relies on non-
robust features, which are highly predictive and imperceptible, to achieve high
accuracy. However, it leads to adversarial perturbations exploiting this depen-
dence. Non-robust features are highly sensitive to the feature distortion and only
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a slight distortion will lead to misclassification. We speculate that such adver-
sarial perturbations further aggravate a distortion in the latent feature space.
To observe the process of latent feature distortion caused by the adversarial per-
turbation, we visualize the feature maps in Fig. 2. As illustrated in Fig. 2a, for
a standard training model, the latent features of adversarial examples have an
obvious distortion compared with that of clean examples. The worst distortion
regions mainly exist in the non-object parts that contain many imperceptible
non-robust features. On the contrary, for an adversarial training model, the
distortion caused by adversarial examples is significantly weakened. In addition,
Fig. 2b shows that the distortion becomes more obvious as layers become deeper.
Hence, we believe that an adversarial example fools a model by enlarging the
distortion of non-robust features.

To further quantify this distortion, i.e., to measure the latent feature dif-
ference between clean examples and adversarial examples in deep networks, we
introduce the KL divergence [21] that is widely used to measure the difference
between two distributions, e.g., the difference of feature distribution of different
networks’ outputs in knowledge distilling [13] and deep mutual learning [41].
In practice, we represent the distortion as a feature maps’ KL divergence be-
tween clean examples and adversarial examples. We quantitatively analyze the
distortion change in adversarial training models and standard training models,
as shown in Fig. 3. As layers become deeper, the distortion increases by an order
of magnitude. Meanwhile, the distortion of adversarial training models is signif-
icantly smaller than that of standard training models, which is consistent with
the visualization in Fig. 2.

Based on the above analysis, the main idea of our method is to restrain feature
distortion. If a network lacks resistance to feature distortion, the network will
be vulnerable to adversarial examples. Hence, we define a model vulnerability
metric based on feature distortion. Considering this metric as a constraint, we
can search for a more robust network architecture. Then, we define the network
vulnerability metric as follows.

Channel vulnerability: The vulnerability of the k-th channel in the [-th
layer is defined as:

F(z00, 200) = B ) op KL, 209) (3)

where z(bF) denotes the feature value of the k-th feature map in the I-th layer
of clean examples. Similarly, 2(%) represents the adversarial case.

Layer vulnerability: We define the layer vulnerability f; as the mean of all
channel vulnerabilities in the [-th layer, i.e.,

N®
1 k) ~(k
fi= 5w 2 FE A (4)
k=1

where N is the number of the I-th layer’s feature maps.
From the observation in Fig. 2 and Fig. 3, the feature distortion increases as
the network becomes deeper. Therefore, we should not only focus on the final



Robust Network Architecture Search via Feature Distortion Restraining 7

output distortion, but also concern the distortion changes in hidden layers of
the network. Since the search space is defined based on cells, we first define cell
vulnerability, and further define network vulnerability based on cell vulnerability.

Cell vulnerability: We define cell vulnerability f{°) as the mean of all layer
vulnerability of the output layers in the i-th cell, i.e.,

N
o 1 - o,k) ~(o,k
17 =~ 2P A (5)
k=1

%

i(o’k) is the feature value of the k-th
feature map from clean examples, similarly, égo’k) represents the adversarial case.
Network vulnerability: The network vulnerability is defined as the mean

of all cell vulnerabilities, i.e.,

where Ni(o) is the number of feature maps, z

1 M
Ffolw). fo@) = 37 > 7 (6)
i=1

where M is the number of cells in the whole network.

4.2 Robust Network Architecture Search (RNAS)

The DARTS only focuses on clean accuracy [40]. Our goal is to find robust
cells and then use them to construct a robust network. Thus, we add network
vulnerability to the original DARTS objective function. This add-on guarantees
a minimal network vulnerability during the update of architecture parameter
« in the search process. Once « is determined, we use adversarial training to
update the operation parameter 6 for a new architecture (corresponding to ).
Briefly, the objective of RNAS is to minimize the validation loss and network
vulnerability under adversarial attacks. The robust operation parameter 6 is
updated through adversarial training. We formalize RNAS as a multi-objective
bilevel optimization problem:

min (£,,,(0" (@), @) + L34} (67 (), @), F(a))

* . adv (7)
st. 0%(a) = argngnﬁ 0, )

train

where £39% ~and L£3%V respectively represent adversarial training loss and ad-

versarial validation loss, and F(«) represents the network vulnerability. In this
multi-objective bilevel optimization, « is an upper-level variable and @ is a lower-
level variable. However, addressing this problem is non-trivial. We turn the net-
work vulnerability into a constraint and set an upper bound H € [0, +00) of the
network vulnerability. Thus, Problem 7 is transformed into a single-objective
optimization problem with two constraints, as shown in Eq. 8. § and « are al-
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Algorithm 1 Robust Network Architecture Search (RNAS)
Input: Dataset D, training epochs F, training iteration 7'.
Output: Learned architecture parameter ay,.
//Phase I: 6-warm up
1: Randomly initialized operation parameters # and weights « in mixed operation set

(@]

2: while e < 15 do

3 fort=1to T do

4: Keep « fixed, and obtain #**! by gradient descent with V£, (Ht, a)
5 end for

6 e<—e+1

7: end while

//Phase II: Robust Architecture Search

1: while not converged or 15 < e < FE do
//Stepl: unconstrained searching
for t =1to T/2 do
Keep o' fixed, and obtain 8'T! by gradient descent with V£ (0t, at)

train

3
4
5 Keep 6**! fixed, and obtain a‘*! by gradient descent with Vo £ (9”1, at)
6: end for
7.
8

//Step2: vulnerability constrained for .
for T/2 to T do

9: al + Tprojat

10: Update af,

11:  end for

12:  aof a;

13: e<e+1

14: end while

ternately updated until they converge.

min £, (0 (a), @) + L35} (0" (), @)

val

train

st. 0%(a) = arg mein £ (9, ) (8)
Fla) <H

Since Eq. 8 is a constrained optimization and the softmax function of « is non-
convex, it is hard to obtain a closed-form solution. So we introduce a projection
method to optimize the constraining function F(«) < H. We project « to the
nearest point o, in the feasible region that satisfies the network vulnerability
constraint, as shown in Eq. 9, which can be solved by a Lagrangian method.

1
min§|\oz—ap|\g st Flap) < H (9)
The whole process is divided into two phases. In Phase I: warm-up, we only

update 6 since it is randomly initialized at the beginning, which contains lit-
tle valuable knowledge to guide the search process. Phase II: search is divided
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into two steps, Step 1 is an unconstrained search, in which « can disobey the
vulnerability constraint and a better architecture is searched freely in a larger
parameter space. In this step, the objective function of RNAS is the same as that
of DARTS, where 6 and « are alternately updated by gradient descent. In Step
2, we project o to the nearest point oy, in the feasible set, where the objective
of projection in Eq. 9 should satisfy the vulnerability constraint. At the end of
Step 2, we assign o, to o to make the algorithm return to Step 1. The algorithm
of RNAS is presented as Algorithm 1.

The advantages of RNAS are as follows: in Phase I, the operation param-
eters 6 are warmed up to provide a stable network for further searching. In
Step 1 of Phase II, the weight and architecture are jointly optimized by ad-
versarial examples to determine a reasonable projection starting point of « in
Step 2. In Step 2, we apply network vulnerability constraint to « to search a
“low-feature-distortion” network architecture. When the inputs are adversari-
ally perturbed, the network vulnerability constraint can restrain the distortion
by minimizing the deviation between the latent features of clean examples and
adversarial examples. After Step 2, the algorithm will return to Step 1 to search
the architecture in a larger parameter space. In addition, the upper bound H
can adjust the vulnerability constraint to make the search more flexible. The
detailed discussion of H is in the Section 5.4

5 Experiment

We first use RNAS to search on CIFAR-10, then transfer the obtained architec-
ture to SVHN, CIFAR-100 and Tiny-ImageNet. We conduct extensive experi-
ments on CIFAR-10/100, SVHN and Tiny-ImageNet under various adversarial
attacks to evaluate the effectiveness of RNAS. Our model significantly outper-
forms the baselines and achieves the highest robustness.

5.1 Experimental setup

Searching: When searching on CIFAR-10, we divide the training set into two
equal parts. The search space contains 8 candidate operations: 3 x 3 and 5 X
5 separable convolutions, 3 x 3 and 5 x 5 dilated separable convolutions, 3 X
3 max pooling, 3 x 3 average pooling, skip connection, and zero operation. The
network consists of 8 cells: 6 normal cells and 2 reduction cells. Each cell has
6 nodes. We use SGD with momentum to train the model for 60 epochs with
a batch size of 128. The initial learning rate is 0.01 with a momentum of 0.9,
weight decay is 0.0003, and a cosine learning rate decay is used. Architecture
parameters « are updated through Adam with a learning rate of 0.0006 and a
weight decay of 0.001. H = 0.0001 in RNAS-H and H = 0.00001 in RNAS-L.
Training: After obtaining the normal cell and the reduction cell (as shown
in Fig. 4) in the search process, we adversarially train the target network on the
entire dataset. The adversarial examples are generated by PGD and the total
perturbation size € = 8/255, the number of attack iterations is 7 with a step size
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Table 1: Size and robust accuracy (%) of different architecture with PGD ad-
versarial training on CIFAR-10. PGD?? and PGD'%? refer to PGD attack with
20 and 100 iterations. The best result in each column is in bold, and the second
best result is underlined.

AT ST
Clean FGSM PGD?® PGD'%° C&W AA |Clean FGSM

VGG16[34] 14.7M | 80.08 52.85 47.50 46.66 41.80 42.10|92.64 46.35
ResNet18[12] 11.2M |82.63 54.12 48.81 48.50 42.48 43.43|94.64 49.72
DenseNet121[16] 7.0M |84.85 54.35 48.31 47.81 35.68 44.18|95.97 47.11

NasNet[43] 4.3M |80.61 54.19 50.25 49.63 42.97 45.33|97.33 50.03
AmoebaNet[32] 3.2M |83.41 54.44 4295 42.80 39.21 35.32|97.45 41.60
PNAS[23] 4.5M |85.08 58.79 47.70 47.51 40.15 43.03|96.60 49.32
SNAS[38] 2.7TM |82.56 54.39 46.03 45.97 40.36 43.55|97.18 50.01
DARTS[24] 3.3M |83.75 55.75 44.91 45.00 41.25 39.98|97.41 50.56
P-DARTS[4] 3.4M | 82.65 53.27 42.72 42.77 41.03 37.22|97.40 54.51
PC-DARTS[39] 3.6M |83.94 52.67 41.92 4250 39.25 37.53|97.50 52.75

MobileNetv2[33] 2.3M [81.04 53.66 47.40 46.79 41.26 42.29|94.23 47.32
ShuffleNetv2[25] 1.3M |80.25 49.10 42.10 40.25 40.34 36.78|91.48 44.58
SqueezeNet[17] 0.7M |78.65 51.21 44.22 40.56 39.66 28.58|86.72 31.90

RACLI[g] 3.6M |83.62 57.25 50.02 49.86 44.13 47.64|96.42 49.29
RobNet-free[11] 5.6M |83.98 58.44 51.68 51.47 46.07 48.06|96.46 35.32
DSRNA[14] 3.5M [80.98 59.41 51.34 51.28 38.92 48.85|97.02 52.24
AdvRush[27] 4.2M |84.57 60.21 52.32 52.20 45.13 48.29|97.28 54.72

RNAS-H 3.5M |84.13 61.90 53.48 53.35 50.74 50.54|96.65 63.23
RNAS-L 3.2M |85.16 62.61 54.85 53.70 45.57 52.34|95.26 65.32

Model Params

of 2/255. The training phase has 600 epochs with a batch size of 128. We use
SGD with momentum, where the initial learning rate is 0.1 with a momentum
of 0.9, weight decay is 0.0003 and a cosine learning rate decay is used.

Evaluation: All models are fully trained for 600 epochs and the setting
is consistent with RNAS in the training phase. Adversarial examples used for
evaluation are generated from FGSM [10], PGD [26], C&W [2] and AutoAttack
(AA) [6]. The attack settings are as follows: 1) FGSM attack with ¢ = 0.031 (8
/ 255); 2) PGD attack with e = 0.031 (8 / 255), attack iterations of 20 and 100,
and a step size of 2 / 255; 3) C&W attack with ¢ = 0.5 and attack iterations of
100; 4) AA with e = 0.031 (8/255). All attacks are l,.-bounded.

5.2 Results on CIFAR-10

Fig. 4 illustrates the architecture of the normal cell and the reduction cell ob-
tained on CIFAR-10. We obtain two architectures through different H values:
RNAS-H (high) and RNAS-L (low). We observe that the operations between
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Fig. 4: Architecture of the cells obtained on CIFAR-10.

nodes in RNAS-H and RNAS-L are intensive, which is consistent with the prop-
erty of the robust architecture in [11]. We use 20 cells to construct the target
network, train the network through standard training and adversarial training
respectively and evaluate it under various adversarial attacks. The comparison
results are summarized in Table. 1.

As shown in Table. 1, through adversarial training, the architecture obtained
by RNAS has a better robust performance than other models. (1) Compared
with various manually designed baseline models, our model achieves a better
robust accuracy. (2) Compared with NAS baselines, our model achieves the best
performance under various adversarial attacks. The main reason is that we res-
trian the feature distortion in our search process. Hence, the obtained network is
insensitive to the distortion caused by adversarial examples. (3) Compared with
existing NAS-based robust search methods, RNAS-L and RNAS-H both achieve
better performance.

In Table. 1, even only with standard training, RNAS is still more robust than
other network architectures. This result indicates that the architecture obtained
by RNAS has a natural robust property. In addition, the clean accuracy of RNAS
is yet closed to that of the optimal NAS.

5.3 Results on CIFAR-100, SVHN and Tiny-ImageNet

To further evaluate the effectiveness of RNAS, we transfer the model to CIFAR-
100, SVHN and Tiny-ImageNet, specifically. We use 20 cells obtained on CIFAR-
10 to construct a network and retrain it on CIFAR-100, SVHN and Tiny-
ImageNet by adversarial training respectively. In Table. 2, Table. 3 and Ta-
ble. 4 compared with most of the baselines, RNAS obtained on CIFAR-10 can
still improve the robustness after adversarial training on CIFAR-100, SVHN
and Tiny-ImageNet. The results indicate that the RNAS architecture is highly
transferable.
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Table 2: Evaluation of different architectures on CIFAR-100.
Model Clean(%) FGSM(%) PGD?**(%) PGD' (%) C&W(%) AA(%)

ResNet18[12] 55.12 25.65 21.08 19.98 17.04 18.02
DenseNet121[16] 61.71 34.28 27.30 27.07 20.18 24.55
Mobilnetv2[33] 53.81 28.45 23.80 23.76 16.04 20.30
NasNet[43] 59.64 29.83 24.41 24.38 20.41 22.06
DARTS[24] 59.14 30.35 25.66 25.40 20.72 22.65
PC-DARTS[39] 59.44 20.29 24.10 24.02 19.45 22.06
RobNet-free[11] 59.64 34.23 27.21 27.18 21.92 24.82
DSRNA][14] 57.44 35.03 28.11 27.97 21.52 25.20
AdvRush[27] 58.73 39.01 30.16 29.67 20.08 26.46
RNAS-H 59.80 42.44 32.05 31.99 29.84 28.29
RNAS-L 60.24 40.52 3111 31.06 20.84 2737

Table 3: Evaluation of different architectures on SVHN.
Model Clean(%) FGSM(%) PGD?**(%) PGD' (%) C&W (%) AA(%)

ResNet18[12] 92.06 85.70 68.50 68.18 58.31 63.37
DenseNet121[16]  93.72 89.68 72.62 72.32 60.61 65.92
Mobilnetv2[33] 89.94 83.28 66.17 65.78 54.63 59.22
NasNet[43] 94.55 87.54 69.52 68.88 42.44 64.80
DARTS[24] 94.90 90.01 77.58 77.15 60.22 66.24
PC-DARTSI[39] 94.78 88.81 76.07 76.01 56.49 67.56
RobNet-free[11] 92.45 89.33 85.30 84.68 61.28 72.15
DSRNA[14] 91.58 91.27 84.94 84.03 40.50 74.41
AdvRush[27] 94.80 91.16 89.89 88.79 60.05 75.52
RNAS-H 94.58 93.07 91.46 89.80 63.64 77.26
RNAS-L 93.88 92.08 89.67 88.92 61.44 75.89

In addition, we observe that on all three datasets, the robustness improve-
ment of RNAS-L is not as high as that on CIFAR-10. The reason is that the
architecture search process is dataset-dependent, and RNAS-L is obtained un-
der a stricter network vulnerability constraint, which may overfit the original
dataset. After transferred to other dataset, the performance of the architecture
obtained on CIFAR-10 decreases a little. Despite this, RNAS-L still achieves a
comparative or even better performance compared with SOTA methods. The dif-
ferences in performance between RNAS-H and RNAS-L are due to the intensity
of the constraints on the vulnerability, which will be discussed in Section 5.4.

To verify the effectiveness of RNAS on other datasets, we also directly search
the architecture on Tiny-Imagenet. which evaluation results is presented in the
Table. 5. RNAS can still outperform other models.
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Table 4: Evaluation of different architectures on Tiny-ImageNet.
Model Clean(%) FGSM(%) PGD?**(%) PGD' (%) C&W(%) AA(%)

ResNet18[12] 38.36 18.80 14.92 14.85 25.61 12.20
DenseNet121[16]  46.26 22.88 19.11 19.05 22.13 17.78
Mobilnetv2[33] 39.48 17.64 15.33 15.22 16.66 14.80
NasNet[43] 44.52 23.69 20.60 20.48 19.87 19.57
DARTS[24] 45.94 24.36 21.74 21.68 20.67 20.09
PC-DARTS[39] 45.42 25.38 22.94 21.88 19.99 20.45
RobNet-free[11] 44.24 25.44 23.85 23.65 20.11 22.54
DSRNA][14] 44.42 28.52 24.32 24.09 14.56 21.55
AdvRush[27] 45.45 25.20 23.58 23.38 18.68 22.78
RNAS-H 45.92 28.30 26.84 26.49 24.27 24.22
RNAS-L 44.82 26.28 24.04 23.89 22.83 23.02

Table 5: Evaluation of the networks obtained on Tiny-ImageNet. Except for
ResNet18 and DenseNet121, the rest models are directly obtained by searching
on Tiny-ImageNet.

Model Clean(%) FGSM (%) PGD**(%) PGD' (%) C&W (%) AA(%)
ResNet18[12] 38.36 18.80 14.92 14.85 25.61  12.20
DenseNet121[16]  46.26 22.88 19.11 19.05 22.13  17.78
DARTS[24] 46.85 24.85 22.14 21.86 22.07  20.33
PC-DARTS[39]  46.22 26.40 21.63 21.49 23.74  21.32
RobNet-free[11]  45.43 28.61 24.85 24.46 21.21  21.52
DSRNA[14] 46.50 28.67 25.33 25.09 18.66  23.56
AdvRush[27] 45.98 27.31 25.85 25.40 15.70  23.81
RNAS-H 45.92 28.53 26.92 26.79 26.47  24.82
RNAS-L 47.62 29.24 27.34 27.02 20.85  25.74

5.4 Upper bound H of network vulnerability

Recall that H is the upper bound of the constraint on the network vulnerability,
which controls the constraint’s intensity. The larger the H value, the looser
the constraint, vice versa. H = 0 means no distortion in the latent features.
Intuitively, a smaller H ensures a more robust architecture in the search process.
However, experiments show that too small an H may lead to an overfit to the
original data, thus reduce the model’s generalization ability.

Network architecture search is a time-consuming process, and the adversar-
ial training introduced into RNAS further overload such computation costs. In
practice, we search the architecture on a small proxy dataset first, then trans-
fer this architecture to the target dataset. Thus, transferability is a valuable
property of the obtained models. In RNAS, the value of H directly influences



14 Y. Qian, S. Huang et al.

100
—@- CIFAR-10 —@— CIFAR-10
—i- CIFAR-100 70 —- CIFAR-100
90 SVHN SVHN

60
80 ‘\\\'\\\

50 "_“\.\‘\‘

Caln

10
1077 107 107> 107* 1073 1072 107! 10-7 107 107> 107* 1073 1072 107!
H H

(a) Clean accuracy (b) Robust accuracy by PGD?°

acc(%)

9
70 S
1Y)
©
60

50

N w
o o

Fig.5: The clean accuracy and robust accuracy of RNAS with different H value
on different datasets. The models are obtained on CIFAR-10 and adversarially
trained on CIFAR-10/100 and SVHN.

the model’s transferability. Fig. 5 shows how H influences the model. As H de-
creases (i.e., the constraint strengthens), the PGD robust accuracy on CIFAR-10
gradually increases, while on CIFAR-100 and SVHN, the PGD robust accuracy
falls rapidly after rising. This indicates that too small an H makes the model
overfit CIFAR-10 and reduces its generalization ability; too large an H is not
effective on constraining the network vulnerability. In conclusion, the advantage
of RNAS is that the transferability can be improved by adjusting the upper
bound of network vulnerability H for different datasets.

6 Conclusion

In this paper, we empirically verify that the distortion of non-robust features in
the latent feature space plays a vital role in misclassification caused by adver-
sarial examples. Experimental result shows on various datasets, RNAS outper-
forms other classic and SOTA models in robustness. Under both PGD adversarial
training, RNAS has a higher robustness than other methods. Even without ad-
versarial training, RNAS still shows some robustness. In addition, we find that
the transferability of RNAS can be improved by adjusting the upper bound of
network vulnerability H. In the future, we will focus on extending our work to
other tasks, such as semantic segmentation and object detection.
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