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Abstract. Decision-based attack poses a severe threat to real-world ap-
plications since it regards the target model as a black box and only ac-
cesses the hard prediction label. Great efforts have been made recently to
decrease the number of queries; however, existing decision-based attacks
still require thousands of queries in order to generate good quality adver-
sarial examples. In this work, we find that a benign sample, the current
and the next adversarial examples can naturally construct a triangle in a
subspace for any iterative attacks. Based on the law of sines, we propose a
novel Triangle Attack (TA) to optimize the perturbation by utilizing the
geometric information that the longer side is always opposite the larger
angle in any triangle. However, directly applying such information on the
input image is ineffective because it cannot thoroughly explore the neigh-
borhood of the input sample in the high dimensional space. To address
this issue, TA optimizes the perturbation in the low frequency space for
effective dimensionality reduction owing to the generality of such geo-
metric property. Extensive evaluations on ImageNet dataset show that
TA achieves a much higher attack success rate within 1,000 queries and
needs a much less number of queries to achieve the same attack success
rate under various perturbation budgets than existing decision-based at-
tacks. With such high efficiency, we further validate the applicability of
TA on real-world API, i.e., Tencent Cloud API.

1 Introduction

Despite the unprecedented progress of Deep Neural Networks (DNNs) [27, 24, 25],
the vulnerability to adversarial examples [47] poses serious threats to security-
sensitive applications, e.g., face recognition [42, 48, 20, 30, 56, 50, 15, 37, 63], au-
tonomous driving [7, 19, 4, 62, 40], etc. To securely deploy DNNs in various real-
world applications, it is necessary to conduct an in-depth analysis on the intrinsic
properties of adversarial examples, which has inspired numerous researches on
adversarial attacks [36, 6, 3,11, 8,17, 5, 52] and defenses [34, 23, 65, 57, 58, 53]. Ex-
isting attacks can be split into two categories: white-box attack has full knowledge
of the target model (often leveraging the gradient) [21,6, 34, 17] while black-box
attack can only access the model output, which is more applicable in real-world
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scenarios. The black-box attack can be implemented in different ways. Transfer-
based attack [32,17,60,55] adopts the adversaries generated on the substitute
model to fool the target model. Score-based attack [9, 26,2, 31] assumes that the
attacker can access the output logits while decision-based (a.k.a. hard label)
attack [5,11, 10,29, 35] only has access to the prediction (top-1) label.

Among the black-box attacks, decision-based attack is more challenging and
practical due to the minimum information requirement for attack. The number
of queries on target model often plays a significant role in decision-based attack,
since the access to a victim model is usually restricted in practice. Though recent
works manage to reduce the total number of queries from millions to thousands
of requests [5, 29, 38], it is still insufficient for most practical applications [35].

Existing decision-based attacks [5,
29, 38, 35| first generate a large adversar-
ial perturbation and then minimize the
perturbation while keeping adversarial
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Fig. 1: Illustration of the candidate tri-
angle at an arbitrary iteration of TA. At
the t-th iteration, TA constructs a trian-
gle with the learned angle a; which satis-
fies Bt +2a; > m in the sampled subspace
to find a new adversarial example xt‘ﬂdf{
and update a; accordingly. Note that
different from existing decision-based at-
tacks [5,38,35], TA does not restrict
229 on the decision boundary but min-

triangle, i.e., 5t+1 = 515)
Based on the above geometric prop-
erty, we propose a novel and query-

imizes the perturbation in the low fre-
quency space using the geometric prop-
erty; making TA itself query-efficient

efficient decision-based attack, called Triangle Attack (TA). Specifically, at t-th
iteration, we randomly select a directional line across the benign sample x to
determine a 2-D subspace, in which we iteratively construct the triangle based
on the current adversarial example 2¢%", benign sample x, learned angle a;, and
searched angle S; until the third vertex of the constructed triangle is adversarial.
Using the geometric information, we can conduct TA in the low frequency space
generated by Discrete Cosine Transform (DCT) [1] for effective dimensionality
reduction to improve the efficiency. And we further update «; to adapt to the
perturbation optimization for each constructed triangle. Different from most ex-
isting decision-based attacks, there is no need to restrict z¢%’ on the decision
boundary or estimate the gradient at each iteration, making TA query-efficient.
Our main contributions are summarized as follows:
— To our knowledge, it is the first work that directly optimizes the pertur-
bation in frequency space via geometric information without restricting the

adversary on decision boundary, leading to high query efficiency.
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— Extensive evaluations on ImageNet dataset show that TA exhibits a much
higher attack success rate within 1,000 queries and needs a much less number
of queries to achieve the same attack success rate with the same perturbation
budget on five models than existing SOTA attacks [11,12, 8,29, 38, 35].

— TA generates more adversarial examples with imperceptible perturbations
on Tencent Cloud API, showing its industrial-grade applicability.

2 Related Work

Since Szegedy et al. [47] identified adversarial examples, massive adversarial
attacks have been proposed to fool DNNs. White-box attacks, e.g., single-step
gradient-based attack [21], iterative gradient-based attack [36,28,34,14], and
optimization-based attack [47,6, 3], often utilize the gradient and exhibit good
attack performance. They have been widely adopted for evaluating the model
robustness of defenses [34, 65,41, 13, 16], but are hard to be applied in real-world
with limited information. To make adversarial attacks applicable in practice,
various black-box attacks, including transfer-based attack [17,60, 51, 52,59, 61],
score-based attack [9, 26,49, 2,18, 64, 66], and decision-based attack [5, 12,8, 38,
35], have gained increasing interest. Among them, decision-based attack is most
challenging since it can only access the prediction label. In this work, we aim
to boost the query efficiency of decision-based attack by utilizing the geometric
information and provide a brief overview of existing decision-based attacks.

BoundaryAttack [5] is the first decision-based attack that initializes a large
perturbation and performs random walks on the decision boundary while keep-
ing adversarial. Such a paradigm has been widely adopted in the subsequent
decision-based attacks. OPT [11] formulates the decision-based attack as a real-
valued optimization problem with zero-order optimization. And SignOPT [12]
further computes the sign of the directional derivative instead of the magni-
tude for fast convergence. HopSkipJumpAttack (HSJA) [8] boosts BoundaryAt-
tack by estimating the gradient direction via binary information at the decision
boundary. QEBA [29] enhances HSJA for better gradient estimation using the
perturbation sampled from various subspaces, including spatial, frequency, and
intrinsic components. To further improve the query efficiency, qFool [33] as-
sumes that the curvature of the boundary is small around adversarial examples
and adopts several perturbation vectors for efficient gradient estimation. BO [43]
uses Bayesian optimization for finding adversarial perturbations in low dimen-
sion subspace and maps it back to the original input space to obtain the final
perturbation. GeoDA [38] approximates the local decision boundary by a hyper-
plane and searches the closest point to the benign sample on the hyperplane as
the adversary. Surfree [35] iteratively constructs a circle on the decision bound-
ary and adopts binary search to find the intersection of the constructed circle
and decision boundary as the adversary without any gradient estimation.

Most existing decision-based attacks restrict the adversarial example at each
iteration on the decision boundary and usually adopt different gradient estima-
tion approaches for attack. In this work, we propose Triangle Attack to minimize
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the adversarial perturbation in the low frequency space directly by utilizing the
law of sines without gradient estimation or restricting the adversarial example
on the decision boundary for efficient decision-based attack.

3 Methodology

In this section, we first provide the preliminaries. Then we introduce our moti-
vation and the proposed Triangle Attack (TA).

3.1 Preliminaries

Given a classifier f with parameters § and a benign sample z € X with ground-
truth label y € V), where & denotes all the images and )Y is the output space.
The adversarial attack finds an adversary 2% € X to mislead the target model:

J@:0) # f@0) =y st [2" =, <

where € is the perturbation budget. Decision-based attacks usually first generate
a large adversarial perturbation § and then minimize the perturbation as follows:

min 8, st f(z+6:0) # f(2:0) = . (1)

Existing decision-based attacks [11, 12, 29] often estimate the gradient to min-
imize perturbation, which is time-consuming. Recently, some works adopt the
geometric property to estimate the gradient or directly optimize the perturba-
tion. Here we introduce two geometry-inspired decision-based attacks in details.

GeoDA [38] argues that the decision boundary at the vicinity of a data point
x can be locally approximated by a hyperplane passing through a boundary point
xp close to & with a normal vector w. Thus, Eq. (1) can be locally linearized:

min |[0]l, st. w'(z+6)—w' xp=0.

Here xp is a data point on the boundary, which can be found by binary search
with several queries, and GeoDA randomly samples several data points for esti-
mating w to optimize the perturbation at each iteration.

Surfree [35] assumes the boundary can be locally approximated by a hy-
perplane around a boundary point x + §. At each iteration, it represents the
adversary using polar coordinates and searches optimal 6 to update the pertur-
bation:

01 = 0z cosB(u cosf + vsinb),

where w is the unit vector from z to ¢4’ and v is the orthogonal vector of u.

3.2 Motivation

Different from most decision-based attacks with gradient estimation [11,12, 29,
38] or random walk on the decision boundary [5,35], we aim to optimize the
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perturbation using the geometric property without any queries for gradient es-
timation. After generating a large adversarial perturbation, the decision-based
attacks move the adversarial example close to the benign sample, i.e., decrease
the adversarial perturbation d;, while keeping the adversarial property at each
iteration. In this work, as shown in Fig. 1, we find that at the t-th iteration, the
benign sample z, current adversarial example x¢%” and next adversarial example

:z:?f{ can naturally construct a triangle in a subspace for any iterative attacks.

Thus, searching for the next adversarial example x?_‘ﬁ with smaller perturbation
is equivalent to searching for a triangle based on x and ¢4, in which the third
data point 2’ is adversarial and satisfies ||’ — x|, < ||z¢% — =||,. This inspires
us to utilize the relationship between the angle and side length in the triangle to
search an appropriate triangle to minimize the perturbation at each iteration.
As shown in Sec. 4.4, however, directly applying such a geometric property on
the input image leads to poor performance. Thanks to the generality of such
a geometric property, we optimize the perturbation in the low frequency space
generated by DCT [1] for effective dimensionality reduction, which exhibits great
attack efficiency as shown in Sec. 4.4.

Moreover, since Brendel et al. [5] proposed BoundaryAttack, most decision-
based attacks [11,12, 8, 38, 35] follow the setting in which the adversarial example
at each iteration should be on the decision boundary. We argue that such a
restriction is not necessary in decision-based attacks but introduces too many
queries on the target model to approach the boundary. Thus, we do not adopt

this constraint in this work and validate this argument in Sec. 4.4.

3.3 Triangle Attack

In this work, we have the following assumption that the adversarial examples
exist for any deep neural classifier f:

Assumption 1. Given a benign sample x and a perturbation budget €, there
exists an adversarial perturbation ||0||, < € towards the decision boundary which
can mislead the target classifier f.

This is a general assumption that we can find the adversarial example z%%

for the input sample z, which has been validated by numerous works [21, 6, 3, 5,
54]. If this assumption does not hold, the target model is ideally robust so that
we cannot find any adversarial example within the perturbation budget, which
is beyond our discussion. Thus, we follow the framework of existing decision-
based attacks by first randomly crafting a large adversarial perturbation and
then minimizing the perturbation. To align with previous works, we generate a
random perturbation close to the decision boundary with binary search [29, 38,
35] and mainly focus on the perturbation optimization.

In two arbitrary consecutive iterations of the perturbation optimization pro-
cess for any adversarial attacks, namely the ¢-th and (¢4 1)-th iterations without

loss of generalization, the input sample z, current adversarial example x¢% and

next adversarial example x?ﬁ'{ can naturally construct a triangle in a subspace

of the input space X. Thus, as shown in Fig. 1, decreasing the perturbation to
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generate x?f{ is equivalent to searching for an appropriate triangle in which the
adv adv

three vertices are x, z¢*” and z§{{, respectively.

Theorem 1 (The law of sines). Suppose a, b and ¢ are the side lengths of a
triangle, and a, B and ~y are the opposite angles, we have = Siﬁﬁ = £

sin sin~y *
From Theorem 1, we can obtain the relationship between the side length and
opposite angle for the triangle in Fig. 1:

o det1
= Sn(r— (it B)) (2)

sin ot

To greedily decrease the perturbation d;, the ¢t-th triangle should satisfy that
5”1 = W <1, d.e.,m™— (a; + B;) < ay. Thus, decreasing the pertur-
batlon at the t-th iteration can be achieved by finding a triangle constructed by
the input sample z, current adversarial example z¢%" and the angles 3; and oy,
which satisfy 8; +2a; > m and the third vertex should be adversarial. We denote
such a triangle as candidate triangle and T (x, z¢%, a4, Bt, St) as the third vertex,
where S; is a sampled subspace. Based on this observation, we propose a novel
decision-based attack, called Triangle Attack (TA), that searches the candidate
triangle at each iteration and adjusts angle a; accordingly.

Sampling the 2-D subspace S of
frequency space. The input image often
lies in a high-dimensional space, such as
224 x 224 x 3 for ImageNet [27], which is too
large for the attack to explore the neighbor-
hood for minimizing the adversarial per-
turbation efficiently. Previous works [22,
29, 35] have shown that utilizing the infor-
mation in various subspaces can improve
the efficiency of decision-based attacks. For
instance, QEBA [29] samples the random

Input Space

=il
-+mask l .-
adv

=il

adv 204 +mask

Frequency Space Input Space

Tyl Tyl

Fig. 2: Illustration of the entire proce-
dure of TA attack at the t-th itera-
tion. We construct the triangle in the
frequency space to efficiently craft ad-
versarial examples. Note that here we

noise for gradient estimation in the spa-
tial transformed space or low frequency
space but minimizes the perturbation in
the input space with estimated gradient.
Surfree [35] optimizes the perturbation in

adopt DCT for illustration but we do
not need it for x at each iteration. We
still adopt 2 and 2% in the frequency
space without ambiguity due to the
one-to-one mapping of DCT

the subspace of the input space determined by a unit vector randomly sampled
in the low frequency space. In general, the low frequency space contains the most
critical information for images. With the poor performance of TA in the input
space as shown in Sec. 4.4 and the generality of the geometric property shown
in Fig. 2, we directly optimize the perturbation in the frequency space at each
iteration for effective dimensionality reduction. And we randomly sample a d-
dimensional line across the benign sample in the low frequency space (top 10%).
The sampled line, directional line from benign sample x and current adversary
239 can determine a unique 2-D subspace S of the frequency space, in which
we can construct the candidate triangle to minimize the perturbation. The final
adversary can be converted into the input space by Inverse DCT (IDCT).
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Fig. 3: Illustration of a symmetric candi-
date triangle (z, 7% and :r?iﬁ,z). When the
angle 8 cannot result in adversarial exam-
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Fig. 4: The effect of magnitude on « for
the candidate triangle used in TA. For
the same sampled angle 3, the larger an-

ple (m?ﬁ,l), we would further construct the
symmetric triangle based on line (z,z%)

to check data point l"zl_('i_l{’g

gle a leads to smaller perturbation but is
also more likely to cross over the decision
boundary

Searching the candidate triangle. Given a subspace S;, the candidate
triangle only depends on angle 8 since « is updated during the optimization.
As shown in Fig. 3, if we search an angle § without leading to an adversarial
example (x‘t’ﬁ’l), we can further construct a symmetric triangle with the same
angle in the opposite direction to check data point :cffjg, which has the same
magnitude of perturbation as x?jﬁ”l but in different direction. We denote the
angle as —f( for the symmetric triangle without ambiguity. Note that with the
same angle «, a larger angle 5 would make the third vertex closer to the input
sample z, i.e., smaller perturbation. After determining the subspace S;, we first
check angle ;o = max(m — 2, 8), where 5 = w/16 is a pre-defined small angle.
If neither T (z, 3% oy, Br.0,S:) nor T(z, 239 ay, —B0,S:) is adversarial, we
give up this subspace because it brings no benefit. Otherwise, we adopt binary
search to find an optimal angle §* € [max(m — 2a, 8), min(m — «, 7/2)] which
is as large as possible to minimize the perturbation. Here we restrict the upper
bound of 3 because T (z, %9, o, 3, S;) would be at the opposite direction w.r.t.
x for 8 > m/2 and ™ — « guarantees a valid triangle.

Adjusting angle «. Intuitively, angle a balances the magnitude of pertur-

bation and the difficulty to find an adversarial example.
Proposition 1. With the same angle B8, a smaller angle a makes it easier to
find an adversarial example while a larger angle o leads to smaller perturbation.
Intuitively, as shown in Fig. 4, a smaller angle « results in larger perturbation
but is more likely to cross over the decision boundary, making it easier to search
an adversarial example, and vice versa. It is hard to consistently find an optimal
« for each iteration, letting alone various input images and target models. Thus,
we adaptively adjust angle o based on the crafted adversarial example:

o min(oy,; +v,7/2+ 1) if f(asﬁ‘fil; 0) #y
AT Y max(an; — Ay, /2 — 7) Otherwise

®3)

where x?ﬁlil = T(x,28% oy, B, St) is the adversarial example generated by

o4, 7y is the change rate, A is a constant, and 7 restricts the upper and lower
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Algorithm 1: Triangle Attack

Input: Target classifier f with parameters @; Benign sample & with ground-truth
label y; Maximum number of queries @Q; Maximum number of iteration N
for each sampled subspace; Dimension of the directional line d; Lower
bound § for angle .

Output: An adversarial example z

Initialize a large adversarial perturbation do;

23 =2 4+80,¢=0,t=0, ap = 7/2;

while ¢ < @ do

dv

1
2
3
4 Sampling 2-D subspace S: in the low frequency space;
5 Br,0 = max(m — 2, §);
6 if f(T (z,2¢%, a0, Bt0,St);0) = f(;60) then
7 g = q+ 1, update ay,o based on Eq. (3);
8 if f(T (2, 28", ar0, —Bro,St);0) = f(x;0) then
9 ¢ = q+ 1, update ay,o based on Eq. (3);
10 Go to line 3; > give up this subspace
11 Bt,() = min(7/2, 7 — a);
12 fori=0— N do > binary search for angle g
13 Brit1 = By, + Bri) /2
14 if f(T(xvx?dv, iy Btit1,St);0) = f(x;0) then
15 g = q + 1, update ay,; based on Eq. (3);
16 if f(T (2, 28", avi, —Brit1,St);0) = f(x;0) then
17 | Brivs = Britt, Brit1 = Bus;
18 | ¢=g+ 1, update ai,+1 based on Eq. (3);
19 L x?f{ = 'T(:v, .’E?dv, Qi1 5177;_;,_1, St), t=t+1;

20 return 2%

bounds of . We adopt A < 1 to prevent decreasing the angle too fast consid-
ering much more failures than successes during the perturbation optimization.
Note that a larger angle a makes it harder to find an adversarial example. How-
ever, a too small angle « results in a much lower bound for 8, which also makes
T (2, 29%, oy, By, S) far away from the current adversarial example x4, de-
creasing the probability to find an adversarial example. Thus, we add bounds
for « to restrict it in an appropriate range.

TA iteratively searches the candidate triangle in subspace S; sampled from
the low frequency space to find the adversarial example and update angle «
accordingly. The overall algorithm of TA is summarized in Algorithm 1.

4 Experiments

We conduct extensive evaluations on the standard ImageNet dataset using five
models and Tencent Cloud API to evaluate the effectiveness of TA. Code is
available at https://github.com/xiaosen-wang/TA.
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Table 1: Attack success rate (%) on five models under different RMSE thresholds. The
maximum number of queries is set to 1,000. We highlight the highest attack success
rate in bold

Model VGG-16 Inception-v3 ResNet-18 ResNet-101 DenseNet-121
RMSE 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
OPT 76.0 38.5 5.5 34.0 17.0 4.0 67.0 36.0 6.0 51.5 21.0 5.0 51.5 29.0 5.5
SignOPT 94.0 57.5 12.5 50.5 27.0 8.0 84.5 49.5 13.0 69.0 33.0 8.0 69.5 44.0 10.0
HSJA 92.5 58.5 13.0 32.5 14.0 4.0 83.0 51.0 12.5 71.5 37.5 12.0 70.5 43.5 10.5
QEBA 98.5 86.0 29.0 78.5 54.5 17.0 98.0 81.5 34.5 94.0 59.0 20.5 91.0 66.0 24.0
BO 96.0 72.5 17.0 75.5 43.0 10.0 94.5 74.0 16.0 89.5 63.0 16.5 93.0 64.5 16.5
GeoDA 99.0 94.0 35.0 89.0 61.5 23.5 99.5 90.0 30.5 98.0 81.5 22.0 100.0 84.5 27.5
Surfree 99.5 92.5 39.5 87.5 67.5 24.5 98.5 87.0 36.0 95.5 76.5 27.0 97.0 78.0 29.0

TA (Ours) 100.0 95.0 44.5 96.5 81.5 30.0 100.0 94.0 51.5 99.0 88.5 40.0 99.5 92.5 43.5

4.1 Experimental Setup

Dataset. To validate the effectiveness of the proposed TA, following the setting
of Surfree [39], we randomly sample 200 correctly classified images from the
ILSVRC 2012 validation set for evaluation on the corresponding models.

Models. We counsider five widely adopted models, i.e., VGG-16 [44], Inception-
v3 [45], ResNet-18 [24], ResNet-101 [24] and DenseNet-121 [25]. To validate the
applicability in the real world, we evaluate TA on Tencent Cloud API3.

Baselines. We take various decision-based attacks as our baselines, including
four gradient estimation based attacks, i.e., OPT [11], SignOPT [12], HSJA [8],
QEBA [29], one optimization based attack, i.e., BO [43], and two geometry-
inspired attacks, i.e., GeoDA [38], Surfree [35].

Evaluation metrics. Following the standard setting in QEBA [29], we adopt
the root mean squared error (RM SFE) between benign sample x and adversarial
example 2°% to measure the magnitude of perturbation:

c

ado 1 &y
d(x,xd): w'h'C;Z
i=1j=1k

($[i,j, k} 7xadv[i7jv k])Qv (4)

where w, h, ¢ are the width, height and number of channels of the input image,
respectively. We also adopt the attack success rate, the percentage of adversarial
examples which reach a certain distance threshold.

Hyper-parameters. For fair comparison, all the attacks adopt the same ad-
versarial perturbation initialization approach as in [35] and the hyper-parameters
for baselines are exactly the same as in the original papers. For our TA, we adopt
the maximum number of iterations in each subspace N = 2, the dimension of
directional line d = 3 and v = 0.01, A = 0.05 and 7 = 0.1 for updating angle «.

3 https://cloud.tencent.com/
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Fig.5: Number of queries to achieve the given attack success rate on ResNet-18 for
the attack baselines and the proposed TA under various perturbation budgets. The
maximum number of queries is 10,000

4.2 Evaluation on Standard Models

To evaluate the effectiveness of TA, we first compare the attack performance on
five popular models with different decision-based attacks and report the attack
success rate under various RM SFE thresholds, namely 0.1, 0.05 and 0.001.

We first evaluate the attack within 1,000 queries, which is widely adopted in
recent works [8, 38, 35]. The attack success rate is summarized in Table 1, which
means the attack would fail to generate adversarial example for the input image
if it takes 1,000 queries without reaching the given threshold. We can observe
that TA consistently achieves much higher attack success rate than existing
decision-based attacks under various perturbation budgets on five models with
different architectures. For instance, TA outperforms the runner-up attack with
a clear margin of 1.0%, 7.5% and 13.0% under the RMSFE threshold of 0.1,
0.05, 0.01 on ResNet-101, which is widely adopted for evaluating the decision-
based attacks. In particular, the proposed TA significantly outperforms the two
geometry-inspired attacks, i.e., GeoDA [38] and Surfree [35], which exhibit the
best attack performance among the baselines. This convincingly validates the
high effectiveness of the proposed TA. Besides, among the five models, Inception-
v3 [46], which is rarely investigated in decision-based attacks, exhibits better
robustness than other models under various perturbation budgets against both
baselines and TA. Thus, it is necessary to thoroughly evaluate the decision-based
attacks on various architectures instead of only ResNet models.

To further verify the high efficiency of TA, we investigate the number of
queries to achieve various attack success rates under the RMSFE threshold of
0.1, 0.05 and 0.01, respectively. The maximum number of queries is set to 10,000
and the results on ResNet-18 are summarized in Fig. 5. As shown in Fig. 5a
and 5b, TA needs much less number of queries to achieve various attack success
rates with RMSFE threshold of 0.1 and 0.05, showing the high query efficiency
of our method. For the smaller threshold of 0.01, as shown in Fig. 5¢, our TA
still needs less number of queries when achieving the attack success rate smaller
than 50% but fails to achieve the attack success rate higher than 60%. Note that
as shown in Fig. 6 and Table 1, RMSE threshold of 0.01 is very rigorous so
that the perturbation is imperceptible but is also hard to generate the adver-
sarial examples for decision-based attacks. Since we mainly focus on the query



Triangle Attack: A Query-efficient Decision-based Adversarial Attack 11

Table 2: The number of adversarial examples successfully generated by various attack
baselines and the proposed TA on Tencent Cloud API within 200/500/1,000 queries.
The results are evaluated on 20 randomly sampled images from the correctly classified
images in ImageNet due to the high cost of online APIs

RMSE OPT SignOPT HSJA QEBA GeoDA Surfree TA (Ours)
0.1  4/6/6 8/8/9 7/8/812/12/12 15/15/15 13/13/13 17/17/17
0.05 1/3/3 4/4/7 6/6/8 11/11/12 13/14/14 12/12/13 15/17/17
001 1/1/2 1/1/3 2/5/6 3/8/9 3/7/12 5/8/10 8/12/13

efficiency of attack only based on geometric information, the attack performance
under the RM SFE threshold of 0.01 is acceptable because it is impractical for
such high number of queries when attacking real-world applications.

Besides, since TA aims to improve the query efficiency by utilizing the trian-
gle geometry, the global optima might be worse than existing gradient estimation
based attacks when more queries are allowed. Other geometry-inspired methods
also perform poorer than QEBA [29] in this case without gradient estimation.
However, it is not the goal of TA and can be easily solved using gradient estima-
tion. With the high efficiency of TA, we can achieve higher attack performance
with lower number of queries by taking the TA as warm-up for the precise gra-
dient estimation attacks, such as QEBA [29], if the high number of queries is
acceptable. We integrate the gradient estimation used in QEBA [29] into TA
after 2,000 queries, dubbed TAG. For the perturbation budget of 0.01, TAG
achieves the attack success rate of 95% using 7,000 queries, which is better than
the best baseline with the attack success rate of 92% using 9,000 queries.

4.3 Evaluation on Real-world Applications

With the superior performance and unprecedented progress of DNNs, numerous
companies have deployed DNNSs for a variety of tasks and also provide commer-
cial APIs (Application Programming Interfaces) for different tasks. Developers
can pay for these services to integrate the APIs into their applications. However,
the vulnerability of DNNs to adversarial examples, especially the prosperity of
decision-based attack which does not need any information of target models,
poses severe threats to these real-world applications. With the high efficiency of
TA, we also validate its practical attack applicability using Tencent Cloud API.
Due to the high cost of commercial APIs, we randomly sample 20 images from
ImageNet validation set and the maximum number of queries is 1,000.

The numbers of successfully attacked images are summarized in Table 2. We
can observe that TA successfully generates more adversarial examples than the
attack baselines within 200, 500 and 1,000 queries under various RM SE thresh-
olds. In particular, TA can generate even more adversarial examples within 500
queries than the best attack baselines within 1,000 queries, showing the supe-
riority of TA. We also visualize some adversarial examples generated by TA in
Fig. 6. As we can see, TA can successfully generate high quality adversarial
examples for various classes with few queries (< 200), validating the high ap-
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Benign Adversarial Examples

#Q.=50 #Q.=100 #Q.=200

10101\
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RMSE=0.075 RMSE=0.011 RMSE=0.004 RMSE=0.002

Fig. 6: The adversarial examples crafted by TA against Tencent Cloud API. #Q. de-
notes the number of queries for attack and RMSE denotes the RMSE distance between
the benign sample and adversarial example. We report the correct label and the pre-
dicted label on the leftmost and rightmost columns, respectively (Zoom in for details.)

plicability of TA in real-world. Especially when the number of queries is 200,
the adversarial examples generated by TA are almost visually imperceptible for
humans, highlighting the vulnerability of current commercial applications.

4.4 Ablation Study

In this section, we conduct a series of ablation studies on ResNet-18, namely
the subspace chosen by TA, the ratio for low frequency subspace and the change
rate 7 and A for updating angle «. The parameter studies on the dimension of
sampled line d and the bound 7 for a are summarized in Appendix B.

On the subspace chosen by TA. Table3: Ablation study on ResNet-18
Different from existing decision-based at- for different spaces, i.e. input space
tacks, the generality of geometric property (TA1), frequency space for line sam-
used by TA makes it possible to directly Pling but input space for perturba-
optimize the perturbation in the frequency tO" optimization (TArr), and full fre-
space. To investigate the effectiveness of quency space without mask (TAr)
frequency space, we implement TA in vari- RMSE TA; TAp; TAp TA
ous spaces, .namt.ely inp}lt space (TA;p), sam- 01 395 975 98.5 100.0
pling the dlrecltlc.)n.al line in the freq.uen(-:y 0.05 17.5 73.0 85.0 94.0
space but optimizing the perturbation in 0.01 3.0 225 25.5 51.5
the input space (TApr) used by Surfree [35]
and full frequency space (TAr). As shown in Table 3, due to the high-dimensional
input space, TA1 cannot effectively explore the neighborhood of the input sample




Triangle Attack: A Query-efficient Decision-based Adversarial Attack 13

_100] e—e—0—o—0—o—o— o o .

S S 514

= il SR XA

> A SR S S —

£ 807 g

= —e— RMSE=0.1 = 49

z -4- RMSE=0.05 z

£ ol RMSE=0.05 £l

S —a— RMSE=0.01 =

a . N 474 ! =

A AN A I —o— ~ =10.005

5] i 5] 1

g l.\ 2 46 -A- =001

= B - = / —a— =005

~ g - - < 544 7=00
10 20 30 40 50 60 70 80 90 100 0.01 0.03 0.05 0.07 0.09 0.1
The ratio of low frequency (%) A

Fig.7: Attack success rate (%) of TA on Fig.8: Attack success rate (%) of TA on
ResNet-18 within 1,000 queries with vari- ResNet-18 within 1,000 queries with var-
ous ratios for the low frequency subspace ious v and A used for updating « under
under three RMSE thresholds RMSE =0.01

to find good perturbation and shows very poor performance. With the informa-
tion from frequency space to sample the subspace, TAp; exhibits much better
results than TA;. When optimizing the perturbation in the full frequency space,
TAF can achieve higher attack success rate than TApr, showing the benefit of fre-
quency space. When sampling the subspace using the low frequency information,
TA achieves much better performance than all the other attacks, supporting the
necessity and rationality of the subspace chosen by TA.

On the ratio for low frequency subspace. The low frequency domain
plays key role in improving the efficiency of TA. However, there is no criterion to
identify the low frequency since it corresponds to high frequency, which is usually
determined by the lower part of the frequency domain with a given ratio. Here
we investigate the effect of this ratio on the attack performance of TA. As shown
in Fig. 7, the ratio has more significant influence on the attack success rate under
the smaller RM SFE threshold. In general, increasing the ratio roughly decreases
the attack performance because it makes TA focus more on the high frequency
domain, containing less critical information of the image. Thus, we adopt the
lower 10% parts as the low frequency subspace for high efficiency, which also
helps TA effectively reduce the dimension, making it easier for attack.

On the change rate v and A for updating angle «. As stated in Sec. 3.3,
the angle o plays a key role in choosing a better candidate triangle but it is
hard to find a uniformly optimal « for different iterations and input images. We
assume that the larger angle a makes it harder to find a candidate triangle but
leads to smaller perturbation. As in Eq. (3), if we successfully find a triangle, we
would increase a with . Otherwise, we would decrease o with Ay. We investigate
the impact of various v and A in Fig. 8. Here we only report the results for
RMSE = 0.01 for clarity and the results for RMSE = 0.1/0.05 exhibit the
same trend. In general, v = 0.01 leads to better attack performance than v =
0.05/0.005. When we increase A with v = 0.01, the attack success rate increases
until A = 0.05 and then decreases. We also investigate the impact of 7 which
controls the bound for « in Eq. (3), which shows stable performance within 1,000
queries but takes effect for 10,000 queries and we simply adopt 7 = 0.1. In our
experiments, we adopt v = 0.01, A = 0.05 and 7 = 0.1.
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4.5 Further Discussion

BoundaryAttack [5] adopts random
walk on the decision boundary to min-
imize the perturbation for decision-
based attack and the subsequent works
often follow this setting to restrict the
adversarial example on the decision
boundary. We argue that such a restric-
tion is not necessary and do not adopt
it in our TA. To validate this argument,
we also conduct binary search to move
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Fig. 9: Attack success rate (%) of TA us-
ing various number of iterations for binary
search (Nps) to restrict the adversary on

the adversarial example towards the de- the decision boundary at each iteration

cision boundary at each iteration after we find the candidate triangle to inves-
tigate the benefit of this restriction. As illustrated in Fig. 9, when the number
of iterations for binary search (Nps) is 0, it is vanilla TA that exhibits the best
attack success rate. When we increase Nps, the binary search takes more queries
in each iteration which degrades the total number of iterations under the given
total number of queries. In general, the attack success rate stably decreases when
increasing Ny especially for RMSE = 0.01, which means the cost (i.e., queries)
for binary search to restrict the adversarial example on the decision boundary is
not worthy. Such restriction might not be reliable and rational either for most
decision-based attacks, especially for geometry-inspired attacks. We hope this
would inspire more attention to discuss the necessity of restricting the adversar-
ial examples on the decision boundary and shed new light on the design of more
powerful decision-based attacks.

5 Conclusion

In this work, we found that the benign sample, the current and next adversarial
examples can naturally construct a triangle in a subspace at each iteration for any
iterative attacks. Based on this observation, we proposed a novel decision-based
attack, called Triangle Attack (TA), which utilizes the geometric information
that the longer side is opposite the larger angle in any triangle. Specifically, at
each iteration, TA randomly samples a directional line across the benign sample
to determine a subspace, in which TA iteratively searches a candidate triangle to
minimize the adversarial perturbation. With the generality of geometric prop-
erty, TA directly optimizes the adversarial perturbation in the low frequency
space generated by DCT with much lower dimensions than the input space, and
significantly improves the query efficiency. Extensive experiments demonstrate
that TA achieves a much higher attack success rate within 1,000 queries and
needs much less queries to achieve the same attack success rate. The practical
applicability on Tencent Cloud API also validates the superiority of TA.
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