
Learning Energy-Based Models With
Adversarial Training — Supplementary

Materials

Xuwang Yin, Shiying Li, and Gustavo K. Rohde

University of Virginia
{xy4cm, sl8jx, gustavo}@virginia.edu

1 Proof of Proposition (1)

Proposition 1. The optimal solution of maxD minpT
U(D, pT) is U(D∗, p∗T) =

− log(4), where D∗ outputs 1
2 on Supp(pdata) and ≤ 1

2 outside Supp(pdata), and
p∗T is supported in the contour set {D = 1

2}.

Proof. Let
p∗T = argmin

pT

Ex∼pT
[log(1−D(x))], (1)

then
max
D

min
pT

U(D, pT) = max
D

U(D, p∗T). (2)

We solve maxD U(D, p∗T) by first deriving its upper bound. Let α = maxX D,
then Ex∼p∗

T
[log(1−D(x))] is minimized when p∗T is supported in {x : D(x) = α}

With this result, we can derive an upper bound of U(D, p∗T):

U(D, p∗T)

=

∫
X
pdata(x) logD(x)dx+

∫
X
p∗T (x) log(1−D(x))dx

=

∫
X
pdata(x) logD(x)dx+

∫
X
p∗T (x) log(1− α)dx

≤
∫
X
pdata(x) log(α)dx+

∫
X
p∗T (x) log(1− α)dx

= log(α) + log(1− α)

≤ − log(4), (3)

where the last inequality follows from the fact that the function f(α) = log(α)+
log(1−α) achieves its maximum value of − log(4) at α = 1

2 . It is not hard to see
that equality holds if and only if i) maxX D = 1

2 , ii) D = 1
2 on Supp(pdata), and

iii) Supp(p∗T) ⊆ {x : D(x) = 1
2}. In summary, maxD minpT

U(D, pT) achieves its
optimal value of − log(4) at (D∗, p∗T) where

D∗(x) =

{
1
2 x ∈ Supp(pdata)

≤ 1
2 x ∈ X \ Supp(pdata)

, (4)

and p∗T is supported in the contour set {D = 1
2}.

2 X. Yin et al.

2 Connection to GANs

In this section we provide a comparative analysis of the proposed AT generative
model and GANs [8]. The proposed approach learns data distribution by solving
the maximin problem

max
D

min
pT

U(D, pT) = Ex∼pdata
[logD(x)] + Ex∼pT

[log(1−D(x))], (5)

while GANs learn a generator function G by solving the minimax problem

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x)] + Ez∼pz

[log(1−D(G(z)))]. (6)

The generator G implicitly defines a distribution pg by mapping a prior distri-
bution pz from a low-dimensional latent space Z ⊆ Rz to the high-dimensional
data space X ⊆ Rd. Plugging pg into Eq. (6), we get:

min
pg

max
D

U(D, pg) = Ex∼pdata
[logD(x)] + Ex∼pg

[log(1−D(x))] (7)

Comparing Eq. (5) with Eq. (7) we find both problems making use of the stan-
dard log-likelihood objective for binary classification, but have a reversed or-
der of minimization and maximization. In fact, both formulations solve a two-
player zero-sum game, a mathematical representation of a situation in which one
player’s gain is balanced by another player’s loss. This game can be described by
the payoff function f : Rp+q → R, which represents the amount of payment that
one player (player 1) makes to the other player (player 2). The goal of player 1
is to choose a strategy u ∈ Rp such that the payoff is minimized, while the goal
of player 2 is to choose a strategy u ∈ Rq such that the payoff is maximized.
Depending on the order of maximization and minimization, the best strategies
for both players, and the optimal payoff, can be solved via minu maxv f(u, v) or
maxv minu f(u, v).

In Eq. (5), U(D, pT) is the payoff function, and the goal of player pT is to
choose a strategy p∗T such that the payoff is minimized, whereas the goal of
player D is to choose a strategy D∗ such that the payoff is maximized. This
maximin game is played by following such a rule: player D makes the first
move by choosing a D; player pT , after learning that player D has made the
move, will choose a pT to minimize its payment, which results in a payoff of
minpT

U(D, pT); player D, who is informed of player pT ’s strategy, will chooses
a D such that the worse case payoff minpT

U(D, pT) is maximized, which results
in an overall payoff of maxD minpT

U(D, pT). The best strategies of both players
and the maximum payoff can be derive from Proposition 1 : In the maximin
game maxD minpT

U(D, pT), the best strategy for player D is to choose a D∗

that outputs 1
2 on Supp(pdata) and ≤ 1

2 outside Supp(pdata), the best strategy
for player pT is to choose a p∗T which is supported in {x : D(x) = 1

2}, and the
maximum payoff is − log(4).

In Eq. (7), U(D, pg) is the payoff function. Similar to Eq. (5), the goal of
player pg is to minimize the payoff, and the goal of player D is to maximize

AT-EBMs Supplementary Materials 3

the payoff. In contrast to Eq. (5), player pg makes the first move. The solution
to this minimax game is analyzed in [8]: the best strategy of player pg is to
choose a p∗g which minimizes the Jensen-Shannon divergence (JSD) between
pg and pdata: p

∗
g = argminpg JSD(pg ∥ pdata) = pdata, and the best strategy

of player D is to choose D∗(x) = pdata(x)
pdata(x)+p∗

g(x)
= 1

2 . Under these strategies,

the payoff function U measures the JSD between pg and pdata: U(D∗, p∗g) =
− log(4) + 2 · JSD(p∗g ∥ pdata) = − log(4), which coincides with the U solution
in the maximin game. Note that in the minimax game, D∗ does not need to be
defined outside Supp(pg) ∪ Supp(pdata) [8].

The optimal solutions to these two formulations are summarized in Tab. A1.
The pseudo code for solving the minimax problem is outlined in Algorithm A1.

Fig. A1 shows the simulation results in two settings where p0 data is respectively
uniformly distributed (left panel) and concentrated in the lower left corner (right
panel). In can be seen that in both cases p∗T matches pdata when the algorithm
converges. The right panel shows that when p0 data is concentrated in the lower
left corner, the D solution has undefined outputs outside Supp(pdata).

We find these two formulations giving rise to different applications. The min-
imax formulation is ideal for learning a generator model that can produce a
distribution that matches pdata. The discriminator, because of its undefined be-
havior outside Supp(pdata), may not be very useful for some downstream tasks
such as out-of-distribution detection. In the maximin formulation, as we have
discussed in the main text, can be used for sample generation, image-to-image
translation, image restoration such as denoising and inpainting, and (worst-case)
out-of-distribution detection.

Table A1. Optimal solutions to the minimax problem and maximin problem

Minimax (GANs) Eq. (7) Maximin (ours) Eq. (5)

p∗T /p
∗
g p∗g = pdata p∗T is supported in {x : D(x) = 1

2
}

D∗ D∗(x) = 1
2
on Supp(pdata),

undefined outside Supp(pdata)
D∗(x) = 1

2
on Supp(pdata),

D∗(x) ≤ 1
2
outside Supp(pdata)

U(D∗, p∗g)/U(D∗, p∗T) − log(4) − log(4)

4 X. Yin et al.

Algorithm A1 Solving the minimax problem

1: Draw samples {xi}mi=1 from pdata, and samples {x∗
i }mi=1 from p0.

2: repeat
3: Update D by maximizing 1

m

∑m
i=1 logD(xi)+

1
m

∑m
i=1 log(1−D(x∗

i)) (until con-
verge).

4: For each x ∈ {x∗
i }mi=1, update its value by

x← x+ λ ∇D(x)
∥∇D(x)∥2

(single step).

5: until {x∗
i }mi=1 = {xi}mi=1

0.5 0.3 0.1 0.1 0.3 0.5
0.5

0.3

0.1

0.1

0.3

0.5

0.5079

0.5080

0.5081

0.5082

0.5083

0.5084

(1a)

0.5 0.3 0.1 0.1 0.3 0.5
0.5

0.3

0.1

0.1

0.3

0.5

0.0

0.2

0.4

0.6

0.8

(1b)
0.5 0.3 0.1 0.1 0.3 0.5

0.5

0.3

0.1

0.1

0.3

0.5

0.5079

0.5080

0.5081

0.5082

0.5083

0.5084

(2a)

0.5 0.3 0.1 0.1 0.3 0.5
0.5

0.3

0.1

0.1

0.3

0.5

0.2

0.4

0.6

0.8

1.0

(2b)

Fig.A1. Plots of contours and (normalized) gradient vector fields of the D functions
learned with different p0 data. Left and right panel respectively show the initial state
(1a and 2a) and final state (1b and 2b) of D when p0 data is respectively uniformly
distributed (red points in 1a) and concerntrated in the lower left corner (red points in
2a). pdata is a Gaussian distribution centered at (0, 0) (blue points).

3 Experimental Setups

Model Architecture. On CIFAR-10 we use the standard ResNet50 [10] archi-
tecture with ReLU activation for the D model. On CelebA-HQ 256, AFHQ-CAT
256, and LSUN-Church 256 we use a customized architecture (Tab. A2) adapted
from [3] .

Table A2. Network architecture for the D model used in CelebA-HQ 256, AFHQ-CAT
256, and LSUN-Church 256.

Layer Resample Output shape

Conv1× 1 - 256× 256× 64
ResBlock AvgPool 128× 128× 128
ResBlock AvgPool 64× 64× 256
ResBlock AvgPool 32× 32× 512
ResBlock AvgPool 16× 16× 512
ResBlock AvgPool 8× 8× 512
ResBlock AvgPool 4× 4× 512
LeakyReLU - 4× 4× 512
Conv4× 4 - 1× 1× 512
LeakyReLU - 1× 1× 512
Reshape - 512
Linear - 1

AT-EBMs Supplementary Materials 5

Datasets. We evaluate our method on CIFAR-10 [15] (50K training samples),
CelebA-HQ 256 [13] (30K training samples), AFHQ-CAT [3] dataset (5153 train-
ing samples), and LSUN-Church [21] (126227 training samples). AFHQ [3] is a
recently introduced benchmark dataset for image-to-image translation.

Evaluation Metrics. We use Inception Score (IS) [16] and FID score [12]
to evaluate the quality of generated samples. We follow [14] and compute the
FID score between 50k generated samples and all training samples (IS is also
calculated on the generated 50K samples). We use the original code from [16]
and [12] to calculate the scores. For OOD detection, we use area under the ROC
curve (AUROC) as the evaluation metric.

Training. We use Algorithm 2 to train the models. The training hyperparam-
eters for each task can be found in Tab. A3. We in addition perform perform
5-steps PGD attack, random resized cropping, random horizontal flipping on
pdata samples to mitigate overfitting. The performance (FID score) of the model
is monitored during training and the best-performing model to used to report
the final FID score.

The CIFAR-10 worst-case OOD detection model is trained using in- and out-
distribution adversarial training [1], where in-distribution AT uses a l2-ball of
radius 0.25 and PGD attacks of steps 10 and step-size 0.1, and out-distribution
AT uses a l2-ball of radius 0.5 and PGD attacks of steps 10 and step-size 0.1.
Following [1], we use a batch size of 128 and use the recommended AutoAugment
policy from [5]. The model is trained for 400 epochs using a SGD optimizer with
a fixed learning rate of 0.1.

Table A3. Training hyperparameters. We use β1 = 0.0, β2 = 0.99 for the Adam
optimizer.

CIFAR-10 CelebA-HQ 256 AFHQ-CAT 256 LSUN-Church

Batch size 32 40 40 32
Training iterations 172K 218K 225K 215K
Optimizer Adam Adam Adam Adam
Learning rate 5e-4 5e-5 5e-5 5e-5
K 0,...,25 0,...,40 0,...,25 0,...,35
Epochs per K 5 5 50 1
PGD attack step-size 0.1 2.0 2.0 2.0
R1 regularization 0.01 30 100 100

Sample Generation. The generated samples for FID and IS evaluation are
produced by performing PGD attacks on 50K samples randomly drawn from
the p0 dataset. The settings for the p0 dataset and the PGD attack can be found
in Table A4.

6 X. Yin et al.

Table A4. Sample generation setting

Task p0 dataset PGD step size PGD steps

CIFAR-10 80 million tiny images [18] 0.2 32
CelebA-HQ 256 ImageNet [6] 8.0 20
AFHQ-CAT 256 ImageNet [6] 8.0 14
LSUN-Church 256 ImageNet [6] 8.0 17

4 Extended Experiment Results

4.1 Training and Test Time Sampling Efficiency

Tab. A5 shows that our method has competitive training and test time sam-
pling efficiency to state-of-the-art EBMs. Although VAEBM typically requires
much fewer update steps than our method, its per-step efficiency is much worse
(Tab. A6), suggesting that its VAE component has considerable computational
complexity. We also observe that the quality of our generated samples is not
sensitive to the number of sampling steps as long as the overall perturbation
(#step × step-size) remains the same (Tab. A7). This allows us to use a much
larger step size than the one used during training to speedup test time sampling
in real applications.

Table A5. The number of update steps in the PGD attack (our method) and Langevin
dynamics (other methods). “PCD” refers to using a persistent sampling chain.

Ours VAEBM [20] CF-EBM [22] JEM [9]

CIFAR-10 (train) 25 6 (PCD) 50 20 (PCD)
CIFAR-10 (test) 32 16 50 100
CelebA-HQ 256 (train) 40 6 (PCD) 90 N/A
CelebA-HQ 256 (test) 20 24 90 N/A

Table A6. Number of steps and wall-clock time to generate 50 CIFAR-10 samples.
Data of NCSN and VAEBM are from [20].

Model Steps Wall-clock time GPU device

NCSN [17] 1000 107.9 seconds RTX Titan
VAEBM [20] 16 8.79 seconds RTX Titan
Ours 32 2.34 seconds RTX 2080 Ti

AT-EBMs Supplementary Materials 7

Table A7. FID scores of samples generated using different combinations of number of
steps and step-size.

Number of steps × step-size FID

CIFAR-10
64× 0.1 13.07
32× 0.2 13.21
16× 0.4 13.49

CelebA-HQ 256
40× 4.0 19.19
20× 8.0 18.97
10× 16.0 19.19

4.2 Extend Results on Worst-Case Out-Of-Distribution Detection

Tab. A8 shows that under a PGD adversary with l2 radius 7.0 our model exhibits
strong out-distribution robustness. (Note that according to [1], a perturbation
of 7.0 is already large enough to make undefended models (e.g., OE [11]) fail
completely at the OOD detection task). When we further increase the perturba-
tion limit to 100, the AUC scores decrease to near 0, suggesting that obfuscated
gradients did not occur.

Table A8. OOD detection results on 256× 256 datasets. Each entry shows the AUC
score on clean OOD samples (left value) and AUC score on adversarial OOD samples
(right value). Adversarial OOD samples are computed by maximizing the model output
in a l2-ball of radius 7.0 or 100.0 around OOD samples via Auto-PGD [4] with 100
steps and 5 random restarts. Results are computed using 1024 in-distribution samples
and 1024 out-distribution samples.

Threat model Out-distribution dataset
In-distribution dataset

CelebA-HQ 256 AFHQ-CAT 256 LSUN-Church 256

ϵ = 7.0

Uniform noise 1.0 / 1.0 1.0 / 1.0 0.9476 / 0.9331
SVHN 0.9967 / 0.9930 0.9944 / 0.9889 0.9668 / 0.9541
CIFAR-10 0.9978 / 0.9985 0.9930 / 0.9902 0.9081 / 0.8707
ImageNet validation set 0.9986 / 0.9988 0.9971 / 0.9945 0.9409 / 0.9218
AFHQ-CAT 256 0.9984 / 0.9971 N/A 0.9691 / 0.9595
CelebA-HQ 256 N/A 0.9900 / 0.9810 0.9794 / 0.9691
LSUN-Church56 0.9999 / 1.0000 0.9900 / 0.9810 N/A

ϵ = 100

Uniform noise 1.0000 / 0.0930 1.0 / 0.0041 0.9476 / 0.0422
SVHN 0.9955 / 0.0487 0.9944 / 0.0039 0.9668 / 0.0656
CIFAR-10 0.9978 / 0.0732 0.9930 / 0.0042 0.9081 / 0.0300
ImageNet validation set 0.9967 / 0.0406 0.9971 / 0.0131 0.9409 / 0.1342
AFHQ-CAT 256 0.9984 / 0.0843 N/A 0.9691 / 0.0536
CelebA-HQ 256 N/A 0.9900 / 0.0023 0.9794 / 0.0957
LSUN-Church56 0.9999 / 0.0951 0.9997 / 0.0080 N/A

8 X. Yin et al.

4.3 Extended Results on Generation

Additional results are summarized below:

– Uncurated generation samples. Fig. A2, Fig. A4, Fig. A6, and Fig. A7
show the uncurated generated samples on CIFAR-10, CelebA-HQ 256, AFHQ-
CAT 256, and LSUN-Church 256. Note that we have used the same seed im-
ages (Fig. A18) to generated these results. We find that some generated im-
ages contain artifacts. By first applying Gaussian smoothing (σ = 10) to the
source images (p0 data), we are able to obtain more visually pleasing results
(Fig. A5). The generated samples contain less artifacts, but have a slightly
worse FID. The smoothing filters out high frequency components, and seems
to be playing a similar role as reduced-temperature sampling [19,20] and the
“truncation trick” [2], where better-looking results (typically with reduced
diversity) can be generated from latent noise sampled from the high density
area of the latent space.

– Nearest Neighbor Analysis. Fig. A3, Fig. A8 and Fig. A9 show the
pixel space and inception feature space nearest neighbors of the generated
samples on CIFAR-10, CelebA-HQ 256, and AFHQ-CAT 256. Note that
none of the nearest neighbors resemble the generated samples, suggesting
that the models have not memorized the training data.

– Interpolation. Fig. A10 and Fig. A11 show the interpolation results on
CelebA-HQ 256 and AFHQ-CAT 256. The interpolation works reasonable
well even on AFHQ-CAT where only about 5000 training images are avail-
able.

– Intermediate Generation Results. Fig. A12 and Fig. A13 show the in-
termediate generation results. It can be seen that the model is capable of
transforming natural images into valid images of the target data distribution.
In addition, when the number of PGD attack steps is too large, the gener-
ated samples become saturated, which suggests that the model, like many
EBMs trained with short-run MCMC, do not have a valid steady-state that
reflects the distribution of target data.

– Compositional Visual Generation. Fig. A14 shows that our model can
be composed like regular EBMs [7].

– Denosing and Inpainting. Fig. A15 and Fig. A16 show uncurated denois-
ing and inpainting results on CelebA-HQ 256 and AFHQ-CAT 256.

– Image Translation. Fig. A17 shows uncurated image translation results
on CelebA-HQ 256 and AFHQ-CAT 256.

AT-EBMs Supplementary Materials 9

Source images Generated images

Fig.A2. Uncurated CIFAR-10 generated samples.

Generated samples (left panel) and
pixel space nearest neighbors (right

panel).

Generated samples (left panel) and
Inception feature space nearest

neighbors (right panel).

Fig.A3. Nearest neighbors of generated samples on CIFAR-10.

10 X. Yin et al.

Fig.A4. Uncurated generated samples on CelebAHQ-256. Source images are in
Fig. A18.

AT-EBMs Supplementary Materials 11

Fig.A5. Uncurated generated samples on CelebAHQ-256. The source images used to
generate these samples are obtained by applying Gaussian blur (σ = 10) to the images
in Fig. A18.

12 X. Yin et al.

Fig.A6. Uncurated generated samples on AFHQ-CAT 256. Source images are in
Fig. A18.

AT-EBMs Supplementary Materials 13

Fig.A7. Uncurated generated samples on LSUN-Church 256. Source images are in
Fig. A18.

14 X. Yin et al.

Generated samples (left panel) and
pixel space nearest neighbors (right

panel

Generated samples (left panel) and
Inception feature space nearest

neighbors (right panel).

Fig.A8. Nearest neighbors of generated samples on CelebA-HQ 256.

AT-EBMs Supplementary Materials 15

Generated samples (left panel) and
pixel space nearest neighbors (right

panel

Generated samples (left panel) and
Inception feature space nearest

neighbors (right panel).

Fig.A9. Nearest neighbors of generated samples on AFHQ-CAT 256.

16 X. Yin et al.

Fig.A10. Interpolation results on CelebA-HQ 256. Intermediate images are generated
by performing PGD attacks on linear interpolations between the source images used
to generate the leftmost and rightmost samples.

AT-EBMs Supplementary Materials 17

Fig.A11. Interpolation results on AFHQ-CAT 256. Intermediate images are generated
by performing PGD attacks on linear interpolations between the source images used
to generate the leftmost and rightmost samples.

18 X. Yin et al.

Fig.A12. CelebA-HQ 256 intermediate generation results. The PGD attack steps for
column 1-9 are [0, 4, 8, 12, 16, 20, 30, 40, 50] (steps 20 has the best FID score).

AT-EBMs Supplementary Materials 19

Fig.A13. AFHQ-CAT 256 intermediate generation results. The PGD attack steps for
column 1-9 are [0, 2, 5, 8, 11, 14, 30, 50, 100] (steps 14 has the best FID score).

20 X. Yin et al.

Fig.A14. Concept conjunction [7] using the CelebA-HQ model and AFHQ-CAT
model. The generated samples have both human face features and cat face features.

AT-EBMs Supplementary Materials 21

Original images (1st row), images with additive Gaussian noise of standard deviation
of 0.1 (2nd row), and recovered images (last row).

Original image (1st row), occluded images (2nd row), and recovered images (last row).

Fig.A15. Uncurated denoising and inpainting results on CelebA-HQ 256.

Original images (1st row), images with additive Gaussian noise of standard deviation
of 0.1 (2nd row), and recovered images (last row).

Original image (1st row), occluded images (2nd row), and recovered images (last row).

Fig.A16. Uncurated denoising and inpainting results on AFHQ-CAT 256.

22 X. Yin et al.

Uncurated image translation results on
CelebA-HQ 256.

Uncurated image translation results on
AFHQ-CAT 256.

Fig.A17. Uncurated image translation samples.

AT-EBMs Supplementary Materials 23

Fig.A18. Seed images used to generate samples in Fig. A4, Fig. A5, Fig. A6, and
Fig. A7.

24 X. Yin et al.

References

1. Augustin, M., Meinke, A., Hein, M.: Adversarial robustness on in-and out-
distribution improves explainability. In: European Conference on Computer Vision.
pp. 228–245. Springer (2020) 5, 7

2. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity
natural image synthesis. In: International Conference on Learning Representations
(2019), https://openreview.net/forum?id=B1xsqj09Fm 8

3. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: Diverse image synthesis for mul-
tiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 8188–8197 (2020) 4, 5

4. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In: ICML (2020) 7

5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning
augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 113–123 (2019) 5

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009) 6

7. Du, Y., Li, S., Mordatch, I.: Compositional visual generation with energy based
models. Advances in Neural Information Processing Systems 33, 6637–6647 (2020)
8, 20

8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014) 2, 3

9. Grathwohl, W., Wang, K.C., Jacobsen, J.H., Duvenaud, D., Norouzi, M., Swersky,
K.: Your classifier is secretly an energy based model and you should treat it like
one. In: International Conference on Learning Representations (2020), https://
openreview.net/forum?id=Hkxzx0NtDB 6

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016) 4

11. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606 (2018) 7

12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Advances
in neural information processing systems. pp. 6626–6637 (2017) 5

13. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017) 5

14. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training gen-
erative adversarial networks with limited data. In: Advances in Neural Information
Processing Systems. vol. 33, pp. 12104–12114 (2020), https://proceedings.

neurips.cc/paper/2020/file/8d30aa96e72440759f74bd2306c1fa3d-Paper.pdf

5

15. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009) 5

16. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. Advances in neural information processing
systems 29, 2234–2242 (2016) 5

https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=Hkxzx0NtDB
https://openreview.net/forum?id=Hkxzx0NtDB
https://proceedings.neurips.cc/paper/2020/file/8d30aa96e72440759f74bd2306c1fa3d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8d30aa96e72440759f74bd2306c1fa3d-Paper.pdf

AT-EBMs Supplementary Materials 25

17. Song, Y., Ermon, S.: Generative modeling by estimating gradients of
the data distribution. In: Advances in Neural Information Processing Sys-
tems. vol. 32 (2019), https://proceedings.neurips.cc/paper/2019/file/

3001ef257407d5a371a96dcd947c7d93-Paper.pdf 6
18. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data

set for nonparametric object and scene recognition. IEEE transactions on pattern
analysis and machine intelligence 30(11), 1958–1970 (2008) 6

19. Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational au-
toencoder. In: Advances in Neural Information Processing Systems.
vol. 33 (2020), https://proceedings.neurips.cc/paper/2020/file/

e3b21256183cf7c2c7a66be163579d37-Paper.pdf 8
20. Xiao, Z., Kreis, K., Kautz, J., Vahdat, A.: Vaebm: A symbiosis between variational

autoencoders and energy-based models. In: International Conference on Learning
Representations (2021), https://openreview.net/forum?id=5m3SEczOV8L 6, 8

21. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: Construction
of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365 (2015) 5

22. Zhao, Y., Xie, J., Li, P.: Learning energy-based generative models via coarse-to-fine
expanding and sampling. In: International Conference on Learning Representations
(2021), https://openreview.net/forum?id=aD1_5zowqV 6

https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e3b21256183cf7c2c7a66be163579d37-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e3b21256183cf7c2c7a66be163579d37-Paper.pdf
https://openreview.net/forum?id=5m3SEczOV8L
https://openreview.net/forum?id=aD1_5zowqV

	Learning Energy-Based Models With Adversarial Training — Supplementary Materials

