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Abstract. Graph neural networks (GNNs) have achieved outstanding
performance in semi-supervised learning tasks with partially labeled graph
structured data. However, labeling graph data for training is a chal-
lenging task, and inaccurate labels may mislead the training process to
erroneous GNN models for node classification. In this paper, we con-
sider label poisoning attacks on training data, where the labels of input
data are modified by an adversary before training, to understand to
what extent the state-of-the-art GNN models are resistant/vulnerable to
such attacks. Specifically, we propose a label poisoning attack framework
for graph convolutional networks (GCNs), inspired by the equivalence
between label propagation and decoupled GCNs that separate message
passing from neural networks. Instead of attacking the entire GCN mod-
els, we propose to attack solely label propagation for message passing. It
turns out that a gradient-based attack on label propagation is effective
and efficient towards the misleading of GCN training. More remarkably,
such label attack can be topology-agnostic in the sense that the labels
to be attacked can be efficiently chosen without knowing graph struc-
tures. Extensive experimental results demonstrate the effectiveness of
the proposed method against state-of-the-art GCN-like models.

Keywords: Label Poisoning Attack, Graph Neural Networks, Label
Propagation, Graph Convolutional Network

1 Introduction

The past years have witnessed the increasing interest in studying computer vision
(CV) and machine learning tasks using graph representation learning, especially
graph neural networks (GNNs). Differently from the canonical convolutional
neural network (CNN) models, GNNs explore graph data structures for various
CV applications, e.g., semantic object parsing [12], skeleton-based action recog-
nition [32], visual tracking [6], video parsing [28], point cloud classification [29],
to name just a few. In particular, scene graphs can be constructed from pars-
ing images/videos to form the semantic relationships between pairs of objects,
for which GNNs play a role in image classification/recognition/segmentation. In
terms of node classification, GCN models have been also used in medical image
analysis for disease prediction to classify the health status of the patient or the
type of case [19, 31].
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Besides the emerging CV applications, GNN models have been demonstrated
a powerful tool in a variety of semi-supervised learning tasks, such as node classi-
fication [10, 26, 7], graph classification [34], and link prediction [36], in many ap-
plication scenarios in our social life, such as social networks [5], knowledge graphs
[27] and recommendation systems [13, 33]. For example, given graph structured
data with node features and partial labels, node classification is to predict the la-
bels of those unlabeled data according to the inter-node relationship modeled as
a graph. The state-of-the-art GNN models leverage both feature transformation
that maps input features to graph embeddings via neural networks and neigh-
borhood aggregation via a message passing mechanism to predict the labels.

However, in practical applications, labeling graph data is a challenging task;
limited or inaccurate labels could lead to erroneous trained models via message
passing. It is crucial to understand as to how GNN models are resistant or vul-
nerable to limited or inaccurate labels and to what extent we could rely on the
labeled data in graph representation learning. To this end, we consider label poi-
soning attack in the training phase to reveal the potential vulnerability of GNN
training, where an adversary attempts to decrease the node classification accu-
racy of unlabeled data by modifying the labels of the known ones before training.
It is worth noting that adversarial label poisoning attack is different from the
intensively studied adversarial attack (e.g. [25, 8]) in the inference phase.

Compared with the inference time attack, less attention has been paid to the
poisoning attack on GNN models. Of the most relevance is the recent work, called
Label-flipping attacK model against GNNs (LafAK), which generates gradient-
based attacks based on an approximated closed form of the entire GNN model
and continuous surrogates of attack objectives. Although promising from a con-
ceptual point of view, LafAK is restricted to binary classification and relies
highly on the overall loss function of the entire GNN models, which involves
model parameters of neural networks that are unknown before training although
an approximate closed-form solution to a linearized model is replaced.

In this paper, we aim to address the above issues by proposing a novel ad-
versarial label poisoning attack for GNN models via label propagation, which
captures the essence of massage passing whilst leaving aside the unknown model
parameters of neural networks for feature transformation. Instead of attack-
ing the entire GNN models with intertwined neural feature transformation and
neighborhood aggregation, we solely attack the neighborhood aggregation of
message passing that can be captured by a label propagation process. The ra-
tionale behind this idea is underpinned by recent advances on the equivalence
between decoupled graph convolution network (DGCN) and label propagation
[4]: training DGCN with separated feature transformation and neighborhood ag-
gregation (e.g., APPNP [11] and SGCN [30]), is equivalent to label propagation
to generate pseudo-labels for unlabeled data followed by training neural network
with pseudo-labeled data with dynamic weights. It turns out attacking the loss
function of the label propagation process alone to locate the label poisoning is
effective and efficient in poisoning the entire GNN models.

Specifically, the contributions of our work can be summarized as follows:
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• We propose a label poisoning attack framework for GCN-like models with
three components: label propagation to generate predictive label, maximum
gradient attack method to reduce the accuracy of an equivalent label prop-
agation model, and GNN training with poisoned labels. Remarkably, our
proposed label poisoning attack works for multi-class node classification and
does not require to access the model parameters of neural networks in GCNs.

• We propose a maximum gradient attack method to poison known labels
that maximizes the loss function of equivalent label propagation models.
Among different label propagation models, we found that the knowledge of
the graph structure is not necessary, but the node features are sufficient to
yield an effective attack.

• We conduct an extensive set of experiments with different choices of label
propagation models to test the attack performance against various GCN-like
models (e.g., GCN [10], GAT [26], GraphSAGE [7], APPNP [11], SGCN [30],
PT [4]) for multi-class node classification and demonstrate the effectiveness
and efficiency of our proposed method.

2 Preliminaries and Related Work

2.1 Graph Convolution Network and Its Decoupled Variants

Graph Convolution Network (GCN). Roughly speaking, GCN is a fea-
ture extractor for graph structured data modeled by a graph topology G with
n nodes specified by its adjacency matrix A ∈ {0, 1}n×n and the input features
X ∈ Rn×f with each row being node attribute of one node and f being the
number of features. It produces node embeddings from input features through a
message passing mechanism over G with all node equipped with neural networks
for feature transformation. The message passing performs iterative message ag-
gregation/propagation from/to neighboring nodes as if stacking a number of lay-
ers. In each iteration/layer, each node employs a multilayer perceptron (MLP)
to transform node features into a new embedding and propagates it to its neigh-
bors, followed by feature aggregation from neighboring nodes to update node
features for the next iteration/layer [10]. A typical GCN layer for node feature
transformation can be written as

H(k+1) = σ(ÂH(k)W (k)) (1)

where Â is the normalized adjacency matrix, H(k) is the updated node fea-
ture representations after neighborhood message aggregation at k-th layer with
H(0) = X being the input feature matrix, σ(·) denotes a nonlinear activation
function, such as ReLU, and W (k) is the trainable weight matrix of the MLP
at the k-th layer. In the original GCN model [10], Â = D̃−

1
2 ÃD̃−

1
2 is adopted,

where Ã = A + I with I being the identity matrix, and D̃ = diag(d1, ..., dn) is
the degree matrix with di =

∑
j Aij being the degree of the node i.

The above vanilla GCN models (e.g., [10, 7]) combine intertwined feature
transformation and neighborhood aggregation for node representation learning.
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The extracted node feature representations can be used in many graph learning
tasks such as node classification [11, 7], graph classification [20], link prediction
[36] and graph embedding [22, 1].
Decoupled Graph Convolutional Network (DGCN). Differently from the
vanilla GCN models with coupled feature transformation and neighborhood ag-
gregation, some recent studies have found that such coupled designs are unneces-
sary and have proposed to separate these two operations. These decoupled GCN
(DGCN) models (e.g., [4]) can be summarized as

Ŷ = softmax(Āfθ(X)) (2)

where fθ(·) is usually a neural network with parameters θ to transform input
features X to certain representations, and Ā is a propagation matrix determined
by the propagation strategies that will be specified later.

In what follows, we briefly describe two existing DGCN models: Approximate
Personalized Propagation of Neural Predictions (APPNP) [11] and Simplifying
Graph Convolutional Network (SGCN) [30].

APPNP [11] separates the neural network from the propagation scheme. It
uses Personalized PageRank [18] as the propagation strategy in order to leverage
a larger neighborhood information than GCN, and can be combined with any
state-of-the-art neural network. Thus, the propagation matrix Ā in (2) can be
specified by

Ā = (1− α)KÂK + α

K−1∑
k=0

(1− α)kÂk (3)

where α ∈ (0, 1] is the teleport probability and K is the number of layers.
SGCN [30] aims to transform the nonlinear GCN into a simple linear model.

By successively removing the nonlinear transition functions and collapsing weight
matrices between GCN layers, the additional complexity of GCNs can be re-
duced. The resulting simplified linear model can be replaced by (2) with

Ā = ÂK and fθ(X) = XΘ (4)

where K is the number of SGCN layers, and Θ is a reparameterized weight
matrix with non-linearity removed.

2.2 Label Propagation and Its Role in GCN

Label propagation (LP) algorithm [38] is a commonly used semi-supervised
learning method in machine learning, propagating known labels from labeled
nodes to unlabeled ones. An implicit assumption of LP is that similar data
should have the same label. For each node in the network, at the initial stage,
the label propagation algorithm initializes a unique label for each node. Each
iteration will change its own label according to the label of the node connected
to it. The way of change is to select the community label with the most labels
among the nodes connected to it as its own community label. As community
labels spread, eventually, tightly connected nodes will have common labels.
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Propagation then Training (PT) [4] is a variant of label propagation al-
gorithm, including two steps: (1) Label propagation, where the known labels
are propagated along the edges of graph to generate pseudo-labels for unlabeled
nodes; (2) Neural network training, where feature transformation is done by
training a neural network classifier on the data with known and pseudo-labels.
The loss function of PT can be written as

L(θ) = `(fθ(X), ĀY ) (5)

where `(·) is the loss function between fθ(X) and the soft labels Ysoft = ĀY .
Equivalence of Decoupled GCN and PT. Hande et al. (2021) [4] discusses
decoupled GCN of semi-supervised node classification from a new perspective.
It is proved that the decoupled GCN is essentially the same as two-step label
propagation via in-depth theoretical analysis, and the effectiveness of decoupled
GCN is also revealed.

2.3 Adversarial Poisoning Attacks on Graphs

Adversarial attack lies in the intersection of machine learning and cyber-security.
It has been evidenced that deep learning models often suffer from adversarial
attacks with degraded accuracy performance. Roughly speaking, adversarial at-
tacks can be categorized into evasion and poisoning attacks according to the stage
when attacks occur. While evasion attacks happen in the testing phase with well-
trained models, adversarial poisoning attacks occur in the training phase, where
the training data samples are modified by adversaries to mislead the training
process to an erroneous model. Among different data poisoning attacks, label
poisoning attack (e.g, [16, 21, 2, 3]) is crucial in semi-supervised learning, where
the changes of labels may mislead the labeling of unlabeled data. For adversar-
ial label poisoning attack, the adversary is only allowed to change the labels of
a small number of training nodes. It can significantly reduce the performance
of node classification than random label noise, because of the potential use of
gradient information.

In the literature of graph semi-supervised learning, less attention has been
paid to label poisoning attacks. Of particular relevance are the label-flipping
attacks for the label propagation [14] and for the vanilla GCN model [35].
Poisoning Attack on Label Propagation. A unified framework has been
proposed in [14] for graph semi-supervised learning with two algorithms to solve
poisoning regression and classification tasks. The optimization objective is to
maximize the error rate for classification with a combinatorial nature.
Label-flipping Attack on GCNs. LafAK [35] aims to flip the unnoticeable
parts of the training labels to minimize the performance of GCN. Therefore,
following the purpose of LafAK, the optimization problem can be written as

min
δ

− L0−1(θ∗;A,X, yu),

s.t. θ∗ = arg min
θ

L(θ;A,X, δ � yl), ‖δ − 1nl
‖0 ≤ εnl,

(6)
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where yl ∈ {−1,+1}nl and yu ∈ {−1,+1}nu are the labels of known and un-
known nodes, respectively, nl and nu are the numbers of labeled and unlabeled
nodes, δ ∈ {+1,−1}nl is the label perturbation, 1nl

is an all-one vector, � means
Hadamard product, and ε is the ratio of label flipping.

3 Label Poisoning Attack Model

In this paper, we consider label poisoning attack on GCN-like models. Different
from LafAK in [35] with label-flipping determined by gradient attack on the
entire GCN model, we propose a novel label poisoning framework that delegates
gradient attack solely to label propagation. This is inspired by recent advances
on the equivalence of decoupled GCN and label propagation [4], for which label
propagation followed by feature transformation performs as well as GCN models
with coupled neighborhood aggregation and feature transformation.

Figure 1 presents our proposed framework on label poisoning attack. It
consists of three components: (1) label propagation from labeled to unlabeled
nodes to generate predictive pseudo-labels ŷu; (2) maximum gradient attack
with changed labels to poison training data; and (3) GCN training with label
poisoned data for node classification. In what follows, we explain the role of each
component in detail.

Fig. 1. The framework of our proposed label poisoning attack, which consists of label
propagation to generate predictive labels, maximum gradient attack to poison data la-
bels, and GNN training with poisoned labels. Specifically, in maximum gradient attack,
the maximum gradients of the objective function are identified and the corresponding
labels are poisoned, and it repeats several times (N = 2 is a good choice in practice).
The label poisoned data are used for GNN training, misleading the trained model to
reduce accuracy on unlabeled node classification.
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3.1 Label Propagation

The goal of label propagation is to generate label prediction for unlabeled data,
so as to be used in the maximum gradient attack.

We consider an undirected graph G = (V, E), where V represents the set
of n nodes, E is the edge set, and the adjacency matrix is represented by A ∈
{0, 1}n×n. All nodes in the graph are associated with some node features, denoted
by X = [x1;x2; . . . ;xn] ∈ Rn×f with xi ∈ Rf , and y = [yl; yu] is the label set,
including the known labels yl ∈ Rnl and the unknown labels yu ∈ Rnu . The goal
of node classification is to figure out yu with the knowledge of X, yl, and A.

Let S be a similarity matrix with Sij = exp(−γ‖xi − xj‖2) resulted from a
Gaussian kernel, and D be the degree matrix. Then, the graph Laplacian can
be defined as L = D− S. Given nl labeled data and nu unlabeled data (usually
nl < nu) with n = nl+nu nodes, S and D are both (nl+nu)×(nl+nu) matrices.

We split S and D into 4 sub-matrices S =

[
Sll Slu
Sul Suu

]
, D =

[
Dll Dlu

Dul Duu

]
. The

predicted labels via label propagation [38, 14] can be written as

ŷu = (Duu − Suu)−1Sulyl. (7)

The label propagation takes the input features X and some known labels yl
to generate predictive labels ŷu, which are used to replace yu in the optimization
problem of maximum gradient attack.

3.2 Maximum Gradient Attack

The aim of label poisoning attacks is to maximize the classification error rate by
modifying a small fraction of known labels of data points at the training stage,
that is, the optimization problem can be given by

min
y′l

−1

2

∥∥Āy′l − (yu or ŷu)
∥∥2
2

+ λ‖y′l − yl‖0, (8)

where Ā is the label propagation method which will be specified later, y′l rep-
resents the poisoned labels, the labels of unknown data is yu (ground truth) or
ŷu (predicted labels), ‖ · ‖0 is the `0-norm of a vector to ensure the number of
poisoned labels is as small as possible, and λ is to balance between the loss of
label propagation and the number of poisoned labels.

In this section, we study the multi-class classification on graph convolution
networks. The difference with the binary class labels is that the perturbed label
y′l is changed to the class of another label directly instead of multiplying by a
perturbation, because the input is multi-class data, such as y ∈ {0, 1, 2, 3, 4, 5}n.
The label propagation method Ā can reuse those in GNN models specified in
Section 2.1. In what follows, we consider three approaches:

a. SM: Ā = (Duu − Suu)−1Sul as in [38, 14], and Āy′l means the class of the
perturbed labels will be propagated from y′l to unobserved labels yu.
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b. SK: Ā = ÂK as in [30], where Â is the normalized adjacency matrix and K
is the number of layers.

c. SP: Ā = α(I − (1 − α)Â)−1 as in [11, 37], which has been used to classify
each node using information from the larger, adjustable neighborhood.

As y′l is an integer vector, Equation (8) is an integer program and in general
challenge to derive a closed-form solution. To find a feasible solution, we employ
a gradient descent method, namely maximum gradient (MG) attack, to generate
an approximate solution in an iterative manner. MG attack takes known labels
yl and the predictive labels ŷu as the inputs, and outputs the indices of labels
in yl for label poisoning and the poisoned labels.

The following Algorithm 1 summarizes the specific process of MG attack.

Algorithm 1: Maximum Gradient Attack

Input: Graph structured data with A, X, yl, and the budget of poisoned
labels c

Output: The poisoned labels y′l with ‖y′l − yl‖0 ≤ c
1 y0l = yl
2 for t ≤ N do
3 Compute Ā with different label propagation strategies;

4 Compute gradient: g = ∇yt
l
f(ytl ) where f(ytl ) := −1

2

∥∥Āytl − (yu or ŷu)
∥∥2

2
;

5 Select top c gradients in g and identify the indices of them as a set I;
6 Set ytl = yl;
7 Modify ytl [i] for all i ∈ I to the max label class;

8 Update yt+1
l ← ytl , t← t+ 1;

9 end

10 Return y′l = yNl

3.3 GCN Training with Poisoned Labels

The updated y′l is the output result, which is used to train the GCN model

together with A and X. The resulting prediction of ˆ̂yu will be compared with
the ground truth yu to test the performance of poisoning attack.

4 Experiments

Datasets: For label propagation, we conduct experiments on a binary classifica-
tion dataset called rcv1,1 which is a benchmark dataset on text categorization. It
is a collection of newswire articles produced by Reuters in 1996-1997. For graph

1 Publicly available at https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.
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neural networks, we use cora ml [15], citeseer [23], pubmed [17] and ms academic
[24] datasets on PT, DGCN and GCN models. Cora ml, citeseer and pubmed are
citation networks, where each node indicates a paper and edges represent cor-
responding citation relationships. Ms academic is a co-author network in which
nodes and edges represent authors and co-authors, respectively. The dataset
statistics are summarized in the Table 1.

Table 1. Dataset statistics

Dataset Nodes Features Classes

rcv1 20,242 47,236 2
cora ml 2,810 2,879 7
citeseer 2,110 3,703 6
pubmed 19,717 500 3

ms academic 18,333 6,805 15

Baseline:
Label Propagation. In the poisoning attack on LP, the greedy and probabilistic
methods are proposed by [14] for label-flipping in binary classification.

• Greedy: The greedy solver is to flip data labels one by one in a greedy manner.
In this process, the label that decreases the objective function the most after
flipping is to be flipped. Repeat this step several times until the number of
flipped labels reaches the budget.

• Probabilistic: The probabilistic method considers the flipping actions that
may be better in the long run but may be suboptimal at present. It assigns
high probability to each best action, but still retains non-zero probability
for other actions, so as to determine the most suitable label for flipping.

Graph Convolution Network. In the poisoning attacks on GCN models, there
are two baseline methods with random noise added to the labels [4] and with
gradient attack using LafAK [35].

• Random: For the propagation then training model, the add noise method is
to randomly transfer some samples of each class and change their labels to
other classes of label.

• LafAK: The objective of LafAK is a non-differentiable bi-level optimiza-
tion problem. An approximate closed-form of GCN model parameters is
considered, and continuous surrogates of non-differentiable components are
adopted to simplify the gradient-based optimization process.

Experimental Configuration: We first verify the effectiveness of the proposed
maximum gradient attack method against the label propagation (LP) model in
graph semi-supervised learning [38], and then against the state-of-the-art GNN
models, such as GCN [10], graph attention network (GAT) [26], GraphSAGE
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[7], SGCN [30], APPNP [11], and PT [4]. For each model, we use the default
settings for the hyper-parameters. In the experiments of attack on GCNs, we
use the Adam [9] optimizer with a learning rate of 0.01 to train all models for a
maximum of 2000 epochs, and also, we terminate training if the validation loss
does not decrease for 100 consecutive epochs, using an early stopping window
size of 100.

5 Attack Performance Evaluation

Hypotheses. Our experiments aim to validate two hypotheses:

1). Attacking GNNs can be alternatively done on the equivalent LP via gradient-
based methods, which means neural networks can be ignored when deter-
mining attacked labels.

2). In the presence of node features, graph structural information is not neces-
sary for an effective poisoning attack.

In order to test these two hypotheses, we conduct the following experiments.
First, we verify the effectiveness of the gradient-based attacks on both LP and
GCN models. Second, we inspect the choices of parameters in optimizing Equa-
tion (8) by applying the proposed MG attacks to GCN models with three label
propagation methods and with/without ground truth. Third, we compare our
proposed MG attack with with LafAK, confirming the above two hypotheses
that label poisoning of GCN can be achieved in the context of ignoring neu-
ral networks and only knowing node characteristics. Finally, we apply MG at-
tacks to other state-of-the-art GNN models, such as GAT, GraphSAGE, SGCN,
APPNP, and PT, and demonstrate that these two hypotheses are also valid for
these GCN-like models.
Effectiveness of Gradient-based Attacks. Figure 2 presents the reduced
accuracy of label prediction with different attack methods on label propagation
(Figure 2(a)) and GCN models (Figures 2(b)-(d)) over different datasets. In each
subfigure, x-axis is the number (or rate in percentage) of attacked labels, and
y-axis represents the prediction accuracy of label propagation or trained GCN
models with poisoned labels. Note that the lower the accuracy of prediction, the
more effective the attack method.

In order to confirm the effectiveness of gradient-based attacks on label propa-
gation, Figure 2(a) presents the comparison of greedy and probabilistic methods
with the existing FGSM and PGD attacks and our proposed MG attack method
over the dataset rcv1 for binary classification. It can be seen that with the in-
crease of the number of flipped labels, the performance of the gradient-based
attacks outperform the greedy and probabilistic methods.

Figures 2(b)-(d) compare the performance of adding random label noise
(add noise) and our MG attack on PT and APPNP models, as well as the sole
MG attacks on the neural networks, specifically when the adversary attacks the
pseudo labels after the label propagation so that the poisoned pseudo labels are
input into the neural networks, i.e., the blue line PT NN(MG), over datasets



Adversarial Label Poisoning Attack on GNNs via LP 11

cora ml, citeseer, and ms academic. According to the framework in Figure 1,
we first generate attacked labels based on label propagation via Algorithm 1,
and then train the graph neural networks on the poisoned pseudo-label data.
Given the equivalence between PT and DGCN by the loss function [4], we also
apply our proposed MG attack to DGCN, i.e., APPNP. As shown in Figures
2(b)-(d), our proposed MG attack is indeed effective for the DGCN model. That
is, it confirms our hypothesis that attacking the equivalent LP model is effective
as attacking the GNN models, and that the gradient-based attacks are more
powerful than randomly adding label noise.
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Fig. 2. (a) Accuracy performance comparison of the greedy, probabilistic, MG, FGSM
and PGD attack methods on label propagation model over rcv1 dataset. (b)-(d) Com-
parison of the random add noise and our maximum gradient attack methods on PT
and APPNP models and only attack neural network on PT (PT NN(MG)) on cora ml,
citeseer and ms academic datasets.

Label Propagation for Predicting ŷu. The optimization problem in Equation
(8) requires the knowledge of unknown labels either as the ground truth yu or
as label predictions ŷu. For predicting ŷu, in our proposed framework in Figure
1, we adopt the label propagation method SK to generate label predictions, that
is, ŷu = ÂKyl, when the ground truth is unknown and the GCN model has not
yet been trained. Figure 3 indicates the feasibility of this alternative ŷu with
different choices of label propagation strategies of Ā (SM, SK, SP) on attacking
the GCN models. For example, SK yu means Ā = ÂK and the ground truth yu
are used in Equation (8). From Figure 3, we observe that using the predictive
labels ŷu results in more effective and stable attack performance.

Label Propagation for MG Attacks with ŷu. Our proposed MG attack
method is mainly to solve the optimization problem in Equation (8), which in-
volves the choices of label propagation methods in both MG attacks on the
equivalent LP model with Ā and label predictions ŷu resulted from LP algo-
rithms. For label propagation, we consider three different choices of propagation
strategies: SM, SK, SP, which indicate three label propagation methods Ā as
mentioned in Section 3.2, respectively.

Figure 4 shows the attack performance with various combinations of three
propagation methods for MG attacks and predicting ŷu. For instance, ‘SK SP’
means Ā = ÂK is used for the MG attack and ŷu = α(I − (1 − α)Â)−1yl for
label prediction. It can be seen from Figure 4 that comparable performance can
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Fig. 3. The feasibility of substituting ŷu = ÂKyl for yu. In the legend, the first part
represents the choice of label propagation method Ā, and the second part indicates if
the ground truth yu or the predicted labels ŷu = ÂKyl are used.

be obtained by various propagation methods. Notably, SM SM only uses data
features for the MG attack without knowing ground truth, which validates the
second hypothesis that LP-based gradient attack is also effective to poison GCN
labels without the knowledge of graph structures and label ground truth.
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Fig. 4. Comparison of attack performance on GCN models with different combinations
of label propagation methods Ā for the MG attack and for generating label predictions
ŷu. In the legend, the first part represents the LP method of Ā, and the second one is
the propagation method to generate predicted labels ŷu with SM: (Duu − Suu)−1Sul;
SK: ÂK ; and SP: α(I − (1− α)Â)−1.

Comparison of MG Attack and LafAK. We compare the attack perfor-
mance of our proposed MG attack with the state-of-the-art LafAK method on
the GCN models to validate the above two hypotheses. While LafAK can be seen
a white-box attack where neural network parameters are accessible to the adver-
sary, our proposed method is a black-box attack such that the adversary does not
require the knowledge of neural network parameters to make an effective attack.
In our proposed MG attack, we apply three different label propagation methods
of Ā, marked by SM, SK, APPNP, and the predicted labels ŷu = ÂKyl. LafAK
is a label-flipping attack through maximizing the loss of the entire GCN model
with neural network. It selects two classes of labels with the largest number in
the dataset to flip. There is a limitation: When the labels of these two nodes
are all flipped to the opposite class, the attack no longer takes effect, as shown
in Figure 5 where the ‘LafAK o’ curves experience error floors. To rectify this
and ensure the fairness of comparison, we extend LafAK to all training datasets
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(called ‘LafAK c’), and modify the attacked labels to the maximum label class
in the dataset as our MG attack does. From the comparison in Figure 5, we
conclude that:

1). Our proposed MG attack (on the equivalent LP only without considering
neural network model parameters) is as effective as LafAK (on the entire
GCN models with neural model parameter involved). Therefore, this con-
firms the first hypothesis that attacking GCN models can be alternatively
done by attacking the equivalent LP model.

2). For our proposed MG attacks with different label propagation methods Ā,
the attack performances are comparable, so that Ā = (Duu − Suu)−1Sul
without topological structure still yields an effective attack. This confirms
the second hypothesis that graph structural information is not necessary.
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Fig. 5. Comparison between MG attacks and LafAK against GCN models. In the
legend of this figure, SM, SK, SP means three different label propagation methods of
Ā, LafAK o is the original LafAK, and LafAK c is an improved version of LafAK o
with the limitation of target flipping labels fixed.

Transferability of MG Attacks. In practical scenarios, the adversary may not
know which GNN model is under training. So, to test the possibility of applying
attacks learned for one model to other models, we consider the transferability of
our MG attack. Recall that our MG attacks depend only on the input futures
and the known labels, and are irrelevant to the GNN models. As such, we di-
rectly apply the poisoned labels from our MG attack to state-of-the-art GNNs.
Figure 6 presents the transferability to the GCN-like models, such as GAT and
GraphSAGE. The results indicate that the our proposed MG attacks can be
successfully transferred to these two models.
Robustness of Different GNN Models against MG Attacks. Figure 7
gives a more comprehensive study of the robustness of state-of-the-art GNN
models against our proposed MG attack over different datasets. In particular,
the MG attack with ‘SM SK’ is employed, that is Ā = (Duu−Suu)−1Sul for MG
attacks and ŷu = ÂKyl for pseudo-label prediction. According the experiments,
we have the following observations.

1). The robustness of APPNP always outperforms other models under MG at-
tacks. It is probably because APPNP can aggregate information from large,
adjustable neighborhood for classifying each node.
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Fig. 6. Transferability of our MG attack to GAT and GraphSAGE models.

2). Although SGCN has comparable accuracy with clean data as other models,
the linearity makes it more vulnerable to label poisoning attacks, because of
the removal the nonlinear activation functions between GCN layers.

3). PT has a similar accuracy performance as GCN and GraphSAGE with both
clean and poisoned data, and their robustness against the MG attacks varies
across different datasets.
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Fig. 7. The robustness of state-of-the-art GNN models (GCN, GraphSAGE, SGCN,
APPNP, PT) against our MG label poisoning attack with ‘SM SK’ label propagation
methods over different datasets.

6 Conclusion

In this paper, we studied adversarial label poisoning attacks on GNNs and pro-
posed a framework to attack GCN-like models through a maximum gradient at-
tack method on the equivalent LP models. The proposed method can effectively
attack the GCN-like models while avoiding the neural network computation,
thereby reducing the node classification performance of the GCNs. Extensive
experiments showed that, our proposed label poisoning attacks only on LP is as
effective as the state-of-the-art attacks (e.g., LafAK), and is transferable to the
GCN-like models. Notably, our method does not require the knowledge of graph
structural information in the presence of node features.
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