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Abstract. Despite the fundamental distinction between adversarial and
natural training (AT and NT), AT methods generally adopt momentum
SGD (MSGD) for the outer optimization. This paper aims to analyze
this choice by investigating the overlooked role of outer optimization in
AT. Our exploratory evaluations reveal that AT induces higher gradi-
ent norm and variance compared to NT. This phenomenon hinders the
outer optimization in AT since the convergence rate of MSGD is highly
dependent on the variance of the gradients. To this end, we propose an
optimization method called ENGM which regularizes the contribution of
each input example to the average mini-batch gradients. We prove that
the convergence rate of ENGM is independent of the variance of the gra-
dients, and thus, it is suitable for AT. We introduce a trick to reduce
the computational cost of ENGM using empirical observations on the
correlation between the norm of gradients w.r.t. the network parame-
ters and input examples. Our extensive evaluations and ablation studies
on CIFAR-10, CIFAR-100, and TinyImageNet demonstrate that ENGM
and its variants consistently improve the performance of a wide range
of AT methods. Furthermore, ENGM alleviates major shortcomings of
AT including robust overfitting and high sensitivity to hyperparameter
settings.

1 Introduction

Fig. 1: Replacing MSGD with
ENGM for outer optimization
in AT results in consistent im-
provement of robust accuracy and
generalization.

Susceptibility of deep neural networks
(DNNs) to manipulated inputs has raised
critical concerns regarding their deploy-
ment in security-sensitive applications [4,
21, 24]. The worst-case manipulation can
be characterized by adversarial examples:
carefully crafted input examples that can
easily alter the model prediction while re-
maining benign to the human perception
[37, 15]. A principal approach to formal-
ize the imperceptibility is to bound the perturbation using ℓp-norm. Hence, the
problem of finding a model robust to adversarial manipulation reduces to finding



2 A. Dabouei et al.

the one that generalizes well merely on the bounded neighborhood of the input
example. Although this task seems effortless for humans, achieving such invari-
ance is notoriously difficult for DNNs. The reason for this behavior has not been
fully understood yet, but several factors have shown to be influential, including
the high cardinality of the data space and non-zero test error of the classifier on
noisy inputs [14, 7].

One of the most effective methods (defenses) to alleviate adversarial suscep-
tibility is adversarial training (AT) which improves the robustness by training
the model on the worst-case loss [15, 25]. Given the deep model Fθ parameter-
ized by θ and the surrogate loss function for the empirical adversarial risk L,
the training objective of AT is defined as:

min
θ

E(x,y)∼D

[
L∗(x, y;θ)], (1a)

L∗(x, y;θ) = max
||x−x′||p≤ϵ

L
(
Fθ(x

′), y
)
, (1b)

where the input example x and the corresponding label y are a sample from
the data distribution D, x′ is the adversarial equivalent of x, and ϵ is the max-
imum ℓp-norm magnitude of the perturbation. Concretely, adversarial training
consists of two simultaneous optimizations, referred to as the inner and outer
optimizations. The inner optimization (Equation 1b) finds the worst-case adver-
sarial example, and the outer optimization (Equation 1a) minimizes the empirical
adversarial risk over the network parameters, θ.

Numerous efforts have been devoted to analyzing different aspects of AT,
such as the inner optimization [25, 48, 36, 11, 10], adversarial objective [47, 40,
30, 12], computational cost [35, 50, 41], and evaluation methods [3, 26, 1, 13, 8].
Recent studies on the topic have revealed two major shortcomings of AT which
contradicts common observations on NT. First, AT severely induces overfitting
[34, 6], referred to as robust overfitting, whereas in NT overfitting is known to be
less prominent especially in over-parameterized models [46, 28, 2]. Second, AT is
highly sensitive to hyperparameter setting, e.g., a slight change in the weight
decay can deteriorate the robust performance [16, 29].

The majority of the previous works on AT have analyzed the inner optimiza-
tion and its properties. However, the potential impact of outer optimization on
the performance and shortcomings of AT has been critically overlooked. Further-
more, the success of the two recent state-of-the-art (SOTA) approaches of AT
which indirectly affect the outer optimization by weight perturbations [42] or
weight smoothing [6] advocates for further investigation on outer optimization.
Based on these observations, we raise a fundamental question regarding outer
optimization in AT and attempt to address it in this work:
Is the conventional MSGD, developed for non-convex optimization in NT, a
proper choice for the outer optimization in AT? If not, what modifications
are required to make it suitable for the AT setup?
To answer the first question, we empirically evaluate and compare two sta-

tistical parameters of gradients, namely expected norm and expected variance,
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in NT and AT. Both these parameters are known to be major determinants
of the performance of MSGD in NT [18, 23, 49]. We find that they are notably
higher in AT compared to NT. Furthermore, after decaying the learning rate
in NT, both the gradient norm and variance deteriorate suggesting convergence
to local minima. However, in AT, they escalate after the learning rate decay.
These observations highlight substantial disparities between the characteristics
of the gradients in AT and NT. Consequently, we argue that MSGD, developed
essentially for NT, is not the most proper choice for outer optimization in AT
since it is not designed to be robust against high gradient norm and variance.

Motivated by these observations, the current work attempts to develop an
optimization method that is more suitable for AT, i.e., less sensitive to the
gradient norm and variance. The contributions of the paper are as follows:

– We investigate the effect of AT on gradient properties and provide empirical
evidence that AT induces higher gradient norm and variance. We argue that
this hinders the optimization since the convergence rate of MSGD is highly
dependent on the variance of the gradients.

– We propose an optimization method tailored specifically for AT, termed ENGM,
whose convergence rate is independent of the gradient variance.

– We empirically analyze the norm of gradients and provide insightful obser-
vations regarding their correlation in DNNs. Harnessing this, we develop a
fast approximation to ENGM that significantly alleviates its computational
complexity.

– Through extensive evaluations and ablation studies, we demonstrate that the
proposed optimization technique consistently improves the performance and
generalization of the SOTA AT methods.

2 Analyzing Outer Optimization in AT

We first investigate the disparities between the properties of gradients in AT
and NT in Section 2.2. Then in Section 2.3, we draw connections between the
observed disparities and poor performance of MSGD in AT by reviewing the
previous theoretical analysis on the convergence of MSGD. In Section 2.4, we
describe our proposed optimization technique whose convergence rate is more
favorable for AT. Later in Section 2.5, we present an interesting observation that
enables us to approximate a fast version of the proposed optimization technique.

2.1 Notations

Throughout the paper, we denote scalars, vectors, functions, and sets using lower
case, lower case bold face, upper case, and upper case calligraphic symbols,
respectively. We use notation || · ||p for the ℓp-norm and drop the subscript for
p = 2. We employ the commonly used cross-entropy loss as the measure of
empirical risk and denote the loss on ith example, L(Fθ(xi), yi), as Li for the
sake of brevity.
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Fig. 2: Expected norm (µ) and variance (σ2) of gradients during NT and AT.
Learning rate is decayed from 10−1 to 10−2 at epoch 75. Note that the norm
and variance in AT is higher than NT and escalates after learning rate decay.

2.2 Comparison of Gradient Properties

We experiment to analyze two statistical parameters of gradients which are major
determinants of the performance of MSGD. The first parameter is the expected
norm of gradients µ := E(x,y)∼D

[
||∇θL

(
Fθ(x̂), y

)
||
]
, where x̂ is the natural ex-

ample in NT and the adversarial example in AT. Change in the expected norm
directly affects the learning rate, the most important hyperparameter in NT [18,
23]. The second parameter is the upper bound for the variance of gradients, and
is defined as:

σ2 := sup
θ

E(x,y)∼D

[∣∣∣∣∇θL
(
Fθ(x̂), y

)
− ḡ

∣∣∣∣2], (2)

where ḡ = E(x,y)∼D
[
∇θL

(
Fθ(x̂), y

)]
. It is shown that the convergence of MSGD

is O(σ2) [44]. We roughly estimate both parameters during the training of
ResNet-18 and VGG-8 on CIFAR-10 and SVHN datasets, respectively. Inner
optimization in AT follows the standard setup, i.e., 10 steps of ℓ∞-norm PGD
with ϵ = 8/255 and step size ϵ/4.

Figure 2 plots µ and σ2 during 100 training epochs with the learning rate
decay from 10−1 to 10−2 at epoch 75. We observe that the expected norm and
variance of gradients is notably higher in AT. After learning rate decay, both
parameters decrease significantly in NT suggesting the convergence to local min-
ima. However in AT, the expected norm grows and the variance increases drasti-
cally. These findings highlight substantial disparities between the characteristics
of the gradients in AT and NT. In the next section, we theoretically analyze how
these differences can affect the convergence of MSGD.

2.3 Revisiting Stochastic Gradient Descent

In this part, we analyze the functionally and convergence of MSGD to identify
modifications that improves its suitability for the AT setup. The update rule of
MSGD at iteration t is as follows:

vt+1 = βvt +
1

|It|
∑
i∈It

∇θLi, (3a)

θt+1 = θt − ηvt+1, (3b)
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Algorithm 1 Fast ENGM

1: Initialize τ > 0, βγ ∈ [0, 1), α > 0, γ0 = 0, γ1 = 1, Boolean parameter Naive.
2: for t = 0 . . . t1 − 1 do
3: Compute Li, ∀i ∈ It; ▷ inner optimization
4: Compute Gx,t = {∇xLi : i ∈ It}; ▷ backprop. ×1
5: if mode(t, τ) = 0 and Naive = False then
6: Compute Gθ,t = {∇θLi : i ∈ It}; ▷ backprop. ×n every τ iterations
7: γ′

1, γ
′
0 = LinearRegression(Gx,t,Gθ,t) ▷ estimate slope and intercept

8: γ0 ← βγγ0 + (1− βγ)γ
′
0, and γ1 ← βγγ1 + (1− βγ)γ

′
1;

9: end if
10: ŵi ← max(

α

||γ1∇xLi + γ0||
, 1), ∀i ∈ It;

11: Update θ with MSGD on the reweighted loss 1
|It|

∑
i∈It

ŵiLi ▷
backpropagation×1

12: end for

where η is the learning rate, vt+1 is the Polyak’s momentum with the correspond-
ing modulus β [33], It is the randomly selected set of indices for the mini-batch
with size |It|, and Li is the objective for optimization computed on the ith ex-
ample. Assuming F has bounded variance of gradients according to Equation 2,
and is smooth in θ, i.e., Fθ1

(x) ≤ Fθ2
(x) + ⟨∇θFθ1

(x),θ2 − θ1⟩+ c
2 ||θ2 − θ1||2,

Yu et al. [43, 44] have shown that the convergence rate of MSGD for non-convex
optimization in DNNs is O(σ2). Hence, MSGD is not suitable for tasks with high
gradient variance. Intuitively, higher variance implies that the gradients are not
aligned with the average gradients which are being used to update the model
parameters. This hinders the optimization process since the update is merely
favorable for a portion of examples in the mini-batch.

One alternative to MSGD that is less sensitive to the variance of the gra-
dients is stochastic normalized gradient descent with momentum (SNGM) [49].
SNGM is shown to provide better generalization for training with large batch
size, i.e., another cause of high gradient variance. Concretely, SNGM modifies
Equation 3a as:

vt+1 = βvt +

∑
i∈It

∇θLi

||
∑

i∈It
∇θLi||

, (4)

which limits the gradient norm by normalizing the magnitude of mini-batch
gradients and considers only the direction of the average gradient. Zhao et al.
[49] have shown that the convergence of SNGM is O(σ), and therefore, is more
suitable for tasks with induced gradient fluctuations. We also observe in Section
3.1 that SNGM improves the generalization in AT. This suggests that reducing
the sensitivity of the optimizer to the gradient variance has a direct impact on
the generalization and performance of the task with adversarial gradients.

2.4 Example-normalized Gradient Descent with Momentum

Although SNGM is less sensitive than MSGD to the variance of gradients, it
does not impose any constraint on the variance. Hence, the variance can still
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become large and impede the optimization. To address this, we introduce a
transformation on gradient vectors that bounds the variance of the gradients in
the mini-batch and makes the convergence rate of the optimizer independent of
the variance.

Theorem 1. For any arbitrary distribution P of random vectors, applying the
transformation T (a) = min( α

||a|| , 1)a with α > 0 bounds the variance of vectors

to 4α2.
(Proof is provided in Section 1 of Supp. material.)

We use the transformation in Theorem 1 to bound the variance of the gradients.
To this aim, we rewrite Equation 3a as:

vt+1 = βvt +
1

|It|
∑
i∈It

wi∇θLi, (5a)

wi = min
( α

||∇θLi||
, 1
)
, (5b)

where wi is the normalizing coefficient for ∇θLi, and α is the maximum allowed
norm of gradients. This update rule limits the maximum norm of the gradients
on each input example to α. Hence, it prevents high magnitude gradients from
dominating the updating direction and magnitude in the mini-batch. It might
be noted that α scales with the square root of the model size, and larger models
require higher values of α. We refer to this approach as example-normalized
stochastic gradient descent with momentum (ENGM). ENGM recovers MSGD
when α ≫ 1. The convergence properties of ENGM is analyzed in Theorem 2.

Theorem 2. Let A(θ) be the average loss over all examples in the dataset, and
assume that it is smooth in θ. For any α > 0 and total iterations of t1, optimizing
A(θ) using ENGM (Equation 5) has the convergence of O(α). (Proof is provided
in Section 1 of Supp. material.)

Theorem 2 shows that the convergence rate of ENGM is O(α) and is indepen-
dent of the variance of gradients. Hence, it is suitable for optimizing objectives
with high gradient variance. Later in Section 3.1, we empirically validate this and
show that the enhanced regularization of ENGM provides better optimization
compared to SNGM and MSGD for AT. Despite the intrinsic merits of ENGM, it
is computationally expensive since evaluating each wi requires a dedicated back-
propagation and cannot be implemented in parallel. In particular, Equation 5
requires |It| backpropagation for each mini-batch. In the next section, we present
an empirical observation on the gradients of DNNs that enables us to estimate
wi and consequently Equation 5 using merely one additional backpropagation.

2.5 Accelerating ENGM via Gradient Norm Approximation

During our evaluations, we observe an interesting phenomenon that enables us
to develop a fast approximation to ENGM. Particularly, we observe that the
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Fig. 3: (a,b): Characterizing the linear correlation between ||∇xiLi|| and ||∇θLi||
using Pearson correlation coefficient. (c, d): The absolute value of error (%) for
estimating wi using Equation 7. Dashed black line denotes the learning rate
decay from 10−1 to 10−2.

Method MSGD MSGD+GNC SNGM F-ENGM N-ENGM A-ENGM ENGM
Ex. time (sec./iter) 0.60 0.61 0.63 5.05 0.75 0.83 5.06

Table 1: Execution time of the outer optimization methods. Experiments are
conducted on an NVIDIA Titan-RTX GPU.

norm of gradients w.r.t. the network parameters, ||∇θLi||, is linearly correlated
with the norm of the gradients w.r.t. the input example, ||∇xi

Li||. To illustrate
this phenomenon, we track both gradient norms on 1, 000 training examples
during NT and AT using VGG-8 on SVHN and ResNet-18 on CIFAR-10. We
compute Pearson correlation coefficient to measure the correlation between the
two norms. Figures 3a and 3b show the correlation coefficient during AT and
NT with the model in the evaluation and training modes. We can see that
there is a significant correlation between the two norms in DNNs which becomes
stronger as the training proceeds. The correlation exists in both the training
and evaluation modes of the model, and is slightly affected by the update in the
statistics of the batch normalization modules.

Harnessing this phenomenon, we can estimate the norm of gradient w.r.t. the
network parameters (computationally expensive) using the norm of gradients
w.r.t. the inputs (computationally cheap) with a linear approximation as:

||∇θLi|| ≈ γ1||∇xiLi||+ γ0, (6)

where γ0 and γ1 are coefficients for the slope and intercept of the linear estima-
tion, respectively. Employing this estimation, we can approximate the function-
ality of ENGM by a simple modification of the loss on the ith input example,
Li, and keeping the popular MSGD as the optimizer. This provides two benefits.
First, there is no need to implement a new optimizer enhancing the applicability
of the method. Second, the reweighting significantly reduces the computational
cost of ENGM. To this aim, we use the estimated value for the norm of the
gradients w.r.t. the input to normalize the gradients w.r.t. the network param-
eters indirectly by assigning a weight to the loss function computed on xi as
L̂i := ŵiLi, where:

ŵi := max(
α

||γ1∇xLi + γ0||
, 1). (7)
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Here, optimizing the total loss 1
|It|

∑
i∈It

L̂i using MSGD will approximately

recover the functionality of ENGM on 1
|It|

∑
i∈It

Li. To analyze the accuracy

of estimating ŵi, we measure the average absolute value of the error during
the training of the both models in AT and for three different values of α ∈
{0.1, 1.0, 3.0}. Figures 3c and 3d visualize the error on two different datasets
and network architectures. We observe that the maximum absolute value of
error is less than 10% which advocates for the accuracy of estimating ŵi. For
large values of α the error decreases during the training, while for small values
of α the error increases. This points to a trade-off between the estimation error
across the training process. It might be noted that the error is computed solely
for AT since based on the evaluations in Figures 3a and 3d the correlation is
stronger in NT.

Unlike ∇θLi, ∇xLi can be computed in parallel for a batch of data using
a single backpropagation. We consider two approaches for estimating γ0 and
γ1 which result in two variations of ENGM. In the first approach, referred to
as Approximated ENGM (A-ENGM), we evaluate ∇θLi for a single mini-batch
every τ iterations and use moving average to update the latest estimate. Then
for the intermediate iterations, we use the estimate values of γ to approximate
the norm of gradients using Equation 6. In comparison, A-ENGM reduces the
required number of additional backpropagations from |It| (for ENGM) to 1 +
|It|/τ . In practice, we observe that the interval, τ , for estimating γ values can
be conveniently large as investigated in Section 3.4. Furthermore, we consider
a second approach in which we simply set γ0 = 0 and merge γ1 into α. We
refer to this approach as Naive ENGM (N-ENGM) which solely requires a single
additional backpropagation.

3 Experiments and Analysis

We evaluate ENGM on three datasets of CIFAR-10, CIFAR-100 [20], and Tiny-
ImageNet [22]. Following the benchmark experimental setup for AT [42, 47, 40,
9], we conduct ablation studies and exploratory evaluations on ResNet-18 with
64 initial channels, originally developed for ImageNet. For SOTA evaluation, we
use Wide ResNet-34 with depth factor 10 (WRN-34-10) [45].
Training Setup. Except for evaluations involving ENGM, all the models are
trained using MSGD with momentum 0.9, weight decay 5 × 10−4 [42, 29, 16],
batch size equal to 128, and initial learning rate of 0.1. The learning rate is
decayed by 0.1 at epochs 75, 90, and the total number of epochs is set to 120
unless otherwise noted. The standard data augmentation including random crop
with padding size 4 and horizontal flip is applied for all datasets. All input images
are normalized to [0, 1]. Based on ablation studies in Section 3.4, we set α for
ENGM, A-ENGM, and N-ENGM to 5, 5, and 0.5, respectively. The momentum
for A-ENGM is set to 0.7 based on empirical evaluations. PGD with 10 steps
(PGD10), ϵ=8/255, and step size 2/255 is used as the attack to maximize the
adversarial loss in ℓ∞-norm ball. As suggested by Rice et al. [34], during the
training we select the model with the highest robust accuracy against PGD20
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Optim. Accuracy (%) Overfit.
Method Natural Best Last AA (%)

MSGD 84.70 50.87 44.15 46.77 13.2
MGNC 83.98 51.88 46.62 47.59 10.1
SNGM 83.73 51.95 46.80 47.75 9.9
F-ENGM 82.91 50.05 44.04 46.54 12.0

N-ENGM 84.36 52.19 48.79 48.06 6.5
A-ENGM 83.61 52.46 49.75 48.46 5.1
ENGM 83.44 53.04 52.76 49.24 3.9

Table 2: Comparison of ENGM with MSGD for outer optimization in AT (§3.1).
‘Best’ and ‘Last’ refer to the accuracy against PGD20 using the best and last
checkpoints, respectively.

with ϵ=8/255 and step size 8/(255× 10) on a validation set of size 1, 000 as the
best model. Only for PGD20, we use margin loss instead of cross-entropy due to
its better performance in evaluating the robustness of the model [39].
Evaluation Setup. We evaluate the model against two major attacks. First is
the same PGD20 used in the training to find the best model. For a more rigorous
evaluation of the robust performance, we follow the setup of the recent SOTA
defense methods [47, 42, 48, 9, 19, 5, 36, 29] and use the benchmark adversarial
robustness measure of AutoAttack (AA) [8]. AA has shown consistent superiority
over other white box attacks such as JSMA [31], MIM [13], and CW [3]1. Both
attacks in evaluations are applied on the test set, separated from the validation
set. Maximum norm of perturbation, ϵ, is set to 8/255 and 128/255 for ℓ∞-
norm and ℓ2-norm threat models. In addition to the robust accuracy, the robust
overfitting of the model is computed as the difference between the best and the
last robust accuracies (PGD20) normalized over the best robust accuracy. All
results are the average of three independent runs.

3.1 Comparison of Optimization methods

In this section, we evaluate and compare the proposed method with other pos-
sible choices for outer optimization in AT. As the fist baseline, we employ the
conventional MSGD which is the optimizer in all of the previous AT methods.
A popular and well-known trick to bound the gradient norm especially in re-
current neural networks is Gradient Norm Clipping (GNC) [17, 32]. GNC clips
the gradient norm when it is greater than a threshold. This threshold is similar
to α in our method. However, instead of bounding the gradient norm on each
individual input example, GNC bounds the norm of the average gradients of the
mini-batch. We consider the combination of MSGD with GNC as our second
baseline and refer to it as MGNC. The clipping threshold α for MSGD+GNC
is set to 25 based on empirical evaluations. SNGM, discussed in Section 2.3, is
used as the third baseline. For our method, we compare the original ENGM with

1 github.com/fra31/auto-attack.
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its accelerated versions, i.e., A-ENGM and N-ENGM. The coefficients α and τ
for our methods are set to the best-performing values from Section 3.4. As an
additional baseline, we develop another version of ENGM in which instead of
bounding the norm of gradients, we normalize them to the constant value α,
i.e., modifying Equation 5a to: vt+1 = βvt+

1
|It|

∑
i∈It

∇θLi

||∇θLi|| . We refer to this

method as Fixed ENGM (F-ENGM).

Fig. 4: Visualization of the loss land-
scape on four examples from CIFAR-10
(§3.2). The cross mark denotes the input
example. Loss level sets are equalized on
each column.

Table 2 presents the results for
these comparisons. We can see that
the simple GNC enhances robust ac-
curacy providing the same perfor-
mance as SNGM. These improve-
ments caused by simple modifications
further confirms the negative effect
of high gradient norm and variance
on outer optimization in AT. ENGM
consistently improves the robust ac-
curacy over baselines. In addition, ro-
bust overfitting in ENGM is signif-
icantly lower than other baselines.
This suggests that a major cause of
robust overfitting in AT is the high
fluctuation of gradients and the in-
competence of MSGD in addressing it. The learning curves (robust test accuracy)
for different optimization methods are depicted in Figure 5h. We observe that
after the learning rate decay, the robust performance of ENGM and its variants
does not deteriorate which confirms that they alleviate robust overfitting. The
best natural accuracy is provided by MSGD supporting the commonly observed
trade-off between the natural and robust accuracies [38, 47]. Table 1 presents
the execution time for the optimization methods. The execution time of ENGM
is roughly 8.5× longer than MSGD. However, A-ENGM and N-ENGM achieve
notable speed-up and robust performance. As expected, the performance of A-
ENGM is between N-ENGM (lower-bound) and ENGM (upper-bound) and is
controlled by the estimation interval τ . Hence, we use N-ENGM and ENGM for
the major evaluations to clearly compare the two performance bounds.

3.2 Combination with Benchmark AT Methods

In the this section, we incorporate the proposed optimization approaches into the
benchmark AT methods including the vanilla method [25], TRADES [47], MART
[40], and AWP [42]. Here, AWP represents the weight perturbation method ap-
plied on top of TRADES. The coefficient for the self-distillation loss in TRADES
and MART is set to 6, and the maximum magnitude of weight perturbation for
AWP is set to 5× 10−3. The rest of the training setups are set to the best setup
reported by the original papers. However, the total training epochs for all meth-
ods is set to 200 (learning rate decays by 0.1 at epochs 100 and 150) for the sake
of consistency.
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AT Optim. Accuracy (%) Overfit.
Method Method Natural PGD20 AA (%)

C
IF

A
R
-1
0

Vanilla
MSGD 84.70 50.87 46.77 13.2
ENGM 83.44 53.04 49.24 3.9

TRADES
MSGD 82.40 50.94 47.85 5.9
ENGM 82.33 53.46 50.07 3.0

MART
MSGD 83.68 51.05 48.29 6.1
ENGM 83.03 53.56 50.48 4.6

AWP
MSGD 82.98 52.55 50.12 4.6
ENGM 83.10 54.07 51.93 2.7

C
IF

A
R
-1
0
0

Vanilla
MSGD 57.75 26.11 24.45 20.9
ENGM 56.91 28.43 26.60 7.4

TRADES
MSGD 56.00 29.04 26.93 10.6
ENGM 55.65 30.68 29.20 7.1

MART
MSGD 56.52 29.41 27.18 11.8
ENGM 56.20 30.89 29.30 8.6

AWP
MSGD 56.22 30.36 28.43 7.3
ENGM 56.82 31.24 30.46 6.3

T
in
y
-I
m
a
g
e
N
e
t Vanilla

MSGD 35.71 7.47 6.92 26.37
ENGM 29.78 11.29 8.54 10.10

TRADES
MSGD 37.26 14.13 10.95 14.79
ENGM 36.30 16.88 12.65 8.74

MART
MSGD 37.06 13.79 10.08 15.94
ENGM 36.53 16.90 12.99 8.20

AWP
MSGD 36.13 16.29 13.09 10.67
ENGM 36.81 19.14 16.02 7.97

Table 3: Comparison of MSGD and ENGM on different AT methods (§3.2). Note
that ENGM consistently outperforms MSGD.

Table 3 presents the results for ℓ∞-norm threat model. For results on ℓ2-
norm threat model please refer to Section 2 in Supp. material. We observe that
ENGM consistently outperforms MSGD on robust performance. The average
improvement in robustness against AA is 2.15% and 1.16% in ℓ∞-norm and ℓ2-
norm, respectively. This suggests that the amount of perturbation in AT affects
the convergence of the outer optimization. Consider the ℓ2-norm as the unified
metric, the amount of noise in ℓ∞-norm threat model is roughly 3× the norm of
noise in the counterpart threat model. Combining these results with the evalua-
tions in Figure 2 advocates that the improvement offered by ENGM over MSGD
depends on the norm of perturbation. This observation is further investigated
in Section 3.4.

AWP is previously shown to alleviate robust overfitting [42]. Interestingly, we
find that TRADES and MART also reduce the robust overfitting independent of
the optimization method. This suggests that the AT method can affect the robust
overfitting. ENGM results in the lowest overfitting and consistently surpasses
MSGD. On vanilla AT, replacing MSGD with ENGM results in 9.3%, 13.5%, and
16.2% reduction of overfitting on CIFAR-10, CIFAR-100, and TinyImageNet,
respectively. These results advocate that, in addition to the AT method, the
outer optimization method also affects the overfitting and limiting the sensitivity
of the optimization method to the variance of the gradients can alleviate the
robust overfitting.

As the last evaluation in this part, we visualize the loss landscape on networks
optimized by MSGD and ENGM in Figure 4. This figure plots the loss values
for the space spanned by the adversarial perturbation (PGD20) and random
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Fig. 5: (a-g): Ablation studies on α, τ , λTRADES , and weight decay (§3.4). Note
that α of ENGM scales to that of N-ENGM with 1/γ1. Robust accuracy is
measured using AutoAttack [8]. (h): learning curves (robust test accuracy) for
AT with different outer optimization methods. Results on last 60 epochs are
plotted for better visualization of the robust overfitting. Robust accuracy is
measured using PGD20.

noise, orthogonalized to the perturbation via Gram-Schmidt. We can see that
ENGM results in a smoother loss landscape, known as an empirical evidence of
the robustness [27]. This qualitative analysis further validates the effectiveness
of ENGM for outer optimization in AT.

3.3 Comparison with SOTA

Here, we evaluate ENGM in the benchmark of AT, i.e., WRN-34-10 on CIFAR-
10 dataset [47, 42, 48, 9, 19, 5, 36]. For training using ENGM, we set α = 10.4
which is obtained by scaling the best α for ResNet-18 with the factor of 2.08,
square root of the ratio of the total parameters of the two models (48.2M for
WRN-34-10 vs. 11.1M for ResNet-18). To achieve SOTA performance, we con-
sider AWP as the AT scheme. We train the model for 200 epochs with learning
rate decay by 0.1 at epochs 100 and 150. The rest of the setting is the same as
our previous evaluations. Table 4 presents the results for this experiment. AWP
combined with ENGM and N-ENGM surpasses the previous SOTA by 1.28% and
0.94%, respectively. This validates the effectiveness of ENGM on large models.
We also find that ENGM results in higher natural accuracy on AWP. This sug-
gests that although AWP indirectly improves the outer optimization, its impact
is orthogonal to ENGM.

3.4 Ablation Studies

We conduct ablation studies to investigate the impact of hyperparameters on
the performance of ENGM and its two variants using ResNet-18 on CIFAR-10.
Impact of α: We measure the natural accuracy, robust accuracy (AA), and
overfitting versus α. We conduct this experiment on ENGM/N-ENGM since
they upper/lower bound the performance of A-ENGM.
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Method Optim. Nat. Acc. (%) AA (%)

ATES [36] MSGD 86.84 50.72
BS [5] MSGD 85.32 51.12
LBGAT [9] MSGD 88.22 52.86
TRADES [47] MSGD 84.92 53.08
MART [40] MSGD 84.98 53.17
BERM [19] MSGD 83.48 53.34
FAT [48] MSGD 84.52 53.51
AWP [42] MSGD 85.36 56.17
AWP N-ENGM 85.40 57.11
AWP ENGM 86.12 57.45

Table 4: Comparison of the benchmark robustness on WRN.

Figures 5a, 5b, and 5c present the results for these evaluations. As expected,
for large values of α all three values converge to that obtained by MSGD. Small
values of α can be interpreted as training with a very small learning rate causing
both the natural and robust accuracies to drop. Interestingly, we observe that
the overfitting decreases significantly for small values of α. This confirms that the
high variance of gradients in AT negatively affects the functionality of MSGD,
i.e., ENGM with large α. We find that ENGM and N-ENGM achieve their
optimal performance on ResNet-18 at α equal to 5 and 0.5, respectively. We
select these as the optimal values for training the models in other experiments.
Note that the optimal value of α is expected to be the same for ENGM and
A-ENGM but different for N-ENGM. This is because the formulation of ENGM
and A-ENGM is the same except that A-ENGM estimates the norm of gradients
every τ iterations, and setting τ = 1 recovers the exact ENGM. However, in N-
ENGM, α is scaled by 1/γ1 according to the discussion in Section 2.5. The
optimal α is scaled for other networks based on their capacity.

Impact of τ : We conduct experiments to evaluate the role of τ in AT setup
with A-ENGM (α = 5) as the optimizer and τ ∈ {1, 10, 50, 100, 300}. It might
be noted that each epoch in CIFAR-10 consists of 390 mini-batches of size 128.
Hence, τ = 300 is roughly equivalent to estimating the correlation at the end
of each epoch. Figures 5d and 5e present the results for these evaluations. As
expected, for small and large values of τ A-ENGM converges to ENGM and
N-ENGM, respectively. For τ = 50, obtained robustness is roughly 85% of the
robustness obtained by ENGM while the training time is significantly lower (0.83
vs. 5.06) because the extra gradient computation is being performed every 50
iterations. Furthermore, we can see that τ controls the trade-off between the
natural and robust accuracies.

Perturbation norm: As an initial exploration in this paper, we observed that
AT induces higher gradient norm and variance. We also noticed in Section 3.2
that ENGM seems to outperform MSGD with a larger margin when the mag-
nitude of perturbations is higher. Here, we further analyze the impact of the
magnitude of perturbations on the gradient norm and variance induced by AT.
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This allows us to identify the extent of suitability of MSGD and ENGM for NT
and AT. We train models in AT setup with ℓ∞-norm threat model and varied
size of perturbation, ϵ ∈ {0, 2/255, 4/255, 6/255, 8/255, 10/255}. Both MSDG
and ENGM are utilized for the outer optimization in these evaluations. We mea-
sure the average norm and variance of gradients across all training epochs. For
a fair comparison, we compute the expected distance to the closest decision
boundary as the unified robustness measure: ρ := Ex[||x−x∗||], where x∗ is the
closest adversary to x computed using DeepFool [26].

Table 5 presents the results for this experiment. In NT (AT with ϵ = 0),
MSGD provides slightly better performance than ENGM. This is because in NT
the norm and variance of gradients are naturally limited. As the ϵ increases, the
expected norm and variance of the gradients also increase. This confirms our
initial observation that AT induces higher gradient norm and variance. Conse-
quently as expected, we find that in AT with larger magnitude of perturbations
ENGM works better than MSGD.

Magnitude of Perturbation, ϵ (× 1
255 )

0 2 4 6 8 10
µ 4.25 5.10 6.09 7.73 10.04 14.21
σ2 118.1 118.7 121.8 141.7 185.2 253.5

ρMSGD 0.33 0.41 0.57 0.93 1.15 1.24
ρENGM 0.30 0.42 0.61 1.08 1.35 1.49

Table 5: Analyzing the impact of the
perturbation magnitude on gradient
properties and final robustness obtained
by MSGD and ENGM (§3.2). AT with
ϵ = 0 is equivalent to NT.

Sensitivity to hyperparameters:
One intriguing shortcoming of AT is
sensitivity to hyperparameter setting.
Several works have shown that a slight
change in the modulus of the ℓ2-norm
regularization, i.e., weight decay, re-
sults in drastic changes in robust per-
formance [29, 16]. Here, we analyze
the sensitivity of the proposed opti-
mization method and compare it with
that of MSGD. Figure 5g presents the
results for this evaluation. We observe that ENGM exhibits significantly less
sensitivity to changes in weight decay compared to MSGD. We hypothesis that
high weight decay helps MSGD to prevent the bias from input examples with
high gradient magnitude. ENGM achieves this goal by explicitly limiting the
gradient magnitudes, and thus, is less sensitive to weight decay. We believe this
phenomenon calls for more in depth analysis and defer it to future studies.

4 Conclusion

In this paper, we studied the role of outer optimization in AT. We empirically
observed that AT induces higher gradient norm and variance which degrades
the performance of the conventional optimizer, i.e., MSGD. To address this
issue, we developed an optimization method robust to the variance of gradients
called ENGM. We provided two approximations to ENGM with significantly
reduced computational complexity. Our evaluations validated the effectiveness
of ENGM and its fast variants in AT setup. We also observed that ENGM
alleviates shortcomings of AT including the robust overfitting and sensitivity to
hyperparameters.
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