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1 More Details on CAUP Performance

In the main paper, we investigated the effect of CAUP `2-norm attack on seen
and unseen accuracies and compared it against UAP [2] and GAP [1]. Cd-UAP [3]
is another important baseline which generates class-wise UAPs and can not han-
dle zero-shot scenarios(unseen classes). Hence, it is not applicable as a baseline
for a fair comparison.

Figure 1 shows the fooling percentage as a function of `2-norm perturbation for
different attacks (this figure is a detailed version of Figure 2 at the main paper).
From the granularity perspective, we divided the attacks to two categories. The
first category includes UAP, GAP and random attacks, which generate image-
level perturbations. The second category consists of fine-grained attacks with
four different settings of the CAUP attack: i) Uniform is a CAUP attack with
uniform {wca}a∈A instead of trainable class-attribute function, ii) CAUP-CE
represents the CAUP attack with the Cross-Entropy loss function iii) CAUP-
conf2 is a CAUP attack with the Ranking loss function and δ = 2 iv) CAUP is
the default version of attack with the Ranking loss function and δ = 8.

On all datasets CAUP attack (type iv, which is our proposed attack in the paper)
outperforms all attacks of the first category of methods (UAP, GAP, Random).
These results show that the first category of attacks fail to fool the zero-shot
fine-grained model properly, as they do not leverage fine attribute models. So,
they are not a good suitable as (zero-shot) fine-grained perturbations.

On all datasets, CAUP-CE underperforms other CAUP versions. This confirms
the fact that Ranking loss is a stronger tool to attack zero-shot fine-grained
models. While we trained both CAUP and CAUP-conf2 on Ranking loss, CAUP
shows a better performance than CAUP-conf2 on CUB and SUN and similar
performance on AWA2. We can conclude that a higher confidence value makes
the `2-norm CAUP attack to perform better. We additionally provide the per-
formances on the harmonic mean H for both seen and unseen scenarios as a
function of the magnitude (`2-norm and `∞-norm) of the perturbation:

H = 2× fools × foolu
fools + foolu

(1)
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CUB AWA2 SUN

Fig. 1: Unseen (top) and seen (bottom row) fooling percentage of different universal
attacks on DAZLE as a function of the magnitude (`2-norm) of the perturbation.

CUB AWA2 SUN

Fig. 2: Unseen (top) and seen (bottom row) fooling percentage of different universal
attacks on DAZLE as a function of the magnitude (`∞-norm×0.01) of the perturbation.

As Figure 1 shows, harmonic mean mimics the same trend as seen/unseen fig-
ures. CAUP achieves a higher H mean for different values of the perturbation
magnitude on CUB and SUN. On the AWA2 dataset, CAUP and CAUP-conf2
perform similarly and better than other attacks. This supports CAUP as a more
intelligent attack, with a proper direction of perturbation vector, to deceive zero-
shot fine-grained models.

Figure 2 presents the performance evaluation of `∞-norm attack using UAP [2],
GAP [1] and different settings of CAUP. On CUB and AWA2, CAUP outper-
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forms UAP and GAP both on seen and unseen scenarios. This indicates that
CAUP as an `∞-norm attack is a stronger tool to mislead zero-shot fine-grained
models. On SUN, GAP outperforms CAUP, but CAUP still outperforms UAP.
The reason is SUN dataset includes more abstract attributes, which makes it
harder for our attack to perform. Comparing different settings of CAUP attack,
on CUB and SUN dataset CAUP attack, trained on ranking loss with δ = 8,
outperforms the other two CAUP settings. On AWA2, Uniform(CAUP attack
with uniform weights) and CAUP-conf2 are fine-grained attacks that outper-
form CAUP. We can conclude that composing attribute-based perturbation to
attack zero-shot fine-grained models performs better than just directly learning
an image-level universal perturbation.

1.1 Accuracies of Fine-Grained Models

The success of an adversarial attack can originate from either the universal at-
tack’s strength or the model’s weakness. To investigate this, we have to keep one
of the factors constant and compare all the universal attacks on the same model.
In this section, we discuss more details about the accuracy of each model and
why our comparison of attacks represents their effectiveness. Table 1 shows the
clean accuracies (accuracy on unperturbed images) of DAZLE, DCN, CNZSL,
and CEZSL models on the test set of CUB, AWA2, and SUN datasets. The seen
column corresponds to the accuracy of seen classes whose samples are present
in the training. On the other hand, the unseen column corresponds to zero-shot
classes where the model is not trained on any samples from these classes. Com-
paring all the models, CEZSL outperforms other models in five out of six cases
and is our most accurate candidate to attack. In addition, Figure 3 shows the
training and validation results for these models on the CUB dataset. The y-axis
and x-axis represent the accuracies on each set, and the epoch number during
the training, respectively. As the figure demonstrates, there is no case in which
the training accuracy (yellow) increases while testing accuracies (blue and red)
decrease, which implies the models do not overfit. It is worth mentioning that
the overfitting of the model could potentially benefit image-specific attacks like
PGD and MIM. However, this will not be likely for a universal attack (a single
perturbation direction); therefore, increasing the nonlinearity of the classifier will
not help these attacks. In addition, comparing different universal attacks is fair
since overfitting and instability of the target models would affect all the attack
methods to have a better/worse performance. Consequently, UAP and GAP do
not perform well on the fine-grained models for the three datasets compared to
our attack as shown in figure 1, 2.

2 CAUP Hyperparameters

To select hyperparameters {λreg, λutil}, we perform a search over 5 values in
[2−7, 21] for λreg and 5 values in [2−7, 21] for λutil and select the pair that achieves
the best accuracy drop using CAUP attack over validation sets. Also, the margin
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Table 1: Accuracy of Models on Clean Images

Accuracy %
CUB AWA2 SUN

Seen Unseen Seen Unseen Seen Unseen
DAZLE 59.6 56.7 75.7 60.3 24.3 52.3
DCN 60.7 28.4 37.0 25.5 37.0 25.5

CNZSL 50.7 49.9 77.q 60.2 41.6 44.7
CEZSL 66.8 63.9 78.6 63.1 36.8 48.8
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Fig. 3: Accuracy vs Epoch for training (yellow) and testing-seen (blue) and
testing-unseen (red) of the CUB dataset.

CAUP hyperparameters `2 `∞
Model Dataset λreg λutil λreg λutil

DAZLE
CUB 2−1 2+1 2−5 2+1

AWA 2−3 2−1 2−3 2−1

SUN 2−5 2−7 2−1 2−7

CEZSL
CUB 2−3 2+1 2−5 2+1

AWA 2−3 2+1 2−5 2+1

SUN 2−1 2−7 2−5 2−5

CNZSL
CUB 2−7 2−3 2−3 2−3

AWA 2−3 2−5 2−5 2−1

SUN 2−3 2−7 2−5 2−7

DCN
CUB 2−1 2−1 2+1 2−1

AWA 2−5 2−7 2−1 2+1

SUN 2+1 2+1 2+1 2+1

Table 2: Hyperparameters values λreg and λutil used in our experiments. These
values are obtained by grid search over the validation set.

parameter δ is set to 8. The optimal values of these hyperparameters are reported
in Table 2. Each row contains optimized values for each model and each dataset.
Note that we used one-third of the validation set for hyperparameter tuning to
be consistent with all other experiments.

3 Dominant Adversarial Classes

In Section 4.2.2 of the main paper, we investigated the existence of dominant
adversarial classes. To better demonstrate the generalization of dominant ad-
versarial classes, on CUB dataset, we attack all images from seen and unseen
classes of the test set and count the number of images deceived into each class.
In Figure 4, each bar corresponds to the number of images that has been fooled
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(a) Seen

(b) Unseen

Fig. 4: Top dominant adversarial classes on seen (top) and unseen (bottom) test
set. Each plot is the distribution of all test images that have been fooled into
adversarial classes. For better visualization, we removed the tail of classes with
zero fooled images.

into a particular adversarial class where the class name is shown on the hori-
zontal axis. Notice that CUB includes 200 classes in total. Nevertheless, only
33 and 44 of classes will be adversarial classes when we attack all test images
from seen and unseen splits, respectively. This shows the dominancy of a small
subset of adversarial classes in the fine-grained setting. As we mentioned before,
the dominancy of adversarial classes happens because of the major contribution
of attributes that are more specific to some species of birds. Employing these
characteristics can lead to defense mechanisms for fine-grained recognition and
we leave it for future studies.
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