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Abstract. Zero-shot fine-grained recognition is an important classifica-
tion task, whose goal is to recognize visually very similar classes, includ-
ing the ones without training images. Despite recent advances on the
development of zero-shot fine-grained recognition methods, the robust-
ness of such models to adversarial attacks is not well understood. On
the other hand, adversarial attacks have been widely studied for conven-
tional classification with visually distinct classes. Such attacks, in partic-
ular, universal perturbations that are class-agnostic and ideally should
generalize to unseen classes, however, cannot leverage or capture small
distinctions among fine-grained classes. Therefore, we propose a com-
positional attribute-based framework for generating adversarial attacks
on zero-shot fine-grained recognition models. To generate attacks that
capture small differences between fine-grained classes, generalize well to
previously unseen classes and can be applied in real-time, we propose
to learn and compose multiple attribute-based universal perturbations
(AUPs). Each AUP corresponds to an image-agnostic perturbation on a
specific attribute. To build our attack, we compose AUPs with weights
obtained by learning a class-attribute compatibility function. To learn
the AUPs and the parameters of our model, we minimize a loss, con-
sisting of a ranking loss and a novel utility loss, which ensures AUPs
are effectively learned and utilized. By extensive experiments on three
datasets for zero-shot fine-grained recognition, we show that our attacks
outperform conventional universal classification attacks and transfer well
between different recognition architectures.

Keywords: Fine-grained recognition, Zero-shot models, Adversarial at-
tacks, Attribute-based universal perturbations, Compositional model

1 Introduction

Despite the tremendous success of Deep Neural Networks (DNNs) for image
recognition, DNNs have been shown to be vulnerable to attacks [8, 24]. Ad-
versarial attacks are imperceptible image perturbations that result in incorrect
prediction with high confidence and have highlighted the lack of robustness of
DNNs. This has motivated a large body of research on generating small pertur-
bations [8, 11, 16, 24, 28, 36, 49, 53, 58, 64, 68, 74, 81, 94], and subsequently using
the attacks to design robust defense mechanisms, e.g., by detecting attacks or
retraining the model using perturbed images. Motivated by the fact that gen-
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Fig. 1: (a) Traditional UAP [27, 57] generates one holistic perturbation for all classes,
hence, does not efficiently capture fine-grained discriminative visual information. (b)
We develop a compositional framework for generating robust and generalizable attacks
for zero-shot fine-grained recognition. We generate attribute-based universal perturba-
tions (AUPs) and learn to compose them for attacking fine-grained classes.

erating image-specific attacks are costly, especially when dealing with a large
number of images, many works have studied finding universal attacks: image-
agnostic perturbations that can change the ground-truth class of an arbitrary
input image [37, 46, 56, 57, 59, 60, 70, 96], hence, ideally should generalize to pre-
viously unseen classes. The majority of existing works, however, have focused
on coarse-level classification in which classes have wide visual appearance vari-
ations with respect to each other, e.g., ‘person’, ‘car’, ‘building’, etc. Zero-shot
fine-grained recognition, on the other hand, is an important classification prob-
lem in which one has to distinguish visually very similar classes, e.g., clothing
types [2, 50, 79], faces [51, 65, 84] or bird/plant species [14, 19, 44, 101, 102, 105],
including classes without training images. The majority of successful methods
for zero-shot fine-grained recognition have focused on identifying and leveraging
small distinctions between classes using feature pooling [23,38,44], discriminative
region localization [2, 14, 50, 79, 101, 102] and dense attribute attentions [31, 32].
This is done by describing each fine-grained class by a class semantic vector con-
sisting of different attributes, such as ‘bill color’, ‘belly pattern’, ‘wing color’ for
classification of birds. Despite its importance, however, robustness of (zero-shot)
fine-grained recognition models to adversarial attacks has not received much
attention in the literature.

As we show in the paper, conventional adversarial attacks for coarse-level classi-
fication do not work well for fine-grained recognition. This comes from the fact
that generating holistic perturbations using existing methods fails to capture
and leverage small distinctions between a specific class and others. Another lim-
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itation of existing works is the lack of a principled method for crafting effective
adversarial attacks for unseen classes that do not have training images.

Paper Contributions. We propose a new framework for generating effective
and generalizable attacks on zero-shot fine-grained recognition models. To gen-
erate adversarial attacks that capture small differences between fine-grained
classes, generalize well to unseen classes without training images, and can be
applied in real-time, we develop a compositional attribute-based model. Lever-
aging class semantic vectors, we learn multiple attribute-based universal pertur-
bations (AUPs), where each AUP corresponds to an image-agnostic perturbation
on a specific attribute. To build a class-wise universal perturbation that changes
the class of an input image, we propose to compose the AUPs with appropriate
weights, which are obtained by learning a class-attribute compatibility function.
To learn our AUPs and the parameters of the compositional weight generator,
we minimize a ranking loss regularized by norms of AUPs, to keep them and the
final perturbation imperceptible, as well as a novel utility loss, which ensures
all AUPs are effectively trained and used. By extensive experiments on three
datasets for zero-shot fine-grained recognition, we show that our method out-
performs conventional classification attacks, with only half of the perturbation
norm, and also can transfer well between different architectures.

2 Related Works

Adversarial Attacks. Adversarial attacks have been mainly studied for clas-
sification problems and can be categorized as targeted or non-targeted [97].
Targeted attacks perturb an image to change its ground-truth class into a de-
sired secondary class [5,8,39], while non-targeted attacks focus on only altering
the ground-truth class [16, 24, 58, 78]. From a security perspective, attacks can
have different access levels to the model whose output needs to be modified.
In the white-box attack, the adversary has access to the parameters of the tar-
get model [8, 16, 24, 39, 58], while, in the black-box attack, there is no access
to the parameters of the target model [62, 90]. Earlier works proposed generat-
ing attacks using gradient-based and optimization-based approaches. Gradient-
based schemes maximize the cross-entropy loss function to find adversarial exam-
ples [16,24,40,73]. Also, optimization-based methods obtain adversarial examples
by solving a constrained optimization problem [8,24,40,58,72,78].

Perturbations generated by adversarial attacks can be either image-specific or
image-agnostic. While image-specific attacks generate a specific perturbation
for each input image, image-agnostic attacks generate a unique perturbation,
referred to as a universal adversarial perturbation, for all input images [4,57,70].
Another category of attacks focuses on semantic and perceptual properties of
visual features to preserve the image concept while perturbing it. Therefore,
[1, 6, 12, 20, 29, 41, 91] focused on generating a perturbation through geometric
transformations, global color shifts, image filters. These approaches can craft
more realistic adversarial examples, but their restricted perturbation space limits
their strength. [13, 17, 25, 52, 55, 82, 82, 85, 98, 104] find perturbations that can



4 N. Shafiee et al.

be hidden in the texture and regions of the image with drastic visual variations.
Recently, [80] have decomposed perturbations into independent components and
investigated the attribute to which each component belongs. Also, [61] has
shown that maximally separating the discriminative latent features of classes
can improve the robustness of fine-grained models.

Fine-Grained Recognition. DNNs have achieved significant improvement on
fine-grained recognition, where the challenge lies in recognizing different classes
with small but distinct visual appearance variations. To detect interactions be-
tween discriminative feature maps, [18, 79, 100] have employed pooling meth-
ods. [43, 101] and [14, 77, 105] have used part-based and weak supervision for
localizing discriminative parts of an image, respectively. On the other hand, in-
stead of considering all discriminative features with the same importance for
recognition, [15,30,34,45,99,106] have employed several attention mechanisms
for better extraction of more critical discriminative visual features. To better
capture relationships and interactions between discriminative features, [9, 103]
have proposed to employ graph networks and multi-granularity label prediction,
respectively. Despite advances in fine-grained recognition, many previous models
cannot generalize to zero and few-shot learning, which we review next.

Zero-Shot Learning. The goal of zero-shot learning is to transfer the knowl-
edge a model can gain from images of seen classes for recognition of unseen
classes, given a shared semantic space for both seen and unseen classes [54, 95].
[76] proposed a class-wise normalization technique to maintain the variance of
seen and unseen classes. [10,32,35,48,71] have learned to find an alignment be-
tween visual features and semantic vectors in an embedding space. [21,75,86,88]
have proposed to generate synthesized samples for unseen classes and reformu-
lated the zero-shot problem as a fully supervised setting. Although the generative
methods have improved the unseen classification performance, for fine-grained
recognition, they often cannot generate enough discriminative unseen features,
which has motivated recent works in [26,31,33]. Specifically, [26] proposed a hy-
brid generative and discriminative framework for fine-grained recognition, while
[31] developed a compositional generative model and [33] used a few samples of
unseen classes in training to generate more discriminative seen/unseen samples.

3 Fine-Grained Compositional Adversarial Attacks

3.1 Problem Setting
Assume we have two sets of fine-grained classes Cs and Cu, where Cs denotes
seen classes that have training images, Cu denotes unseen classes without train-
ing images and C , Cs∪Cu denotes the set of all classes. Let (I1, y1), . . . , (IN , yN )
be N training samples, where Ii is the i-th training image and yi ∈ Cs corre-
sponds to its fine-grained class. We denote the set of all training images by
I = {I1, . . . , IN}. Let {zc}c∈C denote class semantic vectors that provide de-
scriptions of classes. More specifically, zc = [zc1, . . . , z

c
A]> is the semantic vec-

tor of the class c with A attributes, where zca is the score of having the a-th
attribute in the class c [3, 7, 42, 63, 71, 87]. Also, let {va}Aa=1 denote attribute
semantic vectors, where va is the average of GloVe representation [67] of the
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words describing attribute a, e.g., ‘red beak’. Assume we have learned a zero-
shot fine-grained classifier, using training samples from seen classes, which can
classify a test image from a seen or an unseen class. Our goal is to generate a
fine-grained adversarial perturbation for an image from a seen or an unseen class
that results in misclassification.

As we show, our proposed compositional method for generating adversarial at-
tacks work with any zero-shot fine-grained recognition model. In the paper, we
focus on the non-targeted attacks, i.e., aim to misclassify an image without spec-
ifying the adversarial class. However, our formulation can be modified to the
targeted setting, which we leave for future studies.

3.2 Compositional Attribute-based Universal Perturbations
(CAUPs)

To generate an attack on an image I that belongs to a class y, we need to find a
perturbation e that results in a higher prediction score for a class c 6= y on the
image. More specifically, our goal is to find an attack e such that

∃ c ∈ C\y s. t. sc(I + e) > sy(I + e). (1)

There are two conventional ways of finding the attack. i) Generate an image-
specific perturbation. However, this requires significant computation per image
(more drastically if we want to misclassify multiple images, e.g., video frames)
and does not allow generating attacks in real-time. ii) Generate a single universal
perturbation that can change the class of any image. However, a single universal
perturbation cannot incorporate small differences between every pair of fine-
grained classes (as we show in the experiments, it does not work well).

Proposed Compositional Model. To obtain adversarial attacks that can be
generated in real-time, capture small differences between fine-grained classes
(where often only a few attributes of any two classes are different) and gener-
alize well to unseen classes, we propose a compositional model. First, for each
attribute a, we learn an attribute-based universal perturbation ua, which has
the same size as the input image. We refer to {ua}Aa=1 as attribute-based uni-
versal perturbations (AUPs). We compose the AUPs with learnable weights to

build class-wise universal perturbations, denoted by {ec}|C|c=1. More specifically,
we propose

ec =

A∑
a=1

ωc
a ua, ∀c ∈ C, (2)

in which we generate the universal attack on class c using linear combination
of AUPs with weights {ωc

1, . . . , ω
c
A}. Unlike prior works, instead of generating

one attack per image or one attack for all images from all classes, we generate
|C| universal perturbations, one per class. Additionally, our class-wise attack is a
composition of AUPs, which allows us to generate attacks for a seen or an unseen
class as we show below. Given that the adversary knows the ground-truth class
y of the image or obtains it from the output of the fine-grained classifier, it can
attack the image using ey.
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An important question is how to choose/find the composition weights {ωc
a} that

allows finding class-wise universal perturbations even for unseen classes. We pro-
pose to find the compositional weights using class-attribute compatibility

ωc
a = tanh(v>

a W az
c) ∈ [−1,+1], (3)

where the term inside the hyperbolic tangent measures the compatibility be-
tween the attribute a and class c using a learnable matrix W a. We use GloVe
vectors for va’s to generate ωc

a’s that reflect similarity of attributes. Using tanh
both normalizes the composition weights and assigns positive/negative values to
them with the goal of perturbing visual features by adding/removing attributes.1

Notice that using (3), once we learn W a’s from some training images, we can
generate compositional weights for both seen and unseen classes, hence, obtain
class-wise universal perturbations for any c ∈ C using (2).

Remark 1. In the experiments, we show that our compositional model works
significantly better than learning a single universal perturbation for all classes.
We also show that using compositional weights as in (3) works better than
combining AUPs with uniform weights.

Remark 2. Our method learns attribute-based universal perturbations and com-
bines them to produce class-wise perturbations. This is different from UAP [57]
and GAP [27] that generate a single class-agnostic universal perturbation.

3.3 Learning AUPs

Our goal is to learn {ua,W a}Aa=1 from a set of training images, which correspond
to samples from seen classes. As stated before, for a training image I from class
y, we want to find ey so that (1) is satisfied. Therefore, inspired by [8], we first
use the ranking loss function,

Lrank =
∑
I∈I

max{0, δ + sy(I + ey)−max
c 6=y

sc(I + ey)}, (4)

whose minimization ensures that for each training image I, there exists a non-
ground truth class (c 6= y) that obtains a higher score (by a margin δ > 0) on
the perturbed image than the ground truth class y. Notice that the ranking loss
in [8] only optimizes image-specific perturbations, while our proposed method
searches for image-agnostic perturbations. We use the ranking loss instead of
the cross entropy loss since specifying the margin δ allows computing stronger
perturbations (also empirically it works better). For our CAUP attack based on
`2-norm and `∞-norm, we also use the following regularization loss

Lreg =

{ ∑A
a=1 ‖ua‖22, `2 attack∑A
a=1

∑
j(|ua,j | − k)+, `∞ attack

(5)

where the first (`2) regularization ensures that entries of AUPs are sufficiently
small, while the second (`∞-type) regularization penalizes ua entires that are
more than a constant k and benefits from being differentiable.

1 Empirically, we obtained better results using tanh than other activation functions.
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Notice that by only minimizing these two losses, it is possible to never use some
of the AUPs (i.e., for some attributes a, the weights ωc

a will be zero across all
classes), which is undesired. To prevent this, we define the utility of each attribute
a as τa ,

∑
c |ωa,c|, which is the sum of the absolute compositional weight of

using the attribute a to attack the class c. We further regularize learning AUPs
by minimizing the utility loss,

Lutil =

A∑
a=1

τ2
a , (6)

which ensures nonzero values for all attribute utilities, hence, each attribute will
be used for generating attacks for at least some classes. As a result, to learn
the AUPs and the composition weights {ua,W a}Aa=1, we propose to minimize

Lrank + λregLreg + λutilLutil, (7)

where λreg, λutil ≥ 0 are hyperparameters. We use stochastic gradient descent
to optimize our proposed loss.

4 Experiments

We evaluate the performance of our proposed compositional attribute-based uni-
versal perturbations (CAUP) on fine-grained datasets. We show that CAUP
works well for different fine-grained recognition architectures and also our at-
tacks transfer well across architectures. We also demonstrate that CAUP works
better than conventional universal attacks and that composition of attribute-
based perturbations is important for generating effective attacks. We investigate
the effectiveness of different components of our method and present qualitative
results illustrating properties of our attacks.

Table 1: Statistics of the datasets used in our experiments.
Dataset # attributes # seen (val) / unseen classes # training / testing samples

CUB 312 100 (50) / 50 7,057 / 4,731
AWA2 85 27 (13) / 10 23,527 / 13,795
SUN 102 580 (65) / 72 10,320 / 4,020

4.1 Experimental Setup

Datasets. We use three popular zero-shot fine-grained recognition datasets:
Caltech-UCSD Birds-200-2011(CUB) [83], Animal with Attributes (AWA2) [89]
and SUN Attribute (SUN) [66, 92]. Table 1 shows the statistics of the three
datasets. CUB [83] contains 11,788 total images from fine-grained bird-species
with 150 seen and 50 unseen classes. AWA2 [89] is an animal classification dataset
with 40 seen and 10 unseen classes and has 37,322 samples in total. SUN [66]
consists of different visual scenes with 14,340 images from 645 seen and 72 unseen
classes. It has the largest number of classes among the datasets. However, it only
contains 16 training images per class due to its small overall training set. Notice
that these datasets include class semantic vectors, hence they are suitable for
our zero-shot fine-grained attack model. For CUB, AWA2 and SUN, we follow
the same training, validation and testing splits as in prior works [32,87].
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Evaluation Metrics. Following prior works on zero-shot fine-grained recogni-
tion [26, 32, 47, 76, 89], we only apply the attacks on images that the model cor-
rectly classfies and measure the top-1 accuracy of a classifier on these perturbed
test images. We consider the challenging generalized zero-shot setting, in which
test samples come from both seen and unseen classes (as opposed to the zero-shot
setting, where test images come only from unseen classes). We report the fooling
percentage on attacked testing images from seen classes, fools = (1−accs)∗100,
and from unseen classes, foolu = (1 − accu) ∗ 100. Since universal perturba-
tions generated by different methods and across architectures can have different
magnitudes, we `2 normalize the generated perturbations and, similar to prior
works [8, 53, 57], report the performance as a function of the scaling of the per-
turbation magnitude.

Baselines. We investigate the effectiveness of our proposed attacks on four
recent fine-grained recognition models: DAZLE [32], DCN [47], CNZSL [76] and
CEZSL [26]. We also study the transferability properties of our attacks across
these models. DAZLE is a discriminative fine-grained recognition model that
extracts and uses dense attribute features for classification. It uses the class
semantic vectors and attribute embeddings to learn A attention models for A
attributes and to compute the final class score. On the other hand, DCN and
CNZSL, are two discriminative methods that extract a holistic feature from an
input image to learn a compatibility function between images and class semantic
vectors. The generative CEZSL model is trained to capture the distribution of
the images and their attributes. It augments the seen image features with both
seen and unseen synthetically features to train a standard classifier. We chose
these fine-grained architectures since they can handle the zero-shot setting, on
which we can test our zero-shot fine-grained attack.

We compare CAUP with several baseline attacks: i) Universal Adversarial Per-
turbation (UAP) [57], which learns a single perturbation template. ii) Generative
Adversarial Perturbation (GAP) [69], which is a network that generates a sin-
gle universal adversarial perturbation. We trained both UAP and GAP on seen
classes and test them on seen/unseen classes. iii) Uniform, where we simply com-
bine all the AUPs, {ua}Aa=1, with uniform weights of 1/A in (2). This allows us
to investigate the effectiveness of our composition weights. iv) Random, where
we randomly generate a perturbation vector whose entries come from a standard
Normal distribution. Notice that since our attack is image-agnostic, we assume
the attacker cannot eavesdrops the input, hence the results are not comparable
to image-specific attacks [16, 22,58,93].

Implementation Details. We attached RESNET backbone to each fine-grained
model and retrained them to achieve similar performance as they reported in
their paper. For all models, we follow the exact experimental setting as in their
reported work [26, 32, 47, 76]. We compute all attacks in the image-space and
not in the feature-space, which is conventional in the fine-grained recognition.
We perform the experiments in the generalized zero-shot setting, where testing
images come from both seen and unseen classes. For efficiency, similar to [57],
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Fig. 2: Unseen (top) and seen (bottom row) fooling percentage of different universal
attacks on DAZLE as a function of the magnitude (`2-norm) of the perturbation.

we randomly use one-third of the training images to generate different types of
universal attacks. In our experiments, using more samples for training did not
change the performances. We implement all attacks in Pytorch on a server run-
ning Ubuntu 18.04 with an Intel Xeon Gold CPU and eight NVIDIA Quadro
RTX 6000 GPUs and optimized with the default setting of ADAM optimizer
with 0.001 learning rate and batch size of 50. To avoid overfitting, we employ
an early stopping method with the patience of 20 (one average it stops at the
10-th epoch). To select λreg and λutil in our method, we perform hyperparam-
eter tuning over the validation sets. The optimal hyperparameter values of our
attack are reported in the supplementary materials.

4.2 Experimental Results

4.2.1 Quantitative Analysis
Effectiveness of Compositionality and Attribute-based Attacks. We

start by comparing the effectiveness of the CAUP against other possible uni-
versal attacks, which are not attribute-based or not truly compositional. To do
so, we learn attacks by different methods for the DAZLE model on the three
datasets. Figure 2 shows the unseen fooling percentage(top row) and seen fool-
ing percentage(bottom row) as a function of the magnitude (`2-norm) of the
perturbation (due to space limitation, the results for the harmonic mean and
the `∞-norm are reported in the supplementary materials). Notice that on all
datasets, CAUP achieves higher fooling percentage (hence, more effective at-
tack) for different values of the perturbation magnitude. In particular, on CUB,
with `2-norm of perturbation being 2, CAUP increases the fooling percentage
to more than 50% while other attacks only increase the fooling percentage to
about 15%. We also obtain a similar 50% gap between CAUP and (UAP,GAP)
fooling percentages for `2-norm of perturbation being 6 on CUB and AWA2.
As expected, when the perturbation norm increases, all attacks perform bet-
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Table 2: Fooling Percentage (seen/unseen) of our CAUP attack (perturbation `2-norm
of 6) on fine-grained recognition models on test images of three datasets.

Fooling Percentage CUB AWA2 SUN

Seen/Unseen UAP GAP CAUP UAP GAP CAUP UAP GAP CAUP

DAZLE 35/ 24 27/ 19 96/ 89 09/ 15 11/ 16 89/ 76 41/ 22 46/ 27 75/ 55
DCN 51/ 46 21/ 21 70/ 70 02/ 05 07/ 10 08/ 15 41/ 21 30/ 15 59/ 33

CNZSL 26/ 25 18/ 21 96/ 91 13/ 12 09/ 12 54/ 42 29/ 16 27/ 20 22/ 12
CEZSL 39/ 40 35/ 35 99/ 95 24/ 21 12/ 15 81/ 75 29/ 28 26/ 26 92/ 89

Table 3: Fooling Percentage (seen/unseen) of our CAUP attack (perturbation `∞-norm
of 0.06) on fine-grained recognition models on test images of three datasets.

Fooling Percentage CUB AWA2 SUN

Seen/Unseen UAP GAP CAUP UAP GAP CAUP UAP GAP CAUP

DAZLE 14/ 11 89/ 77 98/ 91 04/ 08 43/ 38 82/ 77 21/ 10 90/ 78 85/ 71
DCN 05/ 06 74/ 73 70/ 66 01/ 02 15/ 19 47/ 48 09/ 05 81/ 63 66/ 41

CNZSL 16/ 18 61/ 55 97/ 93 06/ 08 57/ 73 86/ 79 20/ 11 75/ 55 48/ 19
CEZSL 18/ 24 79/ 77 99/ 95 02/ 04 55/ 43 97/ 96 26/ 15 81/ 72 92/ 86

ter. While on SUN, CAUP still performs best, the gap is smaller than CUB and
AWA2. This comes from the fact that some of the attributes in SUN are abstract
concepts, such as research/vacation, which are harder to visually attack, while
CUB and AWA2 have physical attributes, such as red wing/spotted belly and
gray/stripes. Notice that Uniform in all datasets underperforms CAUP which
demonstrates that attribute-based attacks without properly composing them
with appropriate weights are not effective. In fact, using compositional weights
(3), by weighting attribute-based universal perturbations based on the class to
be attacked, significantly improves the efficacy of the perturbations.

More generally, Table 2 shows the fooling percentage of UAP, GAP and CAUP
`2-norm attacks on four fine-grained models on perturbed test images from
seen/unseen classes. The results are for `2-norm of the perturbation being 6.
Each box is an attack that is trained and tested on the corresponding fine-
grained model. Notice that in almost all cases, for both seen and unseen classes
and all three datasets, CAUP extremely outperforms UAP and GAP, which
shows the effectiveness of the compositional model not only for attacking seen
classes but for generalization to classes without any training images. In particu-
lar, on CUB, our attack improves over UAP and GAP by at least 19% on seen
and 24% on unseen images. On AWA2 and SUN, DAZLE and CEZSL are easier
architectures to attack while DCN and CNZSL are harder to fool. Even for these
robust models, CAUP outperforms on fooling percentage for 3 out of four cases.
Also, on SUN, the effectiveness of three attack strategies is lower than the other
two datasets. We believe this is due to the very small number of training sam-
ples (16) per class, which makes learning perturbations, in particular, multiple
attribute-based attacks, more difficult. Despite this difficulty, CAUP performs
significantly better on SUN when using DCN, CEZSL and DAZLE, while UAP
performs only 7% better than CAUP on DCN. Similar to Table 2, Table 3 in-
cludes the fooling percentage of UAP, GAP and CAUP `∞-norm attacks on four
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Table 4: a) Transferability (seen/unseen fooling percentage) of CAUP attacks across
different fine-grained models. The `2-norm of perturbation is 6 for all cases. b) Ablation
study to investigate the effectiveness of different loss functions on the DAZLE.

(a)

Attack \Train DAZLE CEZSL CNZSL DCN

CUB

DAZLE 96/ 89 97/ 91 89/ 83 74/ 61
CEZSL 84/ 81 99/ 95 92/ 93 77/ 70
CNZSL 86/ 81 96/ 94 96/ 91 79/ 66
DCN 81/ 82 97/ 96 88/ 90 70/ 70

AWA2

DAZLE 89/ 76 66/ 55 87/ 89 20/ 19
CEZSL 73/ 63 81/ 75 50/ 52 37/ 28
CNZSL 54/ 56 63/ 39 54/ 42 23/ 18
DCN 47/ 52 62/ 49 32/ 28 08/ 15

SUN

DAZLE 75/ 55 84/ 65 23/ 16 59/ 42
CEZSL 59/ 55 92/ 89 17/ 18 53/ 42
CNZSL 66/ 46 85/ 65 22/ 12 58/ 37
DCN 61/ 44 89/ 80 18/ 09 59/ 33
AVG 67/ 62 82/ 70 55/ 53 53/ 42

(b)

Seen/Unseen `2

CUB

Lrank 0.24/0.18
Lrank + Lreg 0.53/0.40
Lrank + Lutil 0.90/0.82

Lrank + Lreg + Lutil 0.96/0.89

AWA2

Lrank 0.05/0.11
Lrank + Lreg 0.18/0.21
Lrank + Lutil 0.36/0.33

Lrank + Lreg + Lutil 0.76/0.73

SUN

Lrank 0.38/0.22
Lrank + Lreg 0.51/0.31
Lrank + Lutil 0.30/0.26

Lrank + Lreg + Lutil 0.75/0.55

fine-grained models for both seen and unseen classes. The perturbations applied
with scaled `∞-norm of 0.06. CAUP outperforms on eight out of twelve cases
while GAP outperforms on the other four cases. In general DCN is a more ro-
bust model against all attacks, while DAZLE, CEZSL and CNZSL are easier to
fool. Notice that GAP outperforms UAP in `∞-norm although it underperforms
UAP and CAUP in `2-norm attack.

Limitation. Notice that to generate our CAUP attacks, we assumed access to
class-semantic vectors. While in the datasets above, class semantics are available,
some fine-grained recognition problems may not have such vectors. This, in fact,
could be a limitation of our method technique, and extension to settings without
semantic vectors is an interesting avenue of future research.

Transferability of CAUP across Recognition Models. Table 4a shows the
transferability of our proposed CAUP attacks learned by one fine-grained model
to other models. For each row, we learn the attribute-based universal pertur-
bations and compositional weights using the indicated fine-grained recognition
method and test the accuracy of each model against test data perturbed by our
CAUP. Notice that, as expected, in almost all cases, the attack generated by
each model works best on that model compared to others. On the other hand,
CAUP attacks transfer quite well across different architectures. For example, on
CUB, our attacks learned from CEZSL lead to (97%, 91%) fooling percentage
for (seen, unseen) using DAZLE, while leading to (96%, 94%) fooling percent-
age using CNZSL and (97%, 96%) fooling percentage using DCN. Similarly, the
performance of CAUP attacks learned from DCN, CNZSL or DAZLE transfer
well to other models. As the average transfer rate shows, the attacks learned on
CEZSL transfer better than other attacks to other fine-grained models.

Ablation Study on Objective Function. In Table 4b, we investigate the
effectiveness of each term of our proposed loss in (7) when using DAZLE as the
fine-grained recognition model. We show the seen and unseen fooling percentages
over all the three datasets, for perturbation magnitude being 6. Notice that only
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Seen Unseen

blue wing spotted belly Fox Sporrow
→ Spotted Catbird

Bookstore
→ Archive

Groove Billed Any
→ Green Violetear

YHB
→ Painted Bunting

red wing solid back Panda
→ Siamese cat

Zebra
→ Giraffe

Bat
→ Rat

Airlock
→ Engine room

a) AUPS b) Adversarial Examples generated by CAUP

Fig. 3: a) AUPs on CUB. The first/second column shows the perturbation for different
wing colors and belly/back patterns, respectively. b) Successful adversarial examples
generated with CAUP (perturbation norm of 6). We use the convention (ground-truth
class → adversarial class). YHB means Yellow Headed Blackbird.

using Lrank does not lead to very effective attacks. Once we add Lreg or Lutil

to the ranking loss, the attack effectiveness improves. Generally, using Lutil

lead to more improvement compared to Lreg. This shows the importance of
ensuring that every attribute-based universal perturbation must be used across
some classes. Finally, adding both Lreg and Lutil to the ranking loss leads to
significant improvement of the attack efficacy.

4.2.2 Qualitative Analysis

Adversarial Examples. In Figure 3, we show several examples of perturbed
test images by our method that successfully fool the fine-grained DAZLE classi-
fier. Notice that CAUP attacks are imperceptible or quasi-perceptible, and can
not only work well for test images from seen classes but also from unseen classes.
This is done by composing different attribute-based universal perturbations us-
ing class-attribute weights ωc

a that specify how much to weight an attribute
perturbation ua for attacking a class c.

In Figure 5, we show a class and the most important attributes for changing the
class label. In other words, we show the attributes with the largest composition
weights ωc

a, where thicker edges mean larger absolute weight, hence, more con-
tribution from the associated attribute perturbation. Notice that our method
automatically learns to give higher composition weights to ‘purple forehead’,
‘purple crown’ and ‘red breast’ attribute perturbations in order to misclassify
the ‘painted bunting’ class or gives higher composition weights to ‘red wing’ and
‘orange wing’ to misclassify the ‘red-winged black bird’ class, which intuitively
are also the most discriminating features of these classes.

Correlation of Attribute-based Universal Perturbations. To demonstrate
the similarity among learned AUPs, in Figure 5, we show the cosine similar-
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0.0 1.0 2.0 3.0

Utility of Attributes

has bill color : red
has bill shape : hooked seabird

has wing color : red
has breast color : red
has eye color : white

has tail pattern : multi-colored
has crown color : green

has forhead color : green
has tail shape : notched tail
has tail shape : pointed tail

Seen Unseen

Painted Bunting

Green Violet Ear

Orange Crown 
Warbler

Green Tailed Towhee

Gray Catbird  

Green Violet
 Ear

Boat Tailed GrackleCape Glossing Swallow

Barn Swallow

Blue Grosbeak

Groove Billed Any

 

Painted Bunting

Cardinal

Green Violet Ear Orange Crown Warbler

Arctic Tern

Painted Bunting

Cape Glossing  Swallow

Blue Grosbeak

Green Violet
Ear

Boat Tailed Grackle

Brandt Cormorant

a) Utility of Attributes b) Associated Adversarial Classes

Fig. 4: a) Sorted utilities (5 largest and 5 smallest ones are shown) of AUPs trained
for DAZLE on the CUB dataset. b)Visualization of four ground-truth classes and the
associated adversarial classes on CUB. The node at the center of each component is a
ground-truth class (green) and the surrounding nodes are the adversarial classes (black)
after attack. The size of each adversarial class node represents the portion of samples
that have been fooled into to that class by CAUP.

ities between pairs of AUPs learned on the CUB dataset. Notice that as the
block-diagonal structure in the first plot shows, our method learns more similar
AUPs for similar attributes (e.g., among wing colors) and more dissimilar AUPs
for semantically different attributes (e.g., wing colors and belly/back patterns).
On the other hand, as the second plot shows, within different color wings, the
learned AUPs for more semantically related colors are more similar (e.g., ‘brown
wing’ and ‘yellow wing’), while being more distinct for distinct colors (e.g., ‘blue
wing’ and ‘red wing’). In Figure 3, for several attributes, we show the learned
perturbations, which clearly have different patterns.

Utilities of AUPs. In Figure 4, we show the utilities of AUPs, i.e., how much
each attribute contributes to misclassifying some classes. We show the top 5 at-
tributes with the highest utilities, defined in (6), and the top 5 attributes with the
lowest utilities. Notice that all attributes contribute for attacking some classes,
as they have non-zero utilities. In addition, the utilities of attributes are not
uniform, which means that our method successfully learns to use more discrim-
inative attributes for generating attacks. For example, ‘has tail shape: pointed
tail’ is very common across different bird species, therefore the associated AUP
has a small utility, while ‘has breast/wing color: red’ are more specific to some
bird species, therefore, they have higher utilities for attack (we can change many
classes that do not have red breast/wing, by attacking these attributes).

Dominancy in Fine-Grained Classes. Given that our attacks are non-targeted,
we investigate how CAUP on images from a specific fine-grained class misclas-
sify it into other classes. To do so, for a fixed class and for all test images that
belong to it, we count the number of images that have been misclassified by
the CAUP as belonging to each particular/adversarial class. In Figure 4, we
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show four classes c in CUB (each c being at the center of a connected graph)
and the adversarial classes to which the perturbed test images of c have been
misclassified (connected to the center node by edges). The size of images repre-
senting each adversarial class corresponds to the number of samples fooled into
that adversarial class. First, notice that there are only a few adversarial classes
for each ground-truth class. For example, images from ‘gray catbird’ get fooled
into one of the four classes shown in the figure. On the other hand, many images
from ‘gray catbird’, ‘arctic tern’ and ‘Brandt cormorant’ classes are misclassified
as ‘painted bunting’, making this class a dominant adversarial class. The reason
for this dominancy is the major contribution (i.e., high utility) of attribute ‘has
breast/wing color: red’, which is more specific to some species of birds includ-
ing ’painted bunting.’ Additionally, for similar reasons, ‘green violet ear’ and
‘orange crown warbler’ are other examples of the dominant adversarial classes.
These results indeed confirm the existence of dominant adversarial classes in the
fine-grained settings (both seen and unseen), where CAUP frequently misclassi-
fies images into such classes. We believe this could be used to investigate defense
mechanisms for fine-grained recognition, which we leave for future studies.
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seen unseen

purple 
forehead

purple crown

red breast

green
upperparts

green wing

Painted Bunting

red wing

orange wing

orange upper parts

red
upperparts

black belly

Red Winged Black Bird

a) Correlation of Attributes b) Important AUPs

Fig. 5: a) Correlations among some learned attribute-based universal perturbations.
Lighter color means being more correlated. b) We visualize the attributes whose per-
turbation has the largest absolute weights for changing a given class. Thicker edges
mean higher attribute-class weights, ωc

a. YHB means Yellow Headed Black Bird.

5 Conclusions

We proposed a compositional method for generating effective, generalizable and
real-time adversarial attacks on fine-grained recognition models, by learning
attribute-based universal perturbations and a model for composing them. By
extensive experiments on multiple fine-grained datasets and using several fine-
grained recognition models, we showed that our attacks are significantly more
effective than conventional universal perturbations and generalize well from seen
to unseen classes and across different architectures.
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