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1 Oracle-Invariant Attacks

1.1 Square Attack

The strongest Oracle-Invariant examples are generated using the Square attack
[1]. Images so generated are Oracle-Invariant since the Square Attack is query-
based, and does not utilise gradients from the model for attack generation. How-
ever this attack uses 5000 queries, and is thus computationally expensive. Hence
it cannot be directly incorporated for adversarial training, although it is one of
the strongest attacks for evaluation purposes. We note that the computation-
ally efficiency can be improved by reducing the number of queries; however it
also reduces the effectiveness of the attack significantly. The adversarial images
generated using the Square attack and their corresponding perturbations are
presented in Fig.1.

1.2 RayS Attack

Another technique that is observed to generate strong Oracle-Invariant examples
is the black-box RayS attack [4]. Similar to the Square attack, the images so
generated are also Oracle-Invariant since it is a query-based attack and does
not utilise gradients for attack generation. Although the RayS attack requires
10000 queries which is highly demanding from a computational viewpoint, it
is observed to be weaker than the Square attack. Adversarial images generated
using the RayS attack and their corresponding perturbations are presented in
Fig.2.

1.3 PGD based Attacks

While the most efficient attack that is widely used for adversarial training is the
PGD 10-step attack, it cannot be used for the generation of Oracle-Invariant
samples as adversarially trained models have perceptually aligned gradients, and
tend to produce Oracle-Sensitive samples. Therefore, we explore some variants
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Fig. 1. Square attack: Adversarially
attacked images (b, c, d, f) and
the corresponding perturbations (e, g)
for various ℓ∞ bounds generated us-
ing the gradient-free random search
based attack Square [1]. The clean
image is shown in (a). Attacks are
generated from a model trained us-
ing the proposed Oracle-Aligned Ad-
versarial Training (OA-AT) algorithm
on CIFAR-10. Prediction of the same
model is printed above each image.
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Fig. 2.RayS attack: Adversarially at-
tacked images (b, c, d, f) and the
corresponding perturbations (e, g) for
various ℓ∞ bounds generated using
the gradient-free binary search based
attack RayS [4]. The clean image
is shown in (a). Attacks are gen-
erated from a model trained using
the proposed Oracle-Aligned Adver-
sarial Training (OA-AT) algorithm on
CIFAR-10. Prediction of the same
model is printed above each image.
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Fig. 3. LPIPS distance between clean
and adversarially perturbed images.
Attacks generated from PGD-AT
[16,18] model (Oracle-Sensitive) and
Normally Trained model (Oracle-
Invariant) are considered. (a) PGD-
AT ResNet-18 model is used for com-
putation of LPIPS distance (b) Nor-
mally Trained AlexNet model is used
for computation of LPIPS distance.
PGD-AT model based LPIPS distance
is useful to distinguish between Oracle-
Sensitive and Oracle-Invariant attacks.
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Fig. 4. Comparison of the proposed
model with AWP [28] on CIFAR-10,
against attacks of varying strength and
Oracle sensitivity constrained within
ε = 16/255. (a) LPIPS based regu-
larizer, (b) Discriminator based regu-
larizer are used for generating Oracle-
Invariant attacks respectively. As the
coefficient of the regularizer increases,
the attack transforms from Oracle-
Sensitive to Oracle-Invariant. The pro-
posed method achieves improved accu-
racy when compared to AWP.
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of the PGD attack to make the generated perturbations Oracle-Invariant. We
denote the Cross-Entropy loss on a data sample x with ground truth label y
using LCE(x, y). We explore the addition of regularizers to the Cross-Entropy
loss weighted by a factor of λX in each case. The value of λX is chosen as
the minimum value which transforms the PGD attacks from Oracle-Sensitive to
Oracle-Invariant. This results in the strongest possible Oracle-Invariant attacks.

1.4 Discriminator based PGD Attack

We train a discriminator to distinguish between Oracle-Invariant and Oracle-
Sensitive adversarial examples, and further maximize the below loss for the gen-
eration of Oracle-Invariant attacks:

LCE(x, y)− λDisc · LBCE(x̂,OI) (1)

Here LBCE(x̂,OI) is the Binary Cross-Entropy loss of the adversarial ex-
ample x̂ w.r.t. the label corresponding to an Oracle-Invariant (OI) attack. We
train the discriminator to distinguish between two input distributions; the first
corresponding to images concatenated channel-wise with their respective Oracle-
Sensitive perturbations, and a second distribution where perturbations are shuf-
fled across images in the batch. This ensures that the discriminator relies on
the spatial correlation between the image and its corresponding perturbation
for the classification task, rather than the properties of the perturbation itself.
The attack in Eq.1 therefore attempts to break the most salient property of
Oracle-Sensitive attacks, which is the spatial correlation between an image and
its perturbation.

1.5 LPIPS based PGD Attack

We propose to use the Learned Perceptual Image Patch Similarity (LPIPS) mea-
sure for the generation of Oracle-Sensitive attacks, as it is known to match well
with perceptual similarity [31,15]. As shown in Fig.3, while the standard AlexNet
model that is used in prior work [15] fails to distinguish between Oracle-Invariant
and Oracle-Sensitive samples, an adversarially trained model is able to distin-
guish between the two types of attacks effectively. In this plot, we consider at-
tacks generated from a PGD-AT [16,18] model (Fig.1(c-e) in the Main paper) as
Oracle-Sensitive attacks, and attacks generated from a Normally Trained model
(Fig.1(h) in the Main paper) as Oracle-Invariant attacks. We therefore propose
to minimize the LPIPS distance between the natural and perturbed images,
in addition to the maximization of Cross-Entropy loss for attack generation as
shown below:

LCE(x, y)− λLPIPS · LPIPS(x, x̂) (2)

We choose λLPIPS as the minimum value that transforms the PGD attack
from Oracle-Sensitive to Oracle-Invariant (OI), to generate strong OI attacks.
This is further fine-tuned during training to achieve the optimal robustness-
accuracy trade-off. As shown in Fig.5, setting λLPIPS to 1 changes adversarial
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Fig. 5. Oracle-Invariant adversarial examples generated using the LPIPS based
PGD attack in Eq.2 across various perturbation bounds. White-box attacks and
predictions on the model trained using the proposed OA-AT defense on the
CIFAR-10 dataset with ResNet-18 architecture are shown: (a) Original Unper-
turbed image, (b, h, k) Adversarial examples generated using the standard PGD
10-step attack, (d, f, i, j, l, m) LPIPS based PGD attack generated within per-
turbation bounds of 16/255 (d, f), 24/255 (i, j) and 32/255 (l, m) by setting the
value of λLPIPS to 1 and 2, (c, e, g) Perturbations corresponding to (b), (d) and
(f) respectively.

examples from Oracle-Sensitive to Oracle-Invariant, as they look similar to the
corresponding original images shown in Fig.5 (a). This can be observed more
distinctly at perturbation bounds of 24/255 and 32/255. The perturbations in
Fig.5 (c) are smooth, while those in (e) and (g) are not. This shows that the
addition of the LPIPS term helps in making the perturbations Oracle-Invariant.
Very large coefficients of the LPIPS term make the attack weak as can be seen in
Fig.5 (f, j, m) where the model prediction is same as the true label. We therefore
set λLPIPS to 1 to obtain strong Oracle-Invariant attacks. As shown in Table-1,
while we obtain the best results using the LPIPS based PGD attack for training
(E1), the use of discriminator based PGD attack (E8) also results in a better
robustness-accuracy trade-off when compared to E2, where there is no explicit
regularizer to ensure the generation of Oracle-Invariant attacks.

1.6 Evaluation of the proposed defense against Oracle-Invariant
Attacks

We compare the performance of the proposed defense OA-AT with the strongest
baseline AWP [28] against the two proposed Oracle-Invariant attacks, LPIPS
based attack and Discriminator based attack in Fig.4 (a) and (b) respectively.
We vary the coefficient of the regularizers used in the generation of attacks,
λDisc (Eq.1) and λLPIPS (Eq.2) in each of the plots. As we increase the co-
efficient, the attack transforms from Oracle-Sensitive to Oracle-Invariant. The
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proposed method (OA-AT) achieves improved accuracy compared to the AWP
[28] baseline.

2 Analysing Oracle Alignment of Adversarial Attacks

In this section, we present more detailed analysis of generating Oracle-Invariant
and Oracle-Sensitive attacks in a simplified yet natural setting, introduced in
Sec.5 of the Main paper. We consider a binary classification task as proposed
by Tsipras et al. [26], consisting of data samples (x, y), with y ∈ {+1,−1},
x ∈ Rd+1. Further,

x1 =

{
y, w.p. p

−y, w.p. 1− p
, xi ∼ N (αy, 1) ∀i ∈ {2, . . . , d+ 1}

In this setting, x1 can be viewed as a feature that is strongly correlated with
the Oracle Label y when the Bernoulli parameter p is sufficiently large (for
eg: p ≈ 0.90), and thus corresponds to an Oracle Sensitive feature. On the other
hand, x2, . . . , xd+1 are spurious features that are positively correlated (in a weak
manner) to the Oracle label y, and are thus Oracle Invariant features.

Case 1: A simple, yet effective classifier that achieves high accuracy is given
as follows: f(x) := sign(wTx), where w ∈ Rd+1 with w = (0, 1

d , . . . ,
1
d ). Then,

its accuracy is given by

P[f(x) = y] = P[y · sign(wTx) = 1] = P

[
y

d+1∑
i=2

xi

d
> 0

]
= P[z > 0]

where z ∼ N (α, 1
d ).

We see this is true since z is given by a sum of d i.i.d. Gaussian random variables
yxi/d, each with mean y · αy/d = α/d (since y2 = 1), and with variance 1/d2

each. Thus the accuracy exceeds 99% if α > 3√
d
by properties of the Gaussian

distribution. We note that such a classifier that achieves vanishing error can be
learnt through standard Empirical Risk Minimisation.

However, with an ℓ∞ attack with perturbation budget 2α, an adversary can
flip each of the weakly correlated features x2, . . . , xd+1 to appear as xi + δ ∼
N (−αy, 1). These perturbed features are thus now weakly anti-correlated with
the Oracle label y, and achieves a robust accuracy of less than 1%. Thus by
attacking a standard, non-robust classifier the perturbations can be seen to be
Oracle Invariant features that are spurious in nature. Tsipras et al. [26] prove a
more general version of the same result:

Theorem [Tsipras et al.] Let f be any classifier that achieves standard accu-
racy of at least 1 − γ, that is P[f(x) = y] > 1 − γ. Then, the robust accuracy
achieved by f under an ℓ∞ attack with a perturbation budget of 2α, has a tight
upper-bound given by p

1−pγ.
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Observation 1. Adversarial perturbations of a standard, non-robust classifier
utilize spurious features, resulting in Oracle Invariant Samples that are weakly
anti-correlated with the Oracle label y.

Case 2: Here, we consider another simple classifier, g(x) := sign(x1), which
achieves, on natural samples, an accuracy of

P[g(x) = y] = P[y · sign(x1) = 1] = p

While the accuracy thus has a tight upper-bound of p, the classifier g is robust
to adversarial perturbations of relatively large magnitude. Further, to maximise
the misclassification of model g, it is easy to see that adversarial perturbations
take the form δ = (2α, 0, . . . , 0). Thus, we observe that adversarial perturbations
of robust models correspond to Oracle Sensitive features.

Observation 2. Adversarial perturbations of a robust model result in Oracle
Sensitive Samples, utilizing features strongly correlated with the Oracle label y.

Theorem 1. Consider a robust Deep Neural Network fθ with parameters θ as
in Algorithm-1. Given an input sample x, let δ∗ represent an optimal solution
that maximises the following objective:

ℓ = ℓCE(fθ(x+ δ), y)− λ · LPIPS(x, x+ δ) (3)

Then, ∃ λ > 0 such that x+ δ∗ is an Oracle Invariant Sample.

Proof: By definition, the LPIPS metric between samples x and x+ δ∗ measures
aggregate L2 distances between the corresponding feature space representations
in the intermediate layers of robust network fθ. For λ >> 0, the LPIPS compo-
nent dominates the overall optimization objective in the adversarial attack. To
prove the result, let us assume on the contrary that the perturbation δ∗ results
in an Oracle Sensitive Sample. Thus the corresponding feature representations
in a robust network for the sample x+ δ∗ would deviate significantly from that
of the original benign sample x. Thus, as LPIPS(x, x+ δ∗) > 0, and as λ → ∞,
the overall objective in Eqn(1) decreases, with ℓ → −∞, contradicting the opti-
mality of δ∗ in maximising the same objective. Thus, we conclude that x+ δ∗ is
indeed an Oracle Invariant Sample.

3 Details on the Datasets used

We evaluate the proposed approach on the CIFAR-10, CIFAR-100 [14] and
SVHN [17] datasets. The three datasets consist of RGB images of spatial dimen-
sion 32×32. CIFAR-10 and SVHN contain 10 distinct classes, while CIFAR-100
contains 100. CIFAR-10 is the most widely used benchmark dataset to perform
a comparative analysis across different adversarial defense and attack methods.
CIFAR-100 is a challenging dataset to achieve adversarial robustness given the
large number of diverse classes that are interrelated. Each of these datasets con-
sists of 50,000 training images and 10,000 test images, while SVHN contains
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73257 training and 26032 testing images. We split the original training set to
create a validation set of 1,000 images in CIFAR-10 and 2,500 images in CIFAR-
100 and SVHN. We ensure that the validation split is balanced equally across
all classes, and use the remaining images for training. To ensure a fair compar-
ison, we use the same split for training the proposed defense as well as other
baseline approaches. For CIFAR-10 and CIFAR-100 datasets, we consider the
ℓ∞ threat model of radius 8/255 to be representative of imperceptible pertur-
bations, that is, the Oracle label does not change within this set. For SVHN we
consider this bound to be 4/255 as many of the images in the dataset have a low
contrast, leading to visible perturbations at relatively small ε bounds. Further,
to investigate robustness within moderate magnitude perturbation bounds, we
consider the ℓ∞ threat model of radius 16/255 for CIFAR-10 and CIFAR-100,
and a bound of 12/255 for SVHN.

4 Details on Training

In this section, we expound further details on the algorithm of the proposed
method, presented in Sec.4 of the Main paper (Alg.1). We use a varying ε sched-
ule and start training on perturbations of magnitude εmax/4. This results in
marginally better performance when compared to ramping up the value of ε
from 0 (E9 of Table-1). For CIFAR-10 training on ResNet-18, we set the weight
of the adversarial loss Ladv in L21 of Alg.1 (β parameter of TRADES [29]) to 1.5
for the first three-quarters of training, and then linearly increase it from 1.5 to 3
in the moderate perturbation regime, where ε is linearly increased from 12/255
to 16/255. In this moderate perturbation regime, we also linearly increase the
coefficient of the LPIPS distance (Alg.1, L14) from 0 to 1, and linearly decrease
the α parameter used in the convex combination of softmax prediction (Alg.1,
L11) from 1 to 0.8. This results in a smooth transition from adversarial training
on imperceptible attacks to attacks with larger perturbation bounds. We set the
weight decay to 5e-4.

We use cosine learning rate schedule with a maximum learning rate of 0.2
for CIFAR-10 and CIFAR-100, and 0.05 for SVHN. We use SGD optimizer with
momentum of 0.9, and train for 110 epochs, except for training PreActResNet18
on CIFAR-100 and WideResNet-34-10 on CIFAR-10, where we use 200 epochs.
We do not perform early stopping and always report accuracy of the last epoch.
We compute the LPIPS distance using an exponential weight averaged model
with τ = 0.995. We note from Table-1 that the use of weight-averaged model
(E1) results in better performance when compared to using the model being
trained for the same (E5). This also leads to more stable results across reruns.

We utilise AutoAugment [8] for training on CIFAR-100, SVHN and for
CIFAR-10 training on large model capacities. We apply AutoAugment with
a probability of 0.5 for CIFAR-100, and for the CIFAR-10 model trained on
ResNet-34. Since the extent of overfitting is higher for large model capacities,
we use AutoAugment with p = 1 on WideResNet-34-10. While the use of Au-
toAugment helps in overcoming overfitting, it could also negatively impact ro-
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Table 1. CIFAR-10, CIFAR-100: Ablation experiments on ResNet-18 archi-
tecture to highlight the importance of various aspects in the proposed defense
OA-AT. Performance (%) against attacks with different perturbation bounds ε
is reported.

CIFAR-10 CIFAR-100

Method Clean
GAMA
(8/255)

GAMA
(16/255)

Square
(16/255)

Clean
GAMA
(8/255)

GAMA
(16/255)

Square
(16/255)

E1: OA-AT (Ours) 80.24 51.40 22.73 31.16 60.27 26.41 10.47 14.60
E2: LPIPS weight = 0 78.47 50.60 24.05 31.37 58.47 25.94 10.91 14.66
E3: Alpha = 1 79.29 50.60 23.65 31.23 58.84 26.15 10.97 14.89
E4: Alpha = 1, LPIPS weight = 0 77.16 50.49 24.93 32.01 57.77 25.92 11.33 15.03
E5: Using Current model (without WA) for LPIPS 80.50 50.75 22.90 30.76 59.54 26.23 10.50 14.86
E6: Without 2*eps perturbations for AWP 79.96 50.50 22.61 30.60 60.18 26.27 10.15 14.20
E7: Maximizing KL div in the AWP step 81.19 49.77 21.17 29.39 59.48 25.03 7.93 13.34
E8: Using Discriminator instead of LPIPS (OI Attack) 80.56 50.75 22.13 31.17 58.84 26.35 10.64 14.82
E9: Increasing epsilon from the beginning 80.34 50.77 22.57 30.80 60.51 26.34 10.37 14.61
E10: Without AutoAugment 80.24 51.40 22.73 31.16 58.08 25.81 10.40 14.31
E11: With AutoAugment (p=0.5) 81.59 50.40 21.59 30.84 60.27 26.41 10.47 14.60
E12: With AutoAugment (p=1) 81.74 48.15 18.92 28.31 60.19 25.32 9.24 13.78
E13: Alpha = 1, LPIPS weight = 0 + fixed ε=16/255 71.64 47.59 25.91 31.75 50.99 23.19 9.99 13.48

bust accuracy due to the drift between the training and test distributions. We
observe a drop in robust accuracy on the CIFAR-10 dataset with the use of
AutoAugment (E11, E12 in Table-1), while there is a boost in the clean accu-
racy. On similar lines, we observe a drop in robust accuracy on the CIFAR-100
dataset as well, when we increase the probability of applying AutoAugment from
0.5 (E11 in Table-1) to 1 (E12 in Table-1). We use AutoAugment with p = 1
for SVHN, as we observe that it results in more stable training. Further, we find
that using Label Smoothing with CIFAR-100 helps in improving clean accuracy,
as shown in Table-2 of the Main paper.

To investigate the stability of the proposed approach, we train a ResNet-18
network multiple times by using different random initialization of network pa-
rameters. We observe that the proposed approach is indeed stable, with standard
deviation of 0.167, 0.115, 0.180 and 0.143 for clean accuracy, GAMA PGD-100
accuracies with ε = 8/255 and 16/255, and accuracy against the Square attack
with ε = 16/255 respectively over three independent training runs on CIFAR-10.
We also observe that the last epoch is consistently the best performing model
for the ResNet-18 architecture. Nonetheless, we still utilise early stopping on the
validation set using PGD 7-step accuracy for all the baselines to enable a fair
comparison overall.

5 Evaluation of Adversarial Defenses

Gradient-based white-box attacks such as PGD [16], GAMA-PGD [22] and Auto-
PGD with Cross-Entropy (CE) and Difference of Logits Ratio (DLR) losses [6]
are known to be the strongest attacks against standard Adversarial defenses
that do not obfuscate gradients. Gradient-Free attacks such as ZOO [5], SPSA
[27], Square [1] and RayS [4] are useful to craft perturbations without requiring
white-box access to the model. These attacks are also used to reliably esti-
mate the robustness of defenses that rely on gradient masking [19]. Amongst
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the Gradient-Free attacks, Square and Ray-S do not use Zeroth order gradi-
ent estimates, and utilize Random-Search and Binary-Search based algorithms
respectively to construct strong attacks against a given defense. We use such
query-based attacks to generate perturbations that do not flip Oracle predic-
tions even for moderate-magnitude constraint sets. AutoAttack combines strong
untargeted and targeted white-box attacks with the query-based black-box at-
tack Square to effectively estimate the robustness of a given defense, and is a
well accepted standard for benchmarking defenses. We report our results against
GAMA-PGD, AutoAttack, Square and Ray-S. We also present further evalua-
tions using various adaptive attacks (Sec.6 of the Supplementary) to reliably
estimate robustness of the proposed defense.

6 Ablation Study

In order to study the impact of different components of the proposed defense,
we present a detailed ablative study using ResNet-18 models in Table-1. We
present results on the CIFAR-10 and CIFAR-100 datasets, with E1 representing
the proposed approach. First, we study the efficacy of the LPIPS metric in
generating Oracle-Invariant attacks. In experiment E2, we train a model without
LPIPS by setting its coefficient to zero. While the resulting model achieves a
slight boost in robust accuracy at ε = 16/255 due to the use of stronger attacks
for training, there is a considerable drop in clean accuracy, and a corresponding
drop in robust accuracy at ε = 8/255 as well. We observe a similar trend by
setting the value of α to 1 as shown in E3, and by combining E2 and E3 as
shown in E4. We note that E4 is similar to standard adversarial training, where
the model attempts to learn consistent predictions in the ε ball around every
data sample. While this works well for large ε attacks (ε = 16/255), it leads to
poor clean accuracy as shown in the first partition of Table-2.

As discussed in Sec.4 of the Main paper, we maximize loss on xi + 2 · δ̃i
(where δ̃i is the attack) in the additional weight perturbation step. We present
results by using the standard ε limit for the weight perturbation step as well, in
E6. This leads to a drop across all metrics, indicating the importance of using
large magnitude perturbations in the weight perturbation step for producing a
flatter loss surface that leads to better generalization to the test set. Different
from the standard TRADES formulation, we maximize Cross-Entropy loss for
attack generation in the proposed method. From E7, we note that the use of
KL divergence leads to a drop in robust accuracy since the KL divergence based
attack is weaker. This is consistent with the observation by Gowal et al. [10].
However, on the SVHN dataset, we find that the use of KL divergence based
attack results in a significant improvement in clean accuracy, leading to better
robust accuracy as well. We therefore utilize the KL divergence loss for attack
generation on the SVHN dataset. We also investigate the effect of AutoAugment
[8], Weight Averaging [12] and Label Smoothing + Warmup on the AWP [28]
baseline in Table-6.
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Table 2. CIFAR-10: Performance (%) of the proposed defense OA-AT against
attacks bounded within different ε bounds, when compared to the following
baselines: AWP [28], ExAT [20], TRADES [29], ATES [21], PGD-AT [16] and
FAT [30]. AWP [28] is the strongest baseline. The first partition shows defenses
trained on ε = 16/255. Training on large perturbation bounds results in very
poor Clean Accuracy. The second partition consists of baselines tuned to achieve
clean accuracy close to 80%. These are sorted by AutoAttack accuracy [7] (AA
8/255). The proposed defense (OA-AT) achieves significant gains in accuracy
across all attacks.

Method
Attack ε
(Training)

Clean
FGSM (BB)

(8/255)
R-FGSM
(8/255)

GAMA
(8/255)

AA
(8/255)

FGSM (BB)
(12/255)

R-FGSM
(12/255)

GAMA
(12/255)

Square
(12/255)

FGSM (BB)
(16/255)

R-FGSM
(16/255)

GAMA
(16/255)

Square
(16/255)

TRADES 16/255 75.30 73.26 53.10 35.64 35.12 72.13 44.27 20.24 30.11 70.76 36.99 10.10 18.87
AWP 16/255 71.63 69.71 54.53 40.85 40.55 68.65 47.13 27.06 34.42 67.42 40.89 15.92 24.16
PGD-AT 16/255 64.93 63.65 55.47 46.66 46.21 62.81 51.05 36.95 40.53 61.70 46.40 26.73 32.25
FAT 16/255 75.27 73.44 60.25 47.68 47.34 72.22 53.17 34.31 39.79 70.73 46.88 22.93 29.47
ExAT+AWP 16/255 75.28 73.27 60.02 47.63 47.46 71.81 52.38 34.42 39.62 70.47 45.39 22.61 28.79
ATES 16/255 66.78 65.60 56.79 47.89 47.52 64.64 51.71 37.47 42.07 63.75 47.28 26.50 32.55
ExAT + PGD 16/255 72.04 70.68 59.99 49.24 48.80 69.66 53.96 36.68 41.93 68.04 48.37 23.01 30.21

FAT 12/255 80.27 77.87 61.46 45.42 45.13 76.69 52.33 29.08 36.71 74.79 44.56 16.18 24.59
FAT 8/255 84.36 82.20 64.06 48.41 48.14 80.32 55.41 29.39 39.48 78.13 47.50 15.18 25.07
ATES 8/255 84.29 82.39 65.66 49.14 48.56 80.81 55.59 29.36 40.68 78.48 47.03 14.70 25.88
PGD-AT 8/255 81.12 78.94 63.48 49.03 48.58 77.19 54.42 30.84 40.82 74.37 46.28 15.77 26.47
PGD-AT 10/255 79.38 77.89 62.78 49.28 48.68 76.60 54.76 32.40 41.46 74.75 47.46 18.18 28.29
AWP 10/255 80.32 77.87 62.33 49.06 48.89 76.33 53.83 32.88 40.27 74.13 45.51 19.17 27.56
ATES 10/255 80.95 79.22 63.95 49.57 49.12 77.77 55.37 32.44 42.21 75.51 48.12 18.36 29.07
TRADES 8/255 80.53 78.58 63.69 49.63 49.42 77.20 55.48 33.32 40.94 75.05 47.92 19.27 27.82
ExAT + PGD 11/255 80.68 79.07 63.58 50.06 49.52 77.98 55.92 32.47 41.10 76.12 48.37 17.81 27.23
ExAT + AWP 10/255 80.18 78.04 63.15 49.87 49.69 76.34 54.64 33.51 41.04 74.37 46.54 20.04 28.40
AWP 8/255 80.47 78.22 63.32 50.06 49.87 76.88 54.61 33.47 41.05 74.42 46.16 19.66 28.51
OA-AT (Ours) 16/255 80.24 78.54 65.00 51.40 50.88 77.34 57.68 36.01 43.20 75.72 51.13 22.73 31.16

Gain w.r.t. AWP −0.23 +0.32 +1.68 +1.34 +1.01 +0.46 +3.07 +2.54 +2.15 +1.30 +4.97 +3.07 +2.65

7 Detailed Results

In Tables-2 and 3, we present results of different defense methods such as AWP-
TRADES [28], TRADES [29], PGD-AT [16], ExAT [20], ATES [21] and FAT
[30], evaluated across a wide range of adversarial attacks. We present evalua-
tions on the Black-Box FGSM attack [9] and a suite of White-Box attacks, on
ℓ∞ constraint sets of different radii: 8/255, 12/255 and 16/255. The white-box
evaluations consist of the single-step Randomized-FGSM (R-FGSM) attack [25],
the GAMA PGD-100 attack [22] and AutoAttack [7], with the latter two being
amongst the strongest of attacks known to date. Lastly, we also present evalu-
ations on the Square attack [1] for ε = 12/255 and 16/255 in order to evaluate
performance on Oracle-Invariant samples at large perturbation bounds.

7.1 CIFAR-10

To enable a fair comparison of the proposed approach with existing methods,
we present comprehensive results of various defenses trained with different at-
tack strengths in Table-2. In the first partition of the table, we present base-
lines trained using attacks constrained within an ℓ∞ bound of 16/255. While
these models do achieve competitive robustness on adversaries of attack strength
ε = 8/255, 12/255 and 16/255, they achieve significantly lower accuracy on clean
samples which limits their use in practical scenarios. Thus, for better compara-
tive analysis that accounts for the robustness-accuracy trade-off, we present re-
sults of the existing methods with hyperparameters and attack strengths tuned
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Table 3. CIFAR-100: Performance (%) of the proposed defense OA-AT against
attacks bounded within different ε bounds, when compared to the following base-
lines: AWP [28], ExAT [20], TRADES [29], ATES [21], PGD-AT [16] and FAT
[30]. AWP [28] is the strongest baseline. The baselines are sorted by AutoAt-
tack accuracy [7] (AA 8/255). The proposed defense achieves significant gains in
accuracy against the strongest attacks across all ε bounds. Since the proposed
defense uses AutoAugment [8] as the augmentation strategy, we present results
on the strongest baseline AWP [28] with AutoAugment as well.

Method
Attack ε
(Train)

Clean
FGSM-BB
(8/255)

R-FGSM
(8/255)

GAMA
(8/255)

AA
(8/255)

FGSM-BB
(12/255)

R-FGSM
(12/255)

GAMA
(12/255)

Square
(12/255)

FGSM-BB
(16/255)

R-FGSM
(16/255)

GAMA
(16/255)

Square
(16/255)

FAT 8/255 56.61 52.10 34.76 23.36 23.20 49.54 27.77 13.96 18.21 46.01 22.52 8.30 11.56
TRADES 8/255 58.27 54.33 36.20 23.67 23.47 51.64 28.55 13.88 18.46 48.46 22.78 8.31 11.89
PGD-AT 8/255 57.43 53.71 37.66 24.81 24.33 50.90 30.07 13.51 19.62 47.43 23.18 7.40 11.64
ATES 8/255 57.54 53.62 37.05 25.08 24.72 50.84 29.18 13.75 19.42 47.35 22.89 7.59 11.40
ExAT-PGD 9/255 57.46 53.56 38.48 25.25 24.93 51.43 30.60 15.12 20.40 48.15 24.21 8.37 12.47
ExAT-AWP 10/255 57.76 53.46 37.84 25.55 25.27 50.42 30.39 14.98 19.72 46.99 24.48 9.07 12.68
AWP 8/255 58.81 54.13 37.92 25.51 25.30 50.72 30.40 14.71 19.82 46.66 23.96 8.68 12.44
AWP (with AutoAug.) 8/255 59.88 55.62 39.10 25.81 25.52 52.75 31.11 14.80 20.24 49.44 24.99 8.72 12.80
Ours (with AutoAug) 16/255 60.27 56.27 40.24 26.41 26.00 53.86 33.78 16.28 21.47 51.11 28.02 10.47 14.60
Gain w.r.t. AWP (with AutoAug) +0.39 +0.65 +1.14 +0.60 +0.48 +1.11 +2.67 +1.48 +1.23 +1.67 +3.03 +1.75 +1.80

to achieve the best robust performance, while maintaining clean accuracy close
to 80% as commonly observed on the CIFAR-10 dataset on ResNet-18 architec-
ture, in the second partition of Table-2. We observe that the proposed method
OA-AT consistently outperforms other approaches on all three metrics described
in Sec.3.3 of the Main paper, by achieving enhanced performance at ε = 8/255
and 16/255, while striking a favourable robustness-accuracy trade-off as well.
The proposed defense achieves better robust performance even on the standard
ℓ∞ constraint set of 8/255 when compared to existing approaches, despite being
trained on larger perturbations sets.

7.2 CIFAR-100

In Table-3, we present results on models trained on the highly-challenging CIFAR-
100 dataset. Since this dataset contains relatively fewer training images per
class, we seek to enhance performance further by incorporating the augmenta-
tion technique, AutoAugment [8,23]. To enable fair comparison, we incorporate
AutoAugment for the strongest baseline, AWP [28] as well. We observe that the
proposed method consistently performs better than existing approaches by sig-
nificant margins, both in terms of clean accuracy, as well as robustness against
adversarial attacks conforming to the three distinct constraint sets. Further, this
also confirms that the proposed method scales well to large, complex datasets,
while maintaining a consistent advantage in performance compared to other ap-
proaches.

7.3 ℓ2 Threat Model

OA-AT indeed works well when trained on ℓ2 adversaries, as shown in Table-4.
While the standard perturbation bound considered for ℓ2 norm is 0.5, we show
significant improvements for ε= 0.75, 1 as well. We obtain consistent gains at
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large ε bounds while achieving similar clean accuracy and robust accuracy at the
lower bound of 0.5. On CIFAR-100, we obtain 2.5%-3% gains across perturbation
bounds of 0.5, 0.75 and 1.

7.4 AWP+ results

Since the proposed method utilizes additional techniques to overcome overfitting
and improve generalization, we generate improved baselines as well, using the
same techniques, in order to facilitate a fair comparison. In Table-6, we present
results of improved AWP [28] baselines by using AutoAugment [8,23], Weight
Averaging [12] and Label Smoothing + Warmup. As previously seen from eval-
uations as reported in Table-2 of the Main paper, we again observe that the
proposed method OA-AT consistently outperforms all the AWP+ baselines pre-
sented in Table-6. Further, we present OA-AT and AWP [28] with and without
Weight Averaging [12] in Table-5, by training WideResNet-34-10 models. We ob-
serve that Weight Averaging does not lead to significant gains for both OA-AT
as well as AWP [28].

8 Gradient Masking Checks

As discussed by Athalye et al. [2], we present various checks to ensure the ab-
sence of Gradient Masking in the proposed defense. In Fig.6 (a,c), we observe
that the accuracy of the proposed defense on the CIFAR-10 and CIFAR-100
datasets monotonically decreases to zero against 7-step PGD white-box attacks
as the perturbation budget is increased. This shows that gradient based attacks
indeed serve as a good indicator of robust performance, as strong adversaries
of large perturbation sizes achieve zero accuracy, indicating the absence of gra-
dient masking. In Fig.6 (b,d), we plot the Cross-Entropy loss against FGSM
attacks with varying perturbation budget. We observe that the loss increases
linearly, thereby suggesting that the first-order Taylor approximation to the loss
surface indeed remains effective in the local neighbourhood of sample images,
again indicating the absence of gradient masking.

We verify that the model achieves higher robust accuracy against weaker
Black-box attacks, when compared to strong gradient based attacks such as
GAMA or AutoAttack in Tables-2, 3. We also observe that adversaries that
conform to larger constraint sets are stronger than their counterparts that are
restricted to smaller epsilon bounds, as expected.

Table 4. Prediction accuracy (%) of PreActResNet-18 models trained using
TRADES-AWP and OA-AT on ℓ2 adversaries.

Dataset Method Clean AA@0.5 Square@0.75 Square@1

TRADES-AWP 88.45 71.34 71.19 64.21
CIFAR-10 OA-AT (Ours) 89.13 71.40 73.33 66.48

TRADES-AWP 70.38 41.96 46.77 38.62
CIFAR-100 OA-AT (Ours) 70.41 44.70 49.34 41.58
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Table 5. Effect of Weight Averaging [12] on AWP [28] and OA-AT: Per-
formance (%) of WideResNet-34-10 models trained using the proposed defense
OA-AT and AWP [28], against GAMA-PGD100 [22] and Square [1] attacks with
and without using Weight Averaging [12].

CIFAR-10, WRN-34-10 CIFAR-100, WRN-34-10

Method
Clean
Acc

GAMA
(8/255)

Square
(16/255)

Clean
Acc

GAMA
(8/255)

Square
(16/255)

AWP (without WA) 85.36 56.34 31.70 62.78 29.82 15.70
AWP+ (with WA) 85.52 56.42 32.41 62.73 29.92 15.85
OAAT (without WA) 85.28 58.19 36.75 65.53 30.59 18.06
Ours (OAAT with WA) 85.32 58.48 36.93 65.73 30.90 18.47
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Fig. 6. Accuracy and Loss plots on a 1000-sample class-balanced subset of the
respective test-sets of CIFAR-10 and CIFAR-100 datasets. (a, c) Plots showing
the trend of Accuracy (%) against PGD-7 step attacks across variation in attack
perturbation bound (ε) on CIFAR-10 and CIFAR-100 datasets with ResNet-18
architecture. As the perturbation bound increases, accuracy against white-box
attacks goes to 0, indicating the absence of gradient masking [2] (b, d) Plots
showing the variation of Cross-Entropy Loss on FGSM attack [9] against varia-
tion in the attack perturbation bound (ε). As the perturbation bound increases,
loss increases linearly, indicating the absence of gradient masking [2]

In Table-7, we perform exhaustive evaluations using various attack techniques
to further verify the absence of gradient masking. In addition to AutoAttack [7]
which in itself consists of an ensemble of four attacks (AutoPGD with Cross-
Entropy and Difference-of-Logits loss, the FAB attack [6] and Square Attack [1]),
we present evaluations against strong multi-targeted attacks such as GAMA-MT
[22] and the MDMT attack [13] which specifically target other classes during op-
timization. We also consider the untargeted versions of the latter two attacks, the
GAMA-PGD and MD attack respectively. We also present robustness against
the ODS attack [24] with 100 restarts, which diversifies the input random noise
based on the output predictions in order to obtain results which are less de-
pendent on the sampled random noise used for attack initialization. Next, the
Logit-Scaling attack [3,11] helps yield robust evaluations that are less dependent
on the exact scale of output logits predicted by the network, and is seen to be
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Table 6. Improvements to the AWP baseline: Performance (%) of models
trained by applying AutoAugment [8], Label Smoothing + Warmup and Weight
Averaging [12] to the AWP baseline [28], against GAMA-PGD100 [22] and
Square [1] attacks. Results on the CIFAR-10, CIFAR-100 and SVHN datasets
are reported using different ε bounds.

Auto-
Augment
probability

Label
Smoothing
+ Warmup

Weight
Averaging

Metrics of interest Others

Clean
GAMA
(8/255)

Square
(16/255)

GAMA
(16/255)

CIFAR-10 (WRN-34-10), 200 epochs

0 × × 85.36 56.34 31.54 23.74
0 × ✓ 85.52 56.42 32.41 24.04
1 × × 87.36 52.62 29.83 19.39
1 × ✓ 86.75 53.62 30.11 20.41

CIFAR-100 (ResNet-18), 110 epochs

0 × × 58.81 25.51 12.44 8.68
0.5 × × 59.88 25.81 12.80 8.72
0 ✓ ✓ 58.99 26.07 13.10 8.98
0.5 ✓ × 59.82 25.39 13.04 8.62

CIFAR-100 (PreActResNet-18), 200 epochs

0 × × 58.85 25.58 12.39 9.01
0.5 ✓ × 62.10 25.99 13.27 8.91
0.5 ✓ ✓ 62.11 26.21 13.26 9.21
0 ✓ × 59.70 26.61 13.80 9.70
0 ✓ ✓ 59.97 26.90 13.74 9.95

CIFAR-100 (WRN-34-10), 110 epochs

0 × × 62.41 28.98 14.68 10.98
0 × ✓ 61.72 29.78 15.32 11.15
0.5 × × 61.33 29.22 15.18 10.94
0 ✓ × 62.78 29.82 15.70 11.45
0 ✓ ✓ 62.73 29.92 15.85 11.55
0.5 ✓ ✓ 62.23 29.36 15.47 11.20

SVHN (PreActResNet-18), 110 epochs

0 × × 91.91 75.92 35.78 30.70
0.5 × × 90.99 75.37 36.42 31.02
0.5 × ✓ 92.21 72.31 36.02 30.80
1 × × 89.97 75.08 38.47 31.34
1 × ✓ 89.71 74.73 38.41 31.15
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effective on some defenses which exhibit gradient masking. However, we observe
that the proposed method is robust against all such attacks, with the lowest
accuracy being attained on the AutoAttack ensemble.

Table 7. Evaluation against various attacks constrained within a pertur-
bation bound of ε = 8/255 on CIFAR-10: Performance (%) of the proposed
defense OA-AT on ResNet-18 architecture against various attacks (sorted by
Robust Accuracy) to ensure the absence of gradient masking.
†Includes 5000-queries of Square attack.

Attack No. of Steps No. of restarts Robust Accuracy (%)

AutoAttack† [7] 100 20 50.88
GAMA-MT [22] 100 5 50.90
ODS (98 +2 steps) [24] 100 100 50.94
MDMT attack [13] 100 10 51.19
Logit-Scaling attack [3,11] 100 20 51.26
GAMA-PGD [22] 100 1 51.40
MD attack [13] 100 1 51.47
PGD-50 (1000 RR) [16] 50 1000 55.37
PGD-1000 [16] 1000 1 56.15

Table 8. Evaluation against an ensemble of AutoAttack (AA) [7] and
Multi-Targeted (MT) attack [10]: Evaluating against the Multi-Targeted
(MT) attack along with AutoAttack [7] leads to a marginal decrease in robust
accuracy, thus showing that AutoAttack [7] is sufficient to obtain a reliable
estimate of robustness.

Method
Clean

Accuracy
AA

(8/255)
MT

(8/255)
AA + MT
(8/255)

SQ + RS
(16/255)

CIFAR-10, WRN-34-10

AWP 85.36 56.17 56.17 56.15 30.87
Ours 85.32 58.04 58.06 58.03 35.31

CIFAR-100, WRN-34-10

AWP 62.73 29.92 29.92 29.91 14.96
Ours 65.73 30.35 30.49 30.34 17.15

Further, we evaluate the model on PGD 50-step attack run with 1000 restarts.
The robust accuracy saturates with increasing restarts, with the final accuracy
still being higher than that achieved on AutoAttack. Lastly, we observe that
the PGD-1000 attack is not very strong, confirming that the accuracy does not
continually decrease as the number of steps used in the attack increases. Thus,
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we observe that the proposed approach is robust against a diverse set of attack
methods, thereby confirming the absence of gradient masking and verifying that
the model is truly robust.

We also evaluate the WideResNet-34-10 model trained using OA-AT (pro-
posed approach) and AWP [28] on CIFAR-10 and CIFAR-100 datasets, against
an ensemble of AutoAttack [7] and Multi-Targeted attacks [10] in Table-8. We
observe that using Multi-Targeted attack along with AutoAttack only leads to
a drop of 0.01-0.02 % in the robust accuracy, suggesting that AutoAttack [7] is
sufficient to obtain a reliable estimate of robustness.

9 Details on Contrast Calculation

In order to determine the contrast level for a given image, the mean absolute
deviation of each pixel is first computed for the three RGB color channels in-
dependently. Following this, top 20% of pixels which correspond to the highest
mean absolute deviations averaged over the three channels are selected. The
variance in intensities over these selected pixels, averaged over the three chan-
nels, is used as a measure of contrast for the image. We sort images in order of
increasing contrast and split the dataset into 10 bins for the evaluations in Fig.5
of the Main paper. We present the Low and High Contrast images on SVHN,
CIFAR-10 and CIFAR-100 datasets respectively in Fig.10, 11, 12, 13, 14 and 15.

10 Sensitivity towards Hyperparameters

We check the sensitivity of the proposed method across variation in different
hyperparameters on the CIFAR-10 dataset with ResNet-18 model architecture
using a 110 epoch training schedule. The value of the mixup coefficient is varied
from 0.6 to 1 as seen in Fig.7. On increasing the value of mixup coefficient, clean
accuracy drops due to the presence of Oracle-Sensitive adversarial examples.
While a lower value of mixup coefficient helps in improving clean accuracy, it
makes the attack weaker, resulting in a lower robust accuracy. We visualize the
effect of changing the maximum value of LPIPS coefficient in Fig.8. Using a
higher LPIPS coefficient helps in boosting the clean accuracy while dropping
the adversarial accuracy, while a low value close to zero drops both clean as
well as robust accuracy due to the presence of oracle sensitive examples. Finally,
we show the effect of changing the ε (referred to as εref ) used in the mixup
iteration. We find that using a higher value of εref in mixup iteration leads to
weak attack since we project every perturbation to a much lower epsilon value
while training, resulting in a higher clean accuracy and lower robust accuracy.
However, a higher value of εref also leads to a more reliable estimate of the
Oracle prediction, thereby leading to improved robust accuracy at intermediate
values of εref . Overall, we observe that OA-AT is less sensitive to hyperparameter
changes.
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Fig. 7. Sensitivity of the proposed approach against variation in Mixup
coefficient: (a) Clean Accuracy (%), (b) Accuracy (%) against GAMA-PGD
100-step attack [22] at ε = 8/255 and (c) Accuracy (%) against Square Attack [1]
at ε = 16/255 are reported on the CIFAR-10 dataset for ResNet-18 architecture.
The optimal setting chosen is mixup coefficient of 0.8.
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Fig. 8. Sensitivity of the proposed approach against variation in Maxi-
mum LPIPS coefficient: (a) Clean Accuracy (%), (b) Accuracy (%) against
GAMA-PGD 100-step attack [22] at ε = 8/255 and (c) Accuracy (%) against
Square Attack [1] at ε = 16/255 are reported on the CIFAR-10 dataset for
ResNet-18 architecture. The optimal setting chosen is maximum LPIPS coeffi-
cient of 1.
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Fig. 9. Sensitivity of the proposed approach against variation in ε used
in mixup iteration: (a) Clean Accuracy (%), (b) Accuracy (%) against GAMA-
PGD 100-step attack [22] at ε = 8/255 and (c) Accuracy (%) against Square
Attack [1] at ε = 16/255 are reported on the CIFAR-10 dataset for ResNet-18
architecture. The optimal setting chosen is ε = 24 for mixup.

Transferability of hyperparameters across datasets: Although the pro-
posed approach introduces two additional hyperparameters (α and λ), we show
in Table-9 that even if we use the hyperparameters fine-tuned on CIFAR-10
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dataset (WRN-34-10), they work well on SVHN (PreActResNet-18) and CIFAR-
100 (WRN-34-10) datasets as well, thus showing good performance even without
any fine-tuning. The gains obtained after fine-tuning specifically for the dataset
are marginal.

Table 9. Transferability of hyperparameters across datasets: Performance
(%) of the proposed method using different sets of training hyperparameters
when compared to the AWP [28] baseline. The setting, tuned indicates that the
hyperparameters have been specifically tuned for the given dataset, while no
tuning indicates that we use the same set of hyperparameters that were found
on a different dataset (CIFAR-10). The performance of the tuned case is only
marginally better than the no tuned case indicating that the proposed method
is not sensitive to changes in hyperparameters.

Method Clean GAMA
(4/255)

Square
(12/255)

GAMA
(8/255)

SVHN, PreActResNet18

AWP 91.91 75.92 35.78 53.88
Ours (tuned) 94.61 78.37 39.56 55.15
Ours (no tuning) 95.17 78.16 39.12 54.77

Method Clean GAMA
(8/255)

Square
(16/255)

GAMA
(16/255)

CIFAR100, WRN-34-10

AWP 62.73 29.92 15.85 11.55
Ours (tuned) 65.73 30.90 18.47 13.21
Ours (no tuning) 64.66 31.18 17.93 12.93
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