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Abstract. Existing black-box adversarial attacks on image classifiers
update the perturbation at each iteration from only a small number of
queries of the loss function. Since the queries contain very limited in-
formation about the loss, black-box methods usually require much more
queries than white-box methods. We propose to improve the query effi-
ciency of black-box methods by exploiting the smoothness of the local
loss landscape. However, many adversarial losses are not locally smooth
with respect to pixel perturbations. To resolve this issue, our first contri-
bution is to theoretically and experimentally justify that the adversarial
losses of many standard and robust image classifiers behave like parabo-
las with respect to perturbations in the Fourier domain. Our second
contribution is to exploit the parabolic landscape to build a quadratic
approximation of the loss around the current state, and use this ap-
proximation to interpolate the loss value as well as update the per-
turbation without additional queries. Since the local region is already
informed by the quadratic fitting, we use large perturbation steps to ex-
plore far areas. We demonstrate the efficiency of our method on MNIST,
CIFAR-10 and ImageNet datasets for various standard and robust mod-
els, as well as on Google Cloud Vision. The experimental results show
that exploiting the loss landscape can help significantly reduce the num-
ber of queries and increase the success rate. Our codes are available at
https://github.com/HoangATran/BABIES
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1 Introduction

Deep neural networks (DNN) have been shown to be susceptible to adversar-
ial examples, which are small, human-imperceptible perturbations to the inputs
designed to fool the network prediction [33,14]. Adversarial attacks can be cate-
gorized into two main settings: white-box attacks and black-box attacks. In the
white-box setting, the attackers have access to all information about the target
model and thus can use the model’s gradient to effectively guide the search for
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adversarial examples [33,7,23]. Black-box setting, on the other hand, attacks a
model only from classification queries [25,9,18]. This type of access requirement
is considered more realistic in practice.

Traditionally, black-box methods require a massive amount of queries to find
a successful adversarial perturbation. Since each query to the target model costs
time and money, query efficiency is a requisite for any practical black-box at-
tack method. Recent years have seen the development of several black-box ap-
proaches with significant improved query efficiency [34,15,24,19,1,3]. However,
current black-box attacks access the target models only at perturbed samples
and completely rely on the queries there to update the perturbation at each iter-
ation. To reduce the number of queries, it would be beneficial to be able to make
use of these queries to extract more from the models, inferring the loss values and
identifying candidate perturbations, where no model query was made. This is a
challenging goal: since the landscapes of adversarial losses are often complicated
and not well-understood, the accuracy of approximations of the loss values from
available model queries is not guaranteed.

In this paper, we develop a new ℓ2 black-box adversarial attack on frequency
domain, which uses an interpolation scheme to approximate the loss value around
the current state and guide the perturbation updates. We refer to our method as
Black-box Attack Based on IntErpolation Scheme (BABIES). This algorithm is
inspired by our observation that for many standard and robust image classifiers,
the adversarial losses behave like parabolas with respect to perturbations of an
image in the Fourier domain, thus can be captured with quadratic interpola-
tion. We treat the adversarial attack problem as a constraint optimization on an
ℓ2 sphere, and sample along geodesic curves on the sphere. If the queries show
improvements, we accept the perturbation. If the queries do not show improve-
ment, we will infer a small perturbation from those samples without additional
queries. Our method achieves significantly improved query efficiency because the
perturbation updates are now informed not only directly from model queries (as
in existing approaches), but also from an accurate quadratic approximation of
the adversarial loss around the current state. The main contributions of this
work can be summarized as follows:

– Theoretical and empirical justifications that the adversarial loss behaves like
a parabola in the Fourier domain, but NOT like a parabola in pixel domain.

– Development of BABIES, a random-search-based black-box attack that ex-
ploits the parabolic loss landscape to improve the query efficiency.

– Evaluations of BABIES with targeted and untargeted attacks on MNIST,
CIFAR-10 and ImageNet datasets with both standard and defended models.

1.1 Related works

To guide the search for adversarial examples, existing black-box attacks often
aim at approximating the gradient, either from the gradient of a surrogate model
[26,27], or from model queries via finite different approximation, zeroth-order op-
timization, natural evolution strategies, etc. [4,9,34,18,19,8,1]. Many approaches
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for reducing the dimension of the search space have been proposed, based on
principal component analysis [4], autoencoder [34], and compressed sensing [20].
Our method generates random perturbations on the low frequency domain, sim-
ilar to SimBA [16] and PPBA [20]. This subspace has been shown to admit a
high density of adversarial perturbations [15]. Other strategies for designing ran-
dom perturbations to guide random-search-based attacks include Square Attack
[3], which crafts perturbations with square shape, PRGF [12], which utilizes a
transfer-based prior, and GenAttack [2], which uses genetic algorithms. Adver-
sarial examples can also be generated from learning their probability distribu-
tions [22,11] and combinatorial optimization techniques [24].

Our black-box method is concerned with the score-based scenario, where the
attacker has access to the output scores of the target classifier. More limited
variants of the black-box setting have also been studied, where only access to
the top-1 predicted labels is assumed [5,18,6,10]. Recent work [21] considers no-
box settings, where the attacker makes no query to the target model but just
gathers a small labeled dataset. These forms of attacks are more challenging.

2 Background

Image classification aims to successfully predict what a human sees in an image.
The objective of adversarial attack on an image classification model is to intro-
duce a small distortion beyond human perceptibility into the original image to
fool the target model. In this work, we consider the score-based black-box at-
tack. We first give the formal definition of the adversarial attack problem under
consideration. Let f : [0, 1]d → RK be a classifier with d input dimension and
K classes, where fk(x) is the predicted probability that the image x belongs to
class k. The predicted label of the image x is denoted by

h(x) := argmax
k=1,...,K

fk(x).

An adversary aims to generate a perturbed image, denoted by x̂, with a small
perturbation that solves the following constrained optimization problem

min
x̂

δ(x, x̂) s.t.

{
h(x̂) ̸= h(x) (untargeted),

h(x̂) = ŷ (targeted),
(1)

where δ(·, ·) measures the perceptual difference between the original image x and
the adversarial image x̂, and ŷ is the target label for targeted attacks. The most
commonly used definition for δ is the ℓ2 norm or the ℓ∞ norm of the distortion
x − x̂. In this work, we will use the ℓ2 norm, i.e., δ(x, x̂) := ∥x − x̂∥2, as the
distortion metric.

Loss minimization. For score-based adversarial attack, we can exploit the access
to the score function f(x) to define an adversarial loss L(x̂, y) to guide the
search towards adversarial examples. For untargeted attack, the probability of
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the class h(x) that the original image x belongs to is often used as adversarial
loss, i.e., L(x̂, h(x)) := fh(x)(x̂). For targeted attack towards a label ŷ, we want
to maximize fŷ(x̂), so choose L(x̂, ŷ) := −fŷ(x̂). Since the gradient of the target
classifier is unavailable and each query to the model costs time and money, the
total number of black-box queries for constructing an adversarial example must
not exceed a prescribed budget. Thus, the optimization problem in Eq. (1) is
modified to

min
x̂

L(x̂, y) s.t. ∥x̂− x∥2 ≤ ρ, queries ≤ B, (2)

where B is the maximum allowable number of queries and ρ is the constraint
on the maximum image distortion. For notational simplicity, we suppress the
dependence of L on y and write L as L(x̂) in the rest of the paper.

To solve (2), we employ an iterative random search approach, where at each
iteration, we query along a randomly sampled search direction and update the
current point based on those queries. When doing a Taylor expansion of the loss
with respect to a perturbation δ along any randomly selected direction, i.e.,

L(x̂) = L(x∗) +
dL

dδ
(x∗)δ +

d2L

dδ2
(x∗)δ2 +O(δ3),

with x∗ being the current state, it is intuitive to conjecture that the loss would
behave like a parabola in the neighborhood of x∗. However, it is not the case
for all perturbation strategies. In the following sections, we show that the ad-
versarial loss behaves like a parabola in the Fourier domain determined by the
discrete consine transform (DCT) [15,30], but NOT like a parabola in the pixel
domain. Then, we develop the BABIES algorithm that exploits the parabolic
loss landscape in the frequency domain to improve query efficiency.

3 Theoretical and empirical study on the landscape of
the adversarial loss

In this section, we investigate the shape of the loss’s landscape with respect
to two different perturbations, i.e., pixel perturbation and DCT perturbation
[15,30].

Our main observation is that the loss’s landscape is closer to a parabola with
respect to a DCT perturbation, as shown in Figure 2 and 3. To theoretically
verify such observation, we consider a simplified convolutional neural network
(CNN)-based classifier for 1D signals. The length of each signal sample is N . We
assume the first two layers of the CNN is a 3×1 convolutional layer followed by a
2×1 max-pooling layer, which is a common setup for CNN-based classifiers. Let
x = (xi+1, xi+2, xi+3, xi+4), for i ∈ {0, . . . , N − 4}, be a 4 × 1 interior segment
of the signal and w = (w1, w2, w3) be the convolution filter. The output of the
convolutional layer, centered at xi+2 and xi+3, consists of two entries y2 and y3
given by

y2 = w1xi+1 + w2xi+2 + w3xi+3,

y3 = w1xi+2 + w2xi+3 + w3xi+4,
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and the output after the ReLU activation is

z2 = max(y2, 0), z3 = max(y3, 0), (3)

and the output of the max-pooling layer is

u = max(z2, z3). (4)

The simplified CNN model is visualized in Figure 1. Note that we choose the 1D
case to avoid tedious derivation, but the theoretical intuition is applicable to 2D
and 3D cases.

Fig. 1. Illustration of the simplified
CNN classifier for verifying our theoret-
ical intuition. We only explicitly write
out the first convolutional and max-
pooling layers, which is sufficient to
verify our theoretical intuition. Other
layers are included in “other opera-
tions”.

Let us define a perturbed signal as
x+δq, where q = (qi+1, qi+2, qi+3, qi+4) is
the perturbation direction. The derivative
of the adversarial loss L(δ) (as a function
of the perturbation’s magnitude δ) is rep-
resented by

dL

dδ
(δ) =

dL

du

du

dδ
(δ), (5)

and we focus on analyzing the behavior of
du/dδ for both pixel and DCT perturba-
tions.

The property of du/dδ due to pixel pertur-
bation. In this case, we perturb the pixel
xi+2, i.e., setting qi+2 = 1, qi+1 = qi+3 =
qi+4 = 0, to study how du/dδ behaves as
a function of δ. Specifically, du/dδ under
the perturbation of xi+2 can be written as

du

dδ
(δ) =

∂u

∂z2

∂z2
∂y2

w2 +
∂u

∂z3

∂z3
∂y3

w1, (6)

which involves the derivatives of the ReLU function and the max-pooling func-
tion, e.g.,

∂u

∂z2
=

{
1, if z2 ≥ z3

0, otherwise
, and

∂z2
∂y2

=

{
1, if y2 > 0

0, otherwise
,

and ∂u/∂z3, ∂z3/∂y3 can be defined similarly. Therefore, du/dδ can only choose
values from the set

du

dδ
(δ) ∈ {0, w1, w2}, (7)

when perturbing the pixel xi+2 by δ. Since y2, y3, z2, z3 are functions of δ, the
value of du/dδ may “jump” from one value in {0, w1, w2} to another, because w1
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and w2 may be dramatically different, e.g., w = (−1, 5,−1) defines a sharpen
filter kernel. The maximum jump size could be∣∣∣du

dδ
(α)− du

dδ
(β)

∣∣∣ ≤ |w1|+ |w2|, (8)

where α ̸= β but |α − β| is very small. This will eventually lead to the rapid
change of the derivative of the total loss dL/dδ defined in Eq. (5). Figure 2-right
illustrates a typical loss landscape with respect to pixel perturbation.

The property of du/dδ due to DCT perturbation. In this case, all the pixels are
perturbed simultaneously. Specifically, the perturbation direction q is defined by

qi+1 =

√
2

N
cos

(
(2i + 1)nπ

2N

)
, qi+2 =

√
2

N
cos

(
(2i + 3)nπ

2N

)
,

qi+3 =

√
2

N
cos

(
(2i + 5)nπ

2N

)
, qi+4 =

√
2

N
cos

(
(2i + 7)nπ

2N

)
,

where n ∈ {0, . . . , N − 1} is the selected frequency and N is the total signal
length. Then, the derivative du/dδ is represented by

du

dδ
(δ) =

∂u

∂z2

∂z2
∂y2

(w1qi+1 + w2qi+2 + w3qi+3)

+
∂u

∂z3

∂z3
∂y3

(w1qi+2 + w2qi+3 + w3qi+4).

Therefore, du/dδ can only choose values from the set

du

dδ
(δ) ∈

{
w1qi+1 + w2qi+2 + w3qi+3, w1qi+2 + w2qi+3 + w3qi+4, 0

}
. (9)

As opposed to the pixel perturbation case in Eq. (7), the potential “jumps”
of du/dδ in the DCT domain is much smaller. In fact, the maximum jump size

∣∣∣du
dδ

(α)− du

dδ
(β)

∣∣∣ ≤ 2
√
2√
N

sin
( nπ

2N

)[
w1 sin

(
(i+ 1)nπ

N

)

+ w2 sin

(
(i+ 2)nπ

N

)
+ w3 sin

(
(i+ 3)nπ

N

)]
,

(10)

where α ̸= β. When perturbing low-frequency modes, i.e., n is small, suggested

in [15,30], Eq. (10) can be bounded by 2
√
2√

N
| sin

(
nπ
2N

)
|(|w1| + |w2| + |w3|). It is

easy to see that this bound is much smaller than the one in Eq. (8) due to the
appearance of N (the signal length) in the denominators.

Experimental illustration. To verify the above intuition, we investigate the land-
scape of the adversarial loss on untargeted attacks on four different classifiers: (a)
standard Inception v3 on ImageNet [32], (b) ℓ2-robust ResNet18 on ImageNet
[29], (c) standard VGG on CIFAR-10 [31], (d) ℓ2-robust ResNet50 on CIFAR-10
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[13]. For each model, we randomly select 50 images from the corresponding test-
ing sets and define the loss functions as in Background section. We sample 100
1D segments in a neighborhood of each original image, along randomly selected
DCT directions and pixel directions, then compute the loss function restricted
on them. Then we fit these loss values with parabolas using quadratic regres-
sion. The true and approximated landscapes typically found in the DCT and
pixel settings are compared in Figure 2. We observe that the adversarial loss
with respect to DCT perturbations is smooth and close to a parabola. On the
other hand, the loss function with respect to pixel perturbations shows sharp
turns due to the rapid change (jumps) of dL/dδ, therefore cannot be captured
by quadratic approximation. This empirical observation is consistent with the
above theoretical study.

Fig. 2. The landscape of the adversarial loss
along DCT directions is often well-behaved and
can be fitted with a parabola (left). The land-
scape along pixel direction features sharp turns
due to the rapid change (jumps) of dL/dδ shown
in Eq. (8), thus cannot be adequately captured
by quadratic approximation (right).

To show the phenomenon in
Figure 2 is statistically mean-
ingful, we plot in Figure 3 the
correlation between true and ap-
proximated loss values given by
parabolas on a large number of
sample points. To generate each
plot, 5000 points are randomly
sampled on 100 segments in the
neighborhood of each of 50 im-
ages (therefore 5000 segments in
total). Since the losses on different
segments and images are signifi-
cantly different in value, we nor-
malize them on each segment such
that their values lie in [0, 1]. Here,
we observe strong correlation in DCT setting, confirming that the adversarial
losses are generally well-approximated by parabolas in the frequency directions,
but much less so in the pixel directions.

4 The BABIES algorithm

In this section, we present how to exploit the parabolic loss landscape in the DCT
domain to develop our BABIES algorithm for black-box attack. Our method
consists of two components. Before describing our quadratic interpolation scheme
for perturbation updating, we discuss the sampling rule with large step size on
the hypersphere.

The sampling rule on the hypersphere. Let us define Bρ := {x̂ ∈ [0, 1]d : ∥x̂ −
x∥2 ≤ ρ} and Sρ be the boundary of Bρ. Let Q be the set of low frequencies
extracted by the DCT. Starting from x, we generate a sequence of iterates x(k)

in Bρ which progresses toward an adversarial example. Let ε be the step size
parameter and assume q(k) is the direction sampled from Q, at iteration k, we



8 H. Tran et al.

Fig. 3. Scatter plot displays the correlation between true and approximated loss values
on a large number of points, sampled from 5000 segments along DCT directions (top)
and pixel directions (bottom). We observe a strong correlation in DCT setting, and
much less so along pixel setting. This plot verifies the generality of the example in
Figure 2, that the shape of adversarial losses along DCT directions is close to and can
be adequately approximated by a parabola.

determine two queries based on q(k) and ε. When all of x(k), xε and x−ε are in
the interior of Bρ, i.e., at the beginning of the search, we simply query at

x−ε = x(k) − εq(k) and xε = x(k) + εq(k), (11)

and update x(k) using these queries (see the update rule in the second part).
When one or more of x(k), x−ε, xε reach the hypersphere Sρ, we switch to the
sampling rule on the hypersphere, where the queries along the straight line in
Eq. (11) is replaced by those along the geodesic curve passing through x(k) and
coplanar to q(k). We choose x−ε and xε ∈ Sρ so that the arc length (instead of
standard distance) between them and x(k) is ε. Denoting δ(k) = x(k) − x, then
the angle between δ(k) and the line connecting x−ε or xε and x(k) will be ε/ρ.
Extract the tangent component of q(k) as q̃(k) := q(k) − ⟨q(k), δ(k)⟩δ(k)/∥δ(k)∥22,
we arrive at the formula for queries on Sρ:

x±ε = ρ

(
x(k) ± q̃(k)

∥q̃(k)∥ρ tan
(

ε
ρ

))
∥∥∥x(k) ± q̃(k)

∥q̃(k)∥ρ tan
(

ε
ρ

)∥∥∥
2

. (12)

The key hyperparameter of our algorithm is the query step size ε. Here, we select
relatively large ε for better long-range exploration of adversarial examples. Since
the generated samples always lie in Bρ, we can use large query steps without con-
cerning with the image distortion. Note that the iterates quickly approach Sρ, so
we spend all of the efforts, except the first few iterations, searching the adversar-
ial examples on the hypersphere Sρ. We do not fine-tune ε in our experiments.
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As seen in the next section, the value of step size ε is fixed for each type of
target models (standard or robust) and datasets (ImageNet or CIFAR-10 and
MNIST), even though ρ significantly varies.

Algorithm 1: BABIES in Pseudocode

1: Procedure: BABIES(x, ŷ, Q, ε, ρ)
2: k = 0, x(k) = x, L = L(x(k))
3: while h(x(k)) ̸= ŷ do
4: Pick q(k) ∈ Q randomly
5: if x(k) /∈ Sρ then
6: Sample x−ε and xε using Eq. (11)
7: else
8: Sample x−ε and xε using Eq. (12)
9: end if
10: Compute L = min(L(x−ε), L(xε))
11: if L < L(x(k)) then
12: Update x(k+1) using Eq. (13)
13: else
14: Update x(k+1) := xγ , with γ given

in Eq. (14)
15: Update L using interpolation in

Eq. (15)
16: end if
17: k := k + 1
18: end while
19: return x(k)

The update rule with quadratic inter-
polation. We discuss how to update
the iterate from the loss values at
three points x(k),x−ε and xε derived
from either Eq. (11) or Eq. (12). If one
of the queries decreases the loss value,
i.e., min(L(x−ε), L(xε)) < L(x(k)),
we accept it as a new state

x(k+1)=argmin(L(x−ε),L(xε)), (13)

and thus make a big step to ex-
plore a new region on the hyper-
sphere. When min(L(x−ε), L(xε)) ≥
L(x(k)), the loss function L restricted
on the geodesic curve (or straight
line if searching within Bρ) connect-
ing x(k),x−ε and xε has a local min-
imizer. Certainly, it is desirable to
identify and use this minimizer for the
next iterate. Based on our intuition in
the previous section, the idea is to fit
a parabola to the three data points to
estimate the loss, and assign the min-
imizer of the parabola to x(k+1). The geodesic (or standard) distance between
this minimizer and x(k) can be computed as

γ =
ε

2

L(xε)− L(x−ε)

L(xε)− 2L(x(k)) + L(x−ε)
. (14)

As a result, x(k+1) = xγ , where xγ is defined similarly to xε in Eq. (12) when
searching on Sρ or Eq. (11) when searching within Bρ with γ replaces ε. It is
easy to see that the update is not zero when L(xε) ̸= L(x−ε). Moreover, we use
the interpolated loss value

Linterp = L(x(k)) +
1

8

(L(xε)− L(x−ε))
2

L(xε)− 2L(x(k) + L(x−ε)
, (15)

to approximate the current best loss value, instead of querying the loss function
at x(k+1). The present strategy continuously updates the iterates with small
moves, when the random queries cannot find a new candidate. The effectiveness
of this strategy relies on the interpolation accuracy. When generating adversarial
examples in the frequency domain, the interpolation error is sufficiently small
and able to lead the random search towards the loss descent direction (justified
by the parabolic landscape of the adversarial loss).
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5 Experimental evaluation

5.1 Results of BABIES on MNIST, CIFAR-10 and ImageNet

We evaluate BABIES-DCT and compare with established algorithms from the
literature: Bandits-TD ℓ2 attack [19], SimBA-DCT [16] and ℓ2-Square Attack
[3] on the MNIST, CIFAR-10 and ImageNet datasets. We use the default hyper-
parameters suggested by the authors of the baseline methods. We use the fol-
lowing standard metrics to evaluate the attack performance: the mean number
of queries of successful attacks (Avg. QY), the median number of query of
successful attacks (Med. QY) and the success rate (SR). Additional evalua-
tions with two other baselines, PPBA [20] and PRGF [12], are provided in the
Appendix.

Setup. For MNIST and CIFAR tests, we attack 1,000 correctly labeled images
randomly selected from their corresponding testing sets. Evaluation on ImageNet
is performed on a set of 1,000 images from the ImageNetV2 [28]. In targeted at-
tack, the target labels are uniformly sampled at random, and the same target
labels are used for all methods. The search subspace of BABIES-DCT on Ima-
geNet is set to the first 1/8-th of all frequencies, and includes additional 1/32-th
of the next frequencies when all available frequencies are used up without suc-
cess. Due to the low dimensionality of CIFAR-10 images, we initialize the random
search on the first 5/8-th of all frequency, and add an additional 1/8-th of the
frequencies at a time, if necessary. We use our method and the other baselines
to attack eight pre-trained classifiers (four standard and four ℓ2-robust). For
each attack, we limit the number of queries (B) the attacker can make and the
allowable ℓ2 distortion (ρ). We use different values of ρ since our experiments
span various types of datasets and classifiers. In particular, larger ρ is used if the
attacks are more challenging (i.e., on ImageNet dataset, robust models and/or
targeted attack). We make minimal tuning of the step size ε, just setting it to
be a fraction of ρ. Details of the target classifiers and test parameters here are
shown in Table 1. Additional results to show the performance of BABIES is not
sensitive with ε are presented in the Appendix.

Results on the standard models (Tables 2 & 3). The main comparison results
evaluated in the attacks on CIFAR-10 images are reported in Table 2. Here,
the median queries of BABIES-DCT are significantly lower than those of other
baselines in all of the tests, highlighting that for many images, our method can
find an adversarial perturbation in the DCT domain with very few queries. We
also achieve the best success rates in three out of four cases. On the average
query count, BABIES-DCT and Square-attack each lead in two tests. Both be-
ing random-search based method, BABIES-DCT samples from a pre-defined
sets of DCT directions while Square-attack crafts random perturbations from a
more flexible space. For low dimensional images like CIFAR-10, the set of DCT
directions are limited, so eventually all directions will be chosen and recycled.
The ability of generating more flexible random directions is an advantage for
Square-attack in this case.
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Classifiers Dataset Type B ρ ε

Inception v3 [32] ImageNet standard 10000 (50000) 5 (12) 2 (3)
ResNet50 [17] ImageNet standard 10000 (50000) 5 (12) 2 (3)
Inception v3 [32] CIFAR10 standard 6144 (6144) 2.4 (4) 2 (2)
VGG13 [31] CIFAR10 standard 6144 (6144) 2.4 (4) 2 (2)
ResNet18 [29] ImageNet ℓ2-robust (ϵ=3) 10000 (50000) 12 (32) 8 (8)
ResNet50 [29] ImageNet ℓ2-robust (ϵ=3) 10000 (50000) 12 (32) 8 (8)
ResNet50 [13] CIFAR10 ℓ2-robust (ϵ=1) 6144 (6144) 2 (3) 0.5 (0.5)
SmallCNN [35] MNIST ℓ2-robust (ϵ=0.005) 10000 (10000) 1 (2) 0.5 (0.5)

Table 1. The target classifiers and experiment parameters. The first numbers are for
untargeted attack. Numbers in parentheses are for targeted attack. Additional results
on sensitivity of BABIES’s performance to hyperparameters are included in Appendix.

Table 3 shows the comparison results on ImageNet. Our method has a very
strong performance on the targeted attacks, where it outperforms the others in all
three metrics and requires much fewer number of queries (39% and 13% less than
the next baseline for Inception v3 and ResNet50 respectively). On untargeted
attacks, the results are more comparable, where BABIES-DCT is slightly better
than Square-attack in the success rate, and slightly worse in the number of
queries of successful attacks. SimBA does not look particularly strong here, but
it should be note that SimBA can find adversarial examples with very small
distortions in Bρ, while other methods focus on searching on the hypersphere Sρ.
As such, with the same maximum allowable distortion, SimBA always achieves
lowest average distortion on successful attacks.

Table 2. Comparison on attacks against the standard models for CIFAR-10.
BABIES-DCT leads in success rate in 3/4 tests and achieves significantly lower median
queries than other baselines in 4/4 tests.

Table 3. Comparison on attacks against the standard models for ImageNet. For
targeted attacks, BABIES outperforms other baselines in all three metrics. For untar-
geted attacks, the performance of tested methods are more comparable.

Results on defended models (Tables 4 & 5). Here, none of the evaluated attacks
can achieve success rates close to 100%, so we will evaluate them based on the
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success rate before other metrics, because with low success rate, a method can
achieve a low number of queries. For MNIST and CIFAR-10 attacks (Table 4),
BABIES-DCT has a significant lead in success rate in three out of four tests
(14%-27% to the next baseline). The gap between our method and Bandits is
close for untargeted SmallCNN attack, but then, our method posts a much lower
average and median query counts. For ImageNet attacks (Table 5), BABIES-
DCT leads by a large margin in untargeted ResNet18 (18%), targeted ResNet18
(29%) and untargeted ResNet50 (19%) attacks. Our method is close to Bandits
in the targeted ResNet50, but again, it requires much fewer queries. We observe
that BABIES shows more significant advantages in attacking defended models,
which is consistent with the empirical result (in Figure 3) that the loss landscape
of defended models are closer to parabolas than that of the standard models.

Table 4. Comparison on attacks against the ℓ2 robust models for CIFAR-10 and
MNIST. None of the attacks achieve success rates close to 100%, so we evaluate
methods on success rate before other metrics. BABIES-DCT leads in success rate in
4/4 tests (and over 14% to the next baseline in 3/4 tests).

Table 5. Comparison on attacks against the ℓ2-robust models for ImageNet. Suc-
cess rate is the most important metric. BABIES-DCT leads in success rate by over
18% to the next baseline in 3/4 tests. For targeted ResNet50, our method is close to
Bandits in success rate, but it requires 50% less queries.

Qualitative results (Figure 4). Since the distortion metric is only an approxi-
mation of the imperceptibility, we would like to compare how imperceptible the
adversarial images are to the human eye. For that purpose, we selected four
images from the targeted attack (on Inception v3) experiment to explain our
observations. The clean images and the distorted images are shown in Figure 4.
All adversarial images have approximately same ℓ2 distortion norm ∥δ∥2 ≃ 12.
It is easy to see that different methods lead to different types of distortion. Even
though Bandits is less efficient in our experiments, it generates the most imper-
ceptible adversarial images with comparable ℓ2 norms. The adversarial images
from BABIES-DCT and SimBA-DCT (not shown here) exhibit noticeable wave-
like distortions for some images, especially when the background color is light.
Finally, Square-attack adds more noticeable sharp distortions. The distortion
mass is distinctively concentrated in a set of small squares, coded by the design
of searching space by this method.
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5.2 Results on attacking Google Cloud Vision

Fig. 4. Qualitative comparison of the im-
perceptibility of distortion. The distorted
images are selected from the targeted at-
tack (on Inception v3) experiment and
have approximately same distortion norm
∥δ∥2 ≃ 12. Bandits generates perturbations
with a grainy look and can blend with the
background. The wave-like distortions from
BABIES-DCT are noticeable for some im-
ages. Square attack generates in general
more noticeable distortions compared with
the other methods.

We perform attacks on the Google
Cloud Vision API, which is a powerful
image analysis tool capable to iden-
tify the dominant entities/objects in
images. For an input image, the API
provides a list of top concepts appear-
ing in the image, together with their
probabilities. We consider an untar-
geted attack that aims to remove the
top 3 objects in the original images.
We define the adversarial loss as the
maximum of the probabilities of orig-
inal top 3 concepts, similar to [16,20],
and minimize this loss with BABIES,
until an adversarial example is found.
We allow maximum 2000 queries for
each image and a maximum distortion
ρ = 12.0 in ℓ2 norm. Our attack on 50
images randomly selected from Ima-
geNetV2 shows that BABIES achieves
an 82% success rate with 205 average
queries on successful attacks. In Fig-
ure 5, we show some example images
before and after the attack. We ob-
serve that the leading concepts in the
original images, related to food, laun-
dry, camel and insect, are completely
removed in the adversarial images and replaced by less important or incorrect
labels. This test demonstrates that our method is highly effective against real
world systems.

6 Discussion and conclusion

We propose to exploit the parabolic landscape of the adversarial loss with respect
to DCT perturbation to improve the query efficiency of random search methods
for black-box adversarial attack. Using a simple quadratic interpolation strategy,
we demonstrate that the loss smoothness can greatly improve query efficiency
without additional query per iteration. Our algorithm solve a constraint opti-
mization problem on ℓ2 sphere. Thus we propose to use large query step for better
exploration of the search space. Our evaluation shows a remarkable advantage
of this strategy.

Our theoretical and empirical study on the landscape of the adversarial loss
provides a new angle to investigate the vulnerability of an image classifier. From
this perspective, the theoretical insight on the loss landscape may be even more
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Fig. 5. Example images in our BABIES attack on the Google Cloud Vision API to
remove top 3 labels. Labels related to the main objects of original images (clockwise
from top left: food, laundry, camel, insect) are completely removed and replaced by
less important or incorrect labels.

valuable to the community than the BABIES algorithm. For example, an intrigu-
ing observation from theoretical study and our experiment is that the relative
performance of BABIES-DCT (in comparison to other baselines) is strongest in
attacking ℓ2-robust models. One possible reason is that the loss landscapes of the
defended models are closer to parabolas, which provides a favorable setting for
our method. While defended classifiers have been studied extensively recently,
ℓ∞ models have got more attention and less is known about ℓ2 models. Un-
derstanding the properties and possible weakness of ℓ2 models is an interesting
problem we plan to study next. Despite the superior performance, our method
has several limitations. First, our method is designed for ℓ2 attack, which may
not outperform the state-of-the-art methods in ℓ∞ attack. Second, since the
perturbation is made in the Fourier domain, the perturbation is combination
of cosine functions which is easier to be distinguished by naked eyes than pixel
perturbations, even though the ℓ2 norm satisfies the constraint.

There are several possible directions to pursue in the future research. One
is to investigate the loss smoothness in other spaces, e.g., replacing DCT with
wavelet transform. In fact, the idea of Square Attack makes Haar wavelet trans-
form a good candidate to study. An advantage of using wavelet transform is that
wavelet is only supported locally, which means perturbing a wavelet mode will
result in a smaller distortion than perturbing a globally supported cosine basis.
Another area for improvement is to perturb multiple DCT modes within each
iteration for more efficient exploration. We leave these directions for future work.
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