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Abstract. Face anti-spoofing (FAS) approaches based on unsupervised
domain adaption (UDA) have drawn growing attention due to promis-
ing performances for target scenarios. Most existing UDA FAS meth-
ods typically fit the trained models to the target domain via aligning
the distribution of semantic high-level features. However, insufficient su-
pervision of unlabeled target domains and neglect of low-level feature
alignment degrade the performances of existing methods. To address
these issues, we propose a novel perspective of UDA FAS that directly
fits the target data to the models, i.e., stylizes the target data to the
source-domain style via image translation, and further feeds the stylized
data into the well-trained source model for classification. The proposed
Generative Domain Adaptation (GDA) framework combines two care-
fully designed consistency constraints: 1) Inter-domain neural statistic
consistency guides the generator in narrowing the inter-domain gap. 2)
Dual-level semantic consistency ensures the semantic quality of stylized
images. Besides, we propose intra-domain spectrum mixup to further ex-
pand target data distributions to ensure generalization and reduce the
intra-domain gap. Extensive experiments and visualizations demonstrate
the effectiveness of our method against the state-of-the-art methods.

Keywords: Face anti-spoofing, unsupervised domain adaptation

1 Introduction

Face recognition (FR) techniques [12,35,71,114,45,80] have been widely utilized
in identity authentication products, e.g., smartphones login, access control, etc.
Despite its gratifying progress in recent years, FR systems are vulnerable to face
presentation attacks (PA), e.g., printed photos, video replay, and etc. To protect
such FR systems from various face presentation attacks, face anti-spoofing (FAS)
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Fig. 1: Conventional UDA FAS methods typically force the model fit to the target
data via performing the high-level feature alignment across domains. However,
insufficient supervisions and neglect of low-level feature alignment inevitably
affect the discrimination ability of FAS models. Instead, we aim to directly fit the
target data to the source-trained models in a reverse manner via both the high-
level and low-level alignment. By generating source-style images and predicting
with a well-trained model, we address these issues without changing models

attracts great attention. Nowadays, based on hand-crafted features [2,55,16,37,88],
and deeply-learned features [13,44,61,97,101,47,102], several methods achieve
promising performance in intra-dataset scenarios. However, they all suffer from
performance degradation when adapting to the target domains in real-world
scenarios due to the domain gap across different domains.

To improve the generalization, FAS approaches based on domain general-
ization (DG) and unsupervised domain adaption (UDA) have been proposed
on cross-domain scenarios. However, DG FAS approaches [68,31,69,49,48,9,111]
only utilize the seen data in the training stage, which fail in utilizing the in-
formation of the target data, thus resulting in unsatisfactory performance on
the target domain. Although UDA FAS methods [77,40,76,32,66,107,72] utilize
both the labeled source domain and the unlabeled target domain to bridge the
domain gap, most of them typically fit the models to the target domain via
aligning the distribution of semantic high-level features, as shown in Fig. 1 (a),
without considering the specificity of FAS task. On the one hand, since the in-
sufficient supervision of the target domain, fitting to it may inevitably affect the
discrimination ability of the source model. On the other hand, as pointed out
in [34], low-level features are especially vital to the FAS task. Thus, the above
towards-target distribution alignment based on only high-level features may not
be the most suitable way for UDA FAS.

To address the above issues, we propose a novel perspective of unsupervised
domain adaptation (UDA) for face anti-spoofing (FAS). Different from existing
methods that fit the models to the target data, we aim to directly fit the target
data to the well-trained models, keeping the source-trained models unchanged,
as shown in Fig. 1 (b). To achieve such fitting, we reformulate the unsupervised
domain adaptation (UDA) in FAS as a domain stylization problem to stylize
the target data with the source-domain style, and the stylized data is further
fed into the well-trained source model for classification. In this work, we pro-
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pose Generative Domain Adaptation (GDA) framework combining two carefully
designed consistency constraints. Specifically, we present inter-domain neural
statistic consistency (NSC) to guide the generator toward producing the source-
style images, which fully aligns the target feature statistics with the source ones
in both high-levels and low-levels, and narrows the inter-domain gap efficiently.
Besides, to maintain the semantic qualities and liveness information of the target
data during the stylization procedure, we introduce a dual-level semantic con-
sistency (DSC) on both image level and feature level. Moreover, intra-domain
spectrum mixup (SpecMix) is presented to further expand the target data distri-
bution to ensure that the generator could correctly translate the unseen target
domain to the source-style domain. To the best of our knowledge, this is the first
work that reveals the potential of image translation for UDA FAS.

Our main contributions can be summarized as follows:
•We propose a novel perspective of unsupervised domain adaptation for face

anti-spoofing that directly fits the target data to the source model by stylizing
the target data with the source-domain style via image translation.
• To ensure the stylization, we present a Generative Domain Adaptation

framework combined with two carefully designed consistency constraints, inter-
domain neural statistic consistency (NSC) and dual-level semantic consistency
(DSC). And intra-domain spectrum mixup (SpecMix) is presented to further
expand the target data distribution to ensure generalization.
• Extensive experiments and visualizations demonstrate the effectiveness of

our proposed method against the state-of-the-art competitors.

2 Related Work

Face Anti-Spoofing. Face anti-spoofing (FAS) aims to detect a face image
whether taken from a real person or various face presentation attacks [4,10,7,8].
Pioneer works utilize handcrafted features to tackle this problem, such as SIFT [62],
LBP [2,55,16], and HOG [37,88]. Several methods utilize the information from
different domains, such as HSV and YCrCb color spaces [2,3], temporal do-
mains [70,1], and Fourier spectrum [43]. Recent approaches leverage CNN to
model FAS with binary classification [13,44,61,100] or additional supervision,
e.g., depth map [97], reflection map [101] and r-ppg signal [47,27]. Other meth-
ods adopt disentanglement [102,52] and custom operators [98,96,6] to improve
the performance. Despite good outcomes in the intra-dataset setting, their per-
formances still drop significantly on target domains due to large domain shifts.

Cross-Domain Face Anti-Spoofing. To improve the performances under the
cross-domain settings, domain generalization (DG) [41,39,106,57] is introduced
into FAS tasks. Nevertheless, DG FAS methods [68,31,69,49,48,9,111] aim to
map the samples into a common feature space and lack the specific information
of the unseen domains, inevitably resulting in unsatisfactory results. Considering
the availability of the unlabeled target data in real-world applications, several
works tackle the above issue based on unsupervised domain adaptation (UDA)
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methods. Recent studies of UDA FAS mainly rely on pseudo labeling [66,54],
adversarial learning [40,77,76,32] or minimizing domain discrepancy [32,40] to
narrow the domain shifts. However, they still suffer from insufficient supervision
of the unlabeled target domains, which may cause the negative transfer to the
source models. Besides, most works mainly focus on the alignment of high-level
semantic features, overlooking the low-level features which are essential to the
FAS tasks. In contrast, we aim to address these two issues for UDA FAS.

Unsupervised Domain Adaptation. Unsupervised domain adaptation (UDA)
aims to bridge the domain shifts between the labeled source domain and unla-
beled target domain. Recent methods focus on adversarial learning [17,73,63,56],
self-training [115,116,14,84], consistency regularization [11,108,109,112], proto-
typical alignment [85,103,33], feature disentanglement [82,5,110] and image trans-
lation [24,21,94,93,53,30,105,20,26,25]. Despite its gratifying progress, such “model-
fitting-to data” paradigm is not practical for FAS task due to plenty of different
domains in real-world scenarios. Besides, the discrimination ability of the source
model may also be affected during re-training. In contrast, we propose a new
yet practical approach that adapts the target data to the source model, keeping
the source model unchanged. To the best of our knowledge, this is the first work
that reveals the potential of image translation for UDA FAS.

3 Methodology

3.1 Overview

In UDA FAS, we have access to the labeled source domain, denoted as Ds =
{(xs, ys) | xs ⊂ RH×W×3, ys ∈ [0, 1]

}
, and the unlabeled target domain, denoted

as Dt = {(xt) | xt ⊂ RH×W×3
}
. Regarding that insufficient supervision and

neglect of low-level feature alignment in previous UDA FAS approaches lead to
inferior performances, we are motivated to perform both the high-level and low-
level feature alignment and make the target data fit to the model in a reverse
manner. Our training include two stages: the first phase using the source domains
only for training the FAS models, including a feature extractor F , a classifier H,
a depth estimator R; the second phase for domain adaptation. During the latter
phase, only the image generator G is optimized, and other source models with
an ImageNet pre-trained VGG module ϕ are fixed during the adaptation.

Fig. 2 shows the overall GDA framework. We aim to stylize the unlabeled
target domain to the source-style domain, making the unlabeled target data fit
to the source models, so that the well-trained models do not need to be changed.
To mitigate the intra-domain gap, input images are firstly diversified in contin-
uous frequency space via intra-domain spectrum mixup (SpecMix) to produce
augmented images. Then, the generator translates both the original and the di-
versified target images into the source-style images. To extract the source style
information to guide the image translation, we match the generated statistics
of the source-style images with those stored source statistics in the pre-trained
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Fig. 2: Overview of Generative Domain Adaptation framework. The parameters
of the source-trained models are fixed during adaptation. Given the unlabeled
target data, we only optimize the parameters of the generator G. Firstly, we
generate diversified target images via intra-domain spectrum mixup (SpecMix),
thus enhancing the generalization abilities of the generator G in bridging the
intra-domain gap. Then, inter-domain neural statistic consistency (NSC) fully
matches generated feature statistics with the stored ones in high level and low
levels, thus mitigating the inter-domain gap. Thus, the translated images can re-
tain the source style. Furthermore, we introduce dual-level semantic consistency
(DSC) to ensure content-preserving and prevent form semantic distortions

model via inter-domain neural statistic consistency (NSC), thus bridging the
inter-domain gap. Finally, to preserve the target content and prevent semantic
distortions during the generation, we propose a dual-level semantic consistency
(DSC) on both the feature level and image level.

3.2 Generative Domain Adaptation

Inter-domain Neural Statistic Consistency. Batch normalization (BN) [29]
normalizes each input feature within a mini-batch in a channel-wise manner so
that the output has zero-mean and unit-variance. Let B and {zi}Bi=1 denote the
mini-batch size and the input features to the batch normalization, respectively.
The key to the BN layer is to compute the batch-wise statistics, e.g., means µ
and variances σ2 of the features within the mini-batch:

µ← 1

B

B∑
i=1

xi, σ2 ← 1

B

B∑
i=1

(xi − µ)
2
, (1)
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In the first phase of training FAS models, the source statistics µ̄n+1
s and σ̄n+1

s

at step n+ 1 are exponential moving average of that at step n with a ratio α:

µ̄n+1
s = (1− α)µ̄n

s + αµn
s(

σ̄n+1
s

)2
= (1− α) (σ̄n

s )
2
+ α (σn

s )
2

(2)

We observe that such neural statistics [67,29] of the source features stored in the
well-trained FAS models provide sufficient supervisions for both the low-level
and high-level features, which can represent domain-specific styles and could
be fully used to aid the distribution alignment in UDA. However, the previ-
ous methods only use the output features of high-level layers for distribution
alignment, and are unable to make full use of rich and discriminative liveness
cues in low-level features, which is vital to FAS tasks. Thus, given those stored
BN statistics, we can easily estimate the source-style distribution Ds̃, where
Ds̃ =

{
(xs̃) | xs̃ = G (xt) ⊂ RH×W×3

}
.

Inspired by data-free knowledge distillation [95], we propose an inter-domain
neural statistic consistency loss Lstat to match the feature statistics between
the running mean µ̄s̃, running variances σ̄s̃ of the source-style data Ds̃ and the
stored statistics µ̄s, σ̄s of source models M , thus bridging the inter-domain gap:

Lstat =
1

L

L∑
l=1

{∥∥µ̄l
s̃ − µ̄s

l
∥∥
2
+
∥∥σ̄l

s̃ − σ̄l
s

∥∥
2

}
(3)

where l ∈ {1, 2, ..., L} denotes the layer l in the source-trained models, including
the feature extractor F , classifier H, and depth estimator R. Guided by loss
Lstat , we could approximate the source-style domain that has the similar style
as the source domain. Different from [95] that generates image contents from an
input random noise, our NSC uses BN statistics alignment as one constraint to
stylize the input images without changing contents.

Dual-level Semantic Consistency. To preserve the semantic contents during
the image translation, we propose a dual-level semantic consistency on both
feature level and image level to constrain the contents.

On the feature level, given the generated source-style image xs̃ and the orig-
inal target image xt as inputs, a perceptual loss Lper is imposed onto the latent
features of the ImageNet pre-trained VGG module ϕ, thus narrowing the per-
ceptual differences between them:

Lϕ
per(xs̃, xs) =

1

CHW
∥ϕ(xs̃)− ϕ(xt)∥22 (4)

However, merely using this perceptual loss in the spatial space is not powerful
enough to ensure semantic consistency. This is mainly because the latent features
are deeply-encoded, and some important semantic cues may be lost. Many pre-
vious works [36,64,60,19,22,94,93] suggest that the Fourier transformations from
one domain to another only affect the amplitude, but not the phase of their
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spectrum, where the phase component retains most of the contents in the origi-
nal signals, while the amplitude component mainly contains styles. And inspired
by [93], we consider explicitly penalizing the semantic inconsistency by ensuring
the phase is retained before and after the image translation. For a single-channel
image x, its Fourier transformation F(x) is formulated:

F(x)(u, v) =
H−1∑
h=0

W−1∑
w=0

x(h,w)e
−j2π

 h

H
u+

w

W
v


(5)

As such, we enforce phase consistency between the original target image xt

and the source-style image xs̃ by minimizing the following loss Lph:

Lph(xs̃, xt) = −
∑
j

⟨F(xt)j ,F(xs̃)j⟩
∥F(xt)j∥2 · ∥F(xs̃)j∥2

(6)

where ⟨, ⟩ is the dot-product, and ∥ · ∥2 is the L2 norm. Note that Eq. (6)
is the negative cosine distance between the original phases and the generated
phases. Therefore, by minimizing Lph, we can directly minimize their image-
level differences on the Fourier spectrum and keep the phase consistency.

Intra-domain Spectrum Mixup. Given the unlabeled target data, we observe
that the generator cannot perform well due to the lack of consideration of intra-
domain domain shifts across different target subsets. If training only on the seen
training subsets of the target domain and testing on the unseen testing subsets
of the target domain, image qualities of the source-style domain could be less-
desired. As such, we wish to a learn more robust generator G under varying
environmental changes, e.g., illumination, color.

Since previous findings [36,64,60,19,22,94,93,86] reveal that phase tends to
preserve most contents in the Fourier spectrum of signals, while the amplitude
mainly contains domain-specific styles, we propose to generate diversified im-
ages that retain contents but with new styles in the continuous frequency space.
Through the FFT algorithm [59], we can efficiently compute the Fourier trans-
formation F(xt) and its inverse transformation F−1(xt) of the target image
xt ∈ Dt via Eq. 5. The amplitude and phase components are formulated as:

A(xt)(u, v) =
[
R2(xt)(u, v) + I2(xt)(u, v)

]1/2
P(xt)(u, v) = arctan

[
I(xt)(u, v)

R(xt)(u, v)

]
,

(7)

where R(xt) and I(xt) denote the real and imaginary part of F(xt), respectively.
For RGB images, the Fourier transformation for each channel is computed inde-
pendently to get the corresponding amplitude and phase components.

Inspired from [99,86], we introduce intra-domain spectrum mixup (SpecMix)
by linearly interpolating between the amplitude spectrums of two arbitrary im-
ages xk

t , x
k′

t from the same unlabeled target domain Dt:

Â(xk
t ) = (1− λ)A(xk

t ) + λA(xk′

t ), (8)
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where λ ∼ U(0, η), and the hyper-parameter η controls the strength of the
augmentation. The mixed amplitude spectrum is then combined with the original
phase spectrum to reconstruct a new Fourier representation:

F(x̂k
t )(u, v) = Â(xk

t )(u, v) ∗ e−j∗P(xk
t )(u,v), (9)

which is then fed to inverse Fourier transformation to generate the interpolated
image: x̂k

t = F−1[F(x̂k
t )(u, v)].

This proposed intra-domain spectrum mixup is illustrated in Fig 2. By con-
ducting the aforementioned steps, we could generate unseen target samples with
new style and the original content in continuous frequency space. Thus, by feed-
ing forward those diversified images to the generator G, the generalization abili-
ties across different subsets within the target domain could be further enhanced.

3.3 Overall Objective and Optimization

Entropy loss. Minimizing the Shannon entropy of the label probability dis-
tribution has been proved to be effective in normal UDA task [58,74,83,65,75].
In this paper, we compute entropy loss via the classifier and depth estimator,
respectively. The total entropy loss are penelized with Lent = Lent1 + Lent2.

Lent1 =

C∑
c=1

−⟨pc(xs̃) · log(pc(xs̃))⟩

Lent2 =

C∑
c=1

H∑
h=1

W∑
w=1

−⟨rc(xs̃)(h,w) · log(rc(xs̃(h,w)))⟩

(10)

Total loss. During the adaptation procedure, the parameters of the source
model F , H R, and the VGG module ϕ are fixed, and we only optimize the
parameters of the generator G. The total loss Ltotal is the weighted sum of the
aforementioned loss functions:

Ltotal = Lstat + Lper + λentLent + λphLph, (11)

where λent, λph, are the weighting coefficients for the loss Lent, Lph respectively.

4 Experiments

In this section, we first describe the experimental setup in Section 4.1, including
the benchmark datasets and the implementation details. Then, in Section 4.2, we
demonstrate the effectiveness of our proposed method compared to the state-of-
the-art approaches and related works on multi-source scenarios and single-source
scenarios. Next, in Section 4.3, we conduct ablation studies to investigate the
role of each component in the method. Finally, we provide more visualization
and analysis in Section 4.4 to reveal the insights of the proposed method.
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Fig. 3: ROC curves compared to the state-of-the-art FAS approaches

Table 1: Comparisons to the-state-of-art FAS methods on four testing domains

Methods
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

IDA [81] 66.6 27.8 55.1 39.0 28.3 78.2 54.2 44.6
LBPTOP [15] 36.9 70.8 42.6 61.5 49.5 49.5 53.1 44.0
MS LBP [55] 29.7 78.5 54.2 44.9 50.3 51.6 50.2 49.3

ColorTexture [3] 28.0 78.4 30.5 76.8 40.4 62.7 63.5 32.7
Binary CNN [87] 29.2 82.8 34.8 71.9 34.4 65.8 29.6 77.5

Auxiliary (ALL) [51] - - 28.4 - 27.6 - - -
Auxiliary (Depth) [51] 22.7 85.8 33.5 73.1 29.1 71.6 30.1 77.6

MMD-AAE [42] 27.0 83.1 44.5 58.2 31.5 75.1 40.9 63.0
MADDG [68] 17.6 88.0 24.5 84.5 22.1 84.9 27.9 80.0
RFM [69] 13.8 93.9 20.2 88.1 17.3 90.4 16.4 91.1

SSDG-M [31] 16.7 90.5 23.1 85.5 18.2 94.6 25.2 81.8
DRDG [49] 12.4 95.8 19.1 88.8 15.6 91.8 15.6 91.8
ANRL [48] 10.8 96.8 17.9 89.3 16.0 91.0 15.7 91.9

SDA-FAS [78] 15.4 91.8 24.5 84.4 15.6 90.1 23.1 84.3
DIPE-FAS [15] 18.2 - 25.5 - 20.0 - 17.5 -
VLAD-VSA [79] 11.4 96.4 20.8 86.3 12.3 93.0 21.2 86.9

Ours 9.2 98.0 12.2 93.0 10.0 96.0 14.4 92.6

4.1 Experimental Setup

Datasets. We use four public datasets that are widely-used in FAS research
to evaluate the effectiveness of our method: OULU-NPU [4] (denoted as O),
CASIA-MFSD [104] (denoted as C), Idiap Replay-Attack [10] (denoted as I),
and MSU-MFSD [81] (denoted as M). Strictly following the same protocols as
previous UDA FAS methods [79,78,32,77,54], we use source domains to train
the source model, the training set of the target domain for adaptation, and the
testing set of the target domain for inference. Half Total Error Rate (HTER)
and Area Under Curve (AUC) are used as the evaluation metrics [68].
Implementation Details. Our method is implemented via PyTorch on 24G
NVIDIA 3090Ti GPU. We use the same backbone as existing works [49,48]. Note
that we do not use any domain generalization techniques but just a binary clas-
sification loss and a depth loss during the first stage. We extract RGB channels
of images, thus the input size is 256 × 256 × 3. In the second stage, the coeffi-
cients λph and λent are set to 0.01 and 0.01 respectively. The generator G [113]
is trained with the Adam optimizer with a learning rate of 1e-4.
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Table 2: Comparisons (HTER) to unsupervised domain adaptation methods

Method C −→ I C −→ M I −→ C I −→ M M −→ C M −→ I Average

ADDA [73] 41.8 36.6 49.8 35.1 39.0 35.2 39.6
DRCN [18] 44.4 27.6 48.9 42.0 28.9 36.8 38.1

Dup-GAN [28] 42.4 33.4 46.5 36.2 27.1 35.4 36.8
Auxliary [50] 27.6 − 28.4 − − − −
De-spoof [34] 28.5 − 41.1 − − − −
STASN [92] 31.5 − 30.9 − − − −

Yang et al. [89] 49.2 18.1 39.6 36.7 49.6 49.6 40.5
KSA [40] 39.2 14.3 26.3 33.2 10.1 33.3 26.1
ADA [76] 17.5 9.3 41.6 30.5 17.7 5.1 20.3

DIPE-FAS [54] 18.9 − 30.1 − − − −
DR-UDA [77] 15.6 9.0 34.2 29.0 16.8 3.0 17.9

USDAN-Un [32] 16.0 9.2 30.2 25.8 13.3 3.4 16.3

Ours 15.1 5.8 29.7 20.8 12.2 2.5 14.4

Table 3: Comparison to the source-free domain adaptation methods

Methods
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

AdaBN [38] 20.5 88.0 34.5 72.0 27.7 80.3 28.2 80.8
TENT [75] 20.1 88.0 35.0 71.2 27.2 79.6 28.3 80.7
SDAN [23] 17.7 90.0 25.9 81.3 28.2 84.2 32.9 75.0
SHOT [46] 15.0 87.6 20.1 84.3 40.2 57.8 25.3 78.2

G-SFDA [90] 37.5 67.8 38.9 67.2 32.6 73.6 40.4 63.7
NRC [91] 15.0 87.4 47.8 52.4 22.1 82.3 26.6 78.8

DIPE-FAS [54] 18.2 - 25.5 - 20.0 - 17.5 -
SDA-FAS [78] 15.4 91.8 24.5 84.4 16.4 92.0 23.1 84.3

Ours 9.2 98.0 12.2 93.0 10.0 96.0 14.4 92.6

4.2 Comparisons to the State-of-the-art Methods

To validate the generalization capability towards the target domain on the FAS
task, we perform two experimental settings of UDA FAS, i.e., multi-source do-
main adaptation and single-source domain adaptation, respectively.
Comparisons to FAS methods in multi-source adaptation. As shown in
Table 1 and Fig. 3, our method outperforms all the state-of-the-art FAS methods
under four challenging benchmarks, which demonstrates the effectiveness of our
method. Conventional FAS approaches [81,15,55,3,87,51] do not consider learn-
ing the domain-invariant representations across domains and show less-desired
performances. Besides, almost all DG FAS methods [42,68,31,69,48,49] lack a
clear target direction for generalization, resulting in unsatisfactory performance
in the target domain. Our method outperforms all the DG approaches by signif-
icant improvements in both HTER and AUC. A few DA approaches [79,78,15]
conduct the experiments under this multi-source setting, while they all directly
fit the model to the target domain with insufficient supervision and neglect the
low-level features for adaptation, leading to undesirable outcomes. In contrast,
our method is superior to them by a large margin in four challenging benchmarks.
Comparisons to FAS methods in single-source adaptation. To make a
fair comparison to the normal UDA approaches in the FAS task, we also conduct
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Fig. 4: The t-SNE visualization of features in different ablation studies

Table 4: Ablation of each component on four benchmarks

ID Baseline NSC DSC SpecMix
O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC

I ✓ - - - 29.2 77.8 32.7 76.4 19.4 85.8 27.1 80.9
II ✓ ✓ - - 20.0 89.0 28.7 79.7 17.3 88.4 21.1 84.9
III ✓ ✓ ✓ - 14.1 92.0 14.4 90.8 13.8 91.5 16.5 90.7
IV ✓ ✓ ✓ ✓ 9.2 98.0 12.2 93.0 10.0 96.0 14.4 92.6

experiments in single-source scenarios, where source models are pre-trained on
the single-source domain. From Table 2, it is obvious to find that our proposed
approach shows superiority under four of the six adaptation settings and achieves
the best average HTER results. In some hard adaptation tasks, e.g., I→ C, and
M → C, we can achieve the competitive results to the state-of-the-art methods.
Interestingly, we find that some results in Table 2 are superior to results of
Table 1. We guess the reason is that when training on multi-source domains, the
style distribution is complicated, and it is hard to train a stable generator G,
leading to inferior performances. Instead, training on only one source domain
with simple style distribution is easier to obtain a better generator G.
Comparison to the related SFDA methods. Table 3 presents the compari-
son results with source-free domain adaptation (SFDA) approaches in four multi-
source scenarios. As we can see, if we directly adapt the state-of-the-art SFDA
approaches to the FAS task, the performances are less-desired. For example, some
unsupervised/self-supervised techniques utilize pseudo labeling [54], neighbor-
hood clustering [91,90], entropy minimization [46,75] and meta-learning [78] to
reduce the domain gap between the source pre-trained model and the unlabeled
target domain. The main reasons are two-fold. 1) Almost all of them do not fully
utilize the source domain knowledge stored in the pre-trained model, which is
not sufficient for feature alignment. 2) They largely neglect the intra-domain gap
in the target domain itself, and do not consider learning a more robust domain-
invariant representation under varying environmental changes within the target.
In contrast, we address these two issues in an explicit manner, and show out-
standing improvements on these challenging benchmarks.

4.3 Ablation Studies

In this section, we perform ablation experiments to investigate the effectiveness
of each component, including inter-domain neural statistic consistency (NSC),
intra-domain spectrummixup (SpecMix), dual-level semantic consistency (DSC).
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Table 5: Effect of hyper-parameter η of SpecMix
(a) Effect of SpecMix (η) on the training
of our proposed model on O&C&I to M

η 0 0.1 0.2 0.3 0.4 0.5

HTER 14.1 9.2 10.0 10.0 10.0 10.0

AUC 92.0 98.0 97.9 97.8 97.3 97.2

(b) Effect of SpecMix (η) on the inference
of a well-trained FAS model on Idiap (I)

η 0 0.1 0.2 0.3 0.4 0.5

HTER 0 0 0 0 0 0.4

AUC 100 100 100 100 100 99.9

Effectiveness of each component. Table 4 shows the ablation studies of each
component in four different settings. The baseline means directly feeding for-
ward the target image to the source-trained FAS model for prediction, and the
results are with 77.8%, 76.4%, 85.8%, 80.9% AUC, respectively on O&C&I to
M, O&M&I to C, O&C&M to I, and I&C&M to O, setting. By adding NSC,
we boost the AUC performances to 89.0%, 79.7%, 88.4%, and 84.9%, respec-
tively. Moreover, by adding DSC, we effectively achieve 92.0%, 90.8%, 91.5%,
and 90.7%, respectively. Finally, our proposed SpecMix effectively increases the
performance to 98.0%, 93.0%, 96.0%, 92.6% on four benchmarks, respectively.
These improvements reveal the effectiveness and the complementarities of indi-
vidual components of our proposed approach.

The t-SNE visualization of features. To understand how GDA framework
aligns the feature representations, we utilize t-SNE to visualize the feature dis-
tributions of both the source and target datasets. As shown in Fig. 4 (a), we
observe that the source data can be well discriminated by binary classification,
however, the target data can not be well-classified between the real and fake faces
without domain adaptation. From Fig. 4 (b), by adding NSC, the classification
boundary becomes more clear but there are still some samples misclassified near
the decision boundary, the main reason is that it lacks the constraints on the
image contents during the generation. As such, by further adding DSC in Fig.
4 (c), the above issue is alleviated to some extent. By bridging both the inter-
domain gap and intra-domain gap in Fig. 4 (d), our approach manages to learn
a better decision boundary between these two categories, and meanwhile, our
target features between different domains become more compact to align.

Discussions on SpecMix. Regarding that SpecMix could generate new styles
in continuous frequency space, it it natural to ask several questions:Will SpecMix
change the category during the adaptation? Will mixing amplitude information
affect the face liveness? We conduct several experiments to answer the questions.
Note that we use a hyper-parameter η to control the strength of augmentation
in our SpecMix. Higher η leads to a larger upper bound ratio to mix another
image’s amplitude from the same batch with that of the current image. (1). In
Table 5 (a), we investigate the effect of η on the training of our proposed GDA
framework. During the adaptation, we find that if we set η=0, which means the
intra-domain gaps are neglected, the performance is not perfect. If ranging η
from 0.1 to 0.5, the performance changes are very slight compared to the best
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Fig. 5: Visualization of the target image xt and the source-style image xs̃

Fig. 6: Spoof details in the target images xt and source-style images xs̃

one when setting η = 0.1, but still achieves the state-of-the-art results. (2). As
shown in Table 5 (b), we study the sensitivity of η during the inference of a
well-trained FAS model on Idiap Replay-Attack dataset. If ranging η from 0.1 to
0.4, there are no performance changes, and when η=0.5, the effect is still slight.
From these two aspects, we set η = 0.1 in all experiments, and under such cases,
we argue that mixing the amplitude will not affect the face liveness.

4.4 Visualization and Analysis

Visualizations of generated images with source styles. To further explore
whether the generator succeeds or not in stylizing the target images xt to a
generated images xs̃ that preserves the target content with the source style, we
visualize the adapted knowledge in the setting of I&C&M to O. As shown in
Fig. 5, with the help of our proposed NSC, no matter what kind of faces they
are, real faces or fake faces, the style differences between the source domain and
the target domain are successfully captured by the generator, which illustrates
the effectiveness of our proposed NSC. Besides, as shown in Fig. 6, the semantic
consistency, especially the spoof details, e.g., moire patterns, paper reflection,
are well-maintained between the original target images and the pseudo source
images, which demonstrates the effectiveness of our proposed DSC.
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Fig. 7: Visualization of domain discrepancy (MMD and BN variance) of features

Visualizations of cross-domain discrepancy. As shown in Fig. 7 (a), we
measure the maximum mean discrepancy (MMD) across domains. Source Only
denotes directly forwarding the testing image to the source model without any
domain adaptation techniques. Compared to Source Only, our model effectively
reduce the MMD in both the shallow blocks and deep blocks, especially in the
shallow blocks, which confirms that our framework successfully translate the
target images to the source-style images. In Fig. 7 (b), we visualize the curve
of mean discrepancy and variance discrepancy of each BN layer. As we can see,
if directly feeding the target images to the source model in the test phase, the
variation of the mean in BN between the source and the target (the red curve) is
much larger than our method with domain adaptation methods (yellow curve).
Our approach effectively prevents such feature misalignment. Besides, from Fig.
7 (c), we observe that the variation of variance in BN by feeding the source image
to the source model (blue curve) is similar to that with our GDA (yellow curve),
which means that our BN statistics effectively align with the source ones.

5 Conclusion

In this work, we reformulate UDA FAS as a domain stylization problem, aiming
to fit the target data onto the well-trained models without changing the mod-
els. We propose Generative Domain Adaptation (GDA) framework with several
carefully designed components. Firstly, we present an inter-domain neural statis-
tic consistency (NSC) to guide the generator generating the source-style domain.
Then, we introduce a dual-level semantic consistency (DSC) to prevent the gen-
eration from semantic distortions. Finally, we design an intra-domain spectrum
mixup (SpecMix) to reduce the intra-domain gaps. Extensive experiments with
analysis demonstrate the effectiveness of our proposed approach.
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37. Komulainen, J., Hadid, A., Pietikäinen, M.: Context based face anti-spoofing. In:
2013 IEEE Sixth International Conference on Biometrics: Theory, Applications
and Systems (BTAS). pp. 1–8. IEEE

38. Li, Yanghao, Wang, Naiyan, Shi, Jianping, Hou, Xiaodi, Liu, Jiaying: Adaptive
batch normalization for oractical domain adaptation. Pattern Recognition (PR)
(2018)

39. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: Meta-learning
for domain generalization. In: Proceedings of the AAAI conference on artificial
intelligence (AAAI). vol. 32 (2018)

40. Li, H., Li, W., Cao, H., Wang, S., Huang, F., Kot, A.C.: Unsupervised domain
adaptation for face anti-spoofing. IEEE Transactions on Information Forensics
and Security (TIFS) 13(7), 1794–1809 (2018)

41. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial
feature learning. In: Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR). pp. 5400–5409 (2018)

42. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial
feature learning. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 5400–5409 (2018)

43. Li, J., Wang, Y., Tan, T., Jain, A.K.: Live face detection based on the analysis of
fourier spectra. In: Biometric technology for human identification. vol. 5404, pp.
296–303. SPIE (2004)

44. Li, L., Feng, X., Boulkenafet, Z., Xia, Z., Li, M., Hadid, A.: An original face anti-
spoofing approach using partial convolutional neural network. In: International
Conference on Image Processing Theory, Tools and Applications (IPTA) (2016)

45. Li, S., Xu, J., Xu, X., Shen, P., Li, S., Hooi, B.: Spherical confidence learning
for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 15629–15637 (2021)

46. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In: International Con-
ference on Machine Learning (ICML). pp. 6028–6039. PMLR (2020)

47. Lin, B., Li, X., Yu, Z., Zhao, G.: Face liveness detection by rppg features and con-
textual patch-based cnn. In: International Conference on Biometric Engineering
and Applications (ICBEA) (2019)



18 Q. Zhou et al.

48. Liu, S., Zhang, K.Y., Yao, T., Bi, M., Ding, S., Li, J., Huang, F., Ma, L.: Adaptive
normalized representation learning for generalizable face anti-spoofing pp. 1469–
1477 (2021)

49. Liu, S., Zhang, K.Y., Yao, T., Sheng, K., Ding, S., Tai, Y., Li, J., Xie, Y., Ma,
L.: Dual reweighting domain generalization for face presentation attack detection.
International Joint Conference on Artificial Intelligence (IJCAI) (2021)

50. Liu, S., Lan, X., Yuen, P.C.: Remote photoplethysmography correspondence fea-
ture for 3d mask face presentation attack detection. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV) (2018)

51. Liu, Y., Jourabloo, A., Liu, X.: Learning deep models for face anti-spoofing: Bi-
nary or auxiliary supervision. In: Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 389–398 (2018)

52. Liu, Y., Stehouwer, J., Liu, X.: On disentangling spoof trace for generic face anti-
spoofing. In: European Conference on Computer Vision (ECCV). pp. 406–422.
Springer (2020)

53. Liu, Y., Zhang, W., Wang, J.: Source-free domain adaptation for semantic seg-
mentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 1215–1224 (2021)

54. Lv, L., Xiang, Y., Li, X., Huang, H., Ruan, R., Xu, X., Fu, Y.: Combining dynamic
image and prediction ensemble for cross-domain face anti-spoofing. In: IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
pp. 2550–2554 (2021)

55. Maatta, J., Hadid, A., Pietikainen, M.: Face spoofing detection from single images
using micro-texture analysis. In: Proceedings of the IEEE International Joint
Conference on Biometrics (IJCB) (2011)

56. Meng, R., Chen, W., Yang, S., Song, J., Lin, L., Xie, D., Pu, S., Wang, X., Song,
M., Zhuang, Y.: Slimmable domain adaptation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 7141–7150
(2022)

57. Meng, R., Li, X., Chen, W., Yang, S., Song, J., Wang, X., Zhang, L., Song, M.,
Xie, D., Pu, S.: Attention diversification for domain generalization. In: European
Conference on Computer Vision (ECCV) (2022)

58. Morerio, P., Cavazza, J., Murino, V.: Minimal-entropy correlation alignment for
unsupervised deep domain adaptation. arXiv preprint arXiv:1711.10288 (2017)

59. Nussbaumer, H.J.: The fast fourier transform. In: Fast Fourier Transform and
Convolution Algorithms, pp. 80–111. Springer (1981)

60. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proceedings of
the IEEE 69(5), 529–541 (1981)

61. Patel, K., Han, H., Jain, A.K.: Cross-database face antispoofing with robust fea-
ture representation. In: Chinese Conference on Biometric Recognition. pp. 611–
619. Springer (2016)

62. Patel, K., Han, H., Jain, A.K.: Secure face unlock: Spoof detection on smart-
phones. IEEE Transactions on Information Forensics and Security (TIFS) 11(10),
2268–2283 (2016)

63. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In:
Thirty-second AAAI conference on artificial intelligence (AAAI) (2018)

64. Piotrowski, L.N., Campbell, F.W.: A demonstration of the visual importance and
flexibility of spatial-frequency amplitude and phase. Perception 11(3), 337–346
(1982)



Generative Domain Adaptation for Face Anti-Spoofing 19

65. Prabhu, V., Khare, S., Kartik, D., Hoffman, J.: Sentry: Selective entropy opti-
mization via committee consistency for unsupervised domain adaptation. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
pp. 8558–8567 (2021)

66. Quan, R., Wu, Y., Yu, X., Yang, Y.: Progressive transfer learning for face anti-
spoofing. IEEE Transactions on Image Processing (TIP) 30, 3946–3955 (2021)

67. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization
help optimization? Advances in neural information processing systems 31 (2018)

68. Shao, R., Lan, X., Li, J., Yuen, P.C.: Multi-adversarial discriminative deep domain
generalization for face presentation attack detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

69. Shao, R., Lan, X., Yuen, P.C.: Regularized fine-grained meta face anti-spoofing.
In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2020)

70. Siddiqui, T.A., Bharadwaj, S., Dhamecha, T.I., Agarwal, A., Vatsa, M., Singh,
R., Ratha, N.: Face anti-spoofing with multifeature videolet aggregation. In: 2016
23rd International Conference on Pattern Recognition (ICPR). pp. 1035–1040.
IEEE (2016)

71. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to
human-level performance in face verification. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (CVPR). pp. 1701–1708 (2014)

72. Tu, X., Zhang, H., Xie, M., Luo, Y., Zhang, Y., Ma, Z.: Deep transfer across
domains for face antispoofing. Journal of Electronic Imaging 28(4), 043001 (2019)

73. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative do-
main adaptation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR). pp. 7167–7176 (2017)

74. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial en-
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