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Abstract. Intra-frame inconsistency has been proved to be effective for
the generalization of face forgery detection. However, learning to focus on
these inconsistency requires extra pixel-level forged location annotations.
Acquiring such annotations is non-trivial. Some existing methods gener-
ate large-scale synthesized data with location annotations, which is only
composed of real images and cannot capture the properties of forgery re-
gions. Others generate forgery location labels by subtracting paired real
and fake images, yet such paired data is difficult to collected and the
generated label is usually discontinuous. To overcome these limitations,
we propose a novel Unsupervised Inconsistency-Aware method based on
Vision Transformer, called UIA-ViT, which only makes use of video-level
labels and can learn inconsistency-aware feature without pixel-level anno-
tations. Due to the self-attention mechanism, the attention map among
patch embeddings naturally represents the consistency relation, mak-
ing the vision Transformer suitable for the consistency representation
learning. Based on vision Transformer, we propose two key components:
Unsupervised Patch Consistency Learning (UPCL) and Progressive Con-
sistency Weighted Assemble (PCWA). UPCL is designed for learning the
consistency-related representation with progressive optimized pseudo an-
notations. PCWA enhances the final classification embedding with previ-
ous patch embeddings optimized by UPCL to further improve the detec-
tion performance. Extensive experiments demonstrate the effectiveness
of the proposed method.

1 Introduction

Face forgery technologies[6, 4, 29] have been greatly promoted with the develop-
ment of image generation and manipulation. The forged facial images can even
deceive human beings, which may be abused for malicious purposes, leading to
serious security and privacy concerns, e.g. fake news and evidence. Thus, it’s of
great significance to develop powerful techniques to detect fake faces.
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Early face forgery detection methods[2, 20, 31] regard this task as a binary
classification problem and achieve admirable performance in the intra-dataset
detection with the help of deep neural networks. However, they fail easily when
generalizing to other unseen forgery datasets where the identities, manipulation
types, compression rate, etc. are quite different. To improve the generalization of
detection, common forged artifacts or inconsistency produced by face manipula-
tion techniques are explored by recent methods, such as eye blinking frequency
[13], affine warping [14], image blending [12], temporal inconsistency [35,27],
intra-frame inconsistency [34,1] and so on. Among them, intra-frame inconsis-
tency has been proved to be able to effectively improve the generalization perfor-
mance of the detection, since the common face forgery strategy (manipulation
and blending) causes the inconsistency between the forged region and the origi-
nal background. However, learning to focus on these inconsistency requires extra
pixel-level forged location annotations. Acquiring such annotations is non-trivial.
Generating the large-scale synthesized data (e.g. simulated stitched images[34])
with pixel-level forged location annotations seems to be an intuitive solution.
Although it can produce accurate pixel-level location annotations, models can
not capture the properties of forgery regions, since the generated data is only
composed of real images. Other works [1,27] attempt to generate annotated
forged location labels by subtracting forgery image with its corresponding real
image. However, these paired images are usually unavailable, especially in the
real-world scenes. Even though such paired data can be collected, the forgery re-
gion annotations tend to be discontinuous and inaccurate, which are sub-optimal
for intra-frame consistency supervision. Therefore, we propose an unsupervised
inconsistency-aware method that extracts intra-frame inconsistency cues with-
out pixel-level forged location annotations.

The key of unsupervised inconsistency-aware learning is how to realize forgery
location estimation. In this paper, we apply the widely used multivariate Gaus-
sian estimation (MVG)[23,9] to represent the real/fake features and generate
pseudo annotations through it. Based on this idea, we can force the model
to focus on intra-inconsistency using pseudo annotations. In addition, differ-
ent from the previous works [27,1] which specially design a module to ob-
tain the consistency-related representation, we find that Vision Transformer
[5] naturally provides the consistency representation from the attention map
among patch embeddings, thanks to their self-attention mechanism. Therefore,
we apply it to build the detection network and propose two key components:
UPCL (Unsupervised Patch Consistency Learning) and PCWA (Progressive
Consistency Weighted Assemble).

UPCIL is a training strategy for learning the consistency-related representa-
tions through an unsupervised forgery location method. We approximately es-
timate forgery location maps by comparing the Mahalanobis distances between
the MVGs of real/fake features and the patch embedding from the middle layer
of Vision Transformer (ViT) [5]. During training, forgery location maps are pro-
gressively optimized. To model the consistency constraint, we use the Multi-head
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Attention Map existed in ViT itself as the representation and constrain them in
multi-layers for better learning.

PCWA is a feature enhancement module and can take full advantage of the
consistency representation through the proposed UPCL module. In details, we
utilize the Attention Map between classification embedding and patch embed-
dings to progressively weighted average the patch embedding of final layer, and
concatenate it with classification embedding before feed them into final MLP for
forgery classification. The layers providing these Attention Maps are optimized
by UPCL for further improvement.

The main contributions of this work are summarized as follows:

— We propose an unsupervised patch consistency learning strategy based on
vision Transformer to make it possible for face forgery detection to focus on
intra-frame inconsistency without pixel-level annotations. It greatly improves
the generalization of detection without additional overhead.

— We take full advantage of feature representations under the proposed learn-
ing strategy to progressively combine global classification features and local
patch features, by weighted averaging the latter using the Attention Map
between classification embedding and patch embeddings.

— Extensive experiments demonstrate the superior generalization ability of pro-
posed method and the effectiveness of unsupervised learning strategy.

2 Related Work

2.1 Face Forgery Detection

Early face manipulation methods usually produce obvious artifacts or incon-
sistencies on generated face images. Such flaws are important cues for early
face forgery detection works. For example, Li et al.[13] observed that the eye
blinking frequency of the forgery video is lower than the normal. Later methods
extended it to check the inconsistency of 3D head poses to help forgery videos
detection[32]. Similarly, Matern et al[17] used hand-crafted visual features in
eyes, noses, teeth to distinguish the fake faces.

Besides seeking for visual artifacts, frequency clues has also been introduced
in forgery detection to improve detection accuracy, such as Two-branch[16], F3-
Net[22], FDFL[11]. Meanwhile, attention mechanism proved to be effective in
recent studies like Xception+Reg [3] and Multi-attention[33] [19]. Although these
methods have achieved perfect performance in the intra-dataset detection, they
suffer big performance drop while generalizing to other unseen forgery datasets.

To overcome the difficulties on generalizing to unseen forgeries, works have
been done to discover universal properties shared by different forgery methods.
Some works focused on inevitable procedures in forgery, such as affine warping
(DSP-FWA [14]) and blending (Face X-ray [12]). While others observed that cer-
tain type of inconsistency exists in different kinds of forgery videos, such as tem-
poral inconsistency (LipForensics [7], FTCN+TT [35]) and intra-frame inconsis-
tency (Local-related [1], PCL+I2G [34], Dual [27]). However, in order to learn
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corresponding artifacts or inconsistency cues, Face X-ray[12] and PCL+I2G[34]
try to generate the large-scale datasets with annotated forged location for their
pixel-level supervised learning. The generation process is time consuming and
cannot capture the properties of forgery regions. Local-related[1] and DCL[27]
try to generate annotated forged location labels by subtracting forgery image
with its corresponding real image. However, these paired images are usually un-
available, especially in the real-world scenes. Even though such paired data can
be collected, the forgery region annotations tend to be discontinuous and inac-
curate, which are sub-optimal for intra-frame consistency supervision. To tackle
these issues, we introduce the unsupervised inconsistency-aware method to learn
inconsistency cues for general face forgery detection.

2.2 Transformer

Transformers [30] are proposed for machine translation and have become the
state of the art method in NLP tasks for their strong ability in modeling long-
range context information. Vision Transformer (ViT)[5] adjusted Transformers
for computer vision tasks, by modeling image as a sequences of image patches.
Several works leveraging transformers to boost face forgery detection have been
done: Miao et al.[18] extend transformer using bag-of-feature to learn local
forgery features. Khan et al.[8] propose a video transformer to extract spatial
features with the temporal information for detecting forgery. Zheng et al.[35]
design a light-weight temporal transformer after their proposed fully temporal
convolution network to explore the temporal coherence for general manipulated
video detection. In this paper, we also extend transformer to dig the relation-
ships among different regions and capture more local consistency information
for general forgery image detection.

3 Method

In this section, we introduce the details of the proposed Vision Transformer
based unsupervised inconsistency-aware face forgery detection. As shown in
Fig.1, given an image I, our network splits I into fixed-size patches, linearly
embeds each of them, adds position embeddings and feeds the resulting sequence
into the Transformer encoder. The patch embeddings Fp from layer K are ac-
cumulated for unsupervised approximate forgery location, and the estimated
location maps are used for modeling consistency constraint. The Attention Map
Tp and Y¢ are averaged from layer N — n to layer N. Tp is used for patch
consistency learning, and 7¢ is used as consistency weighted matrix in PCWA.
In the end, PCWA outputs consistency-aware feature F' = UIA(]), and an MLP
head is used to do the final prediction.

3.1 Unsupervised Patch Consistency Learning

Unsupervised Approximate Forgery Location. We apply the widely used
multivariate Gaussian estimation (MVG) to represent the real/fake image patch
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Fig.1. An overview of the proposed UIA-ViT. The UPCL module uses the patch
embeddings from layer K to make MVG estimation. The averaged Attention Map
from layer N — n to layer N is used for patch consistency learning in UPCL module
and as consistency weighted matrix in PCWA module.

features and generate pseudo annotations. To be concrete, we try to fit a MVG
of original image patches and a MVG of forged image patches within General
Forgery Region (GFR). We define GFR as the general manipulated region
among different forgery datasets, where the patch features can approximately
represent the distribution of actual manipulated face region. Specifically, we
designate the GFR as the center square region of the cropped faces.

Assume z, represents the patch feature from layer K of real sample, and x ¢
represents the patch feature from layer K within GFR of fake sample. We model
the probability density function (PDF) of x, using the MVG, defined as:

1

Freal(xr) = —e_%(mr_l‘r)TE;l(l’r—#r)’ (1)
@m)Pldet s, |

where j,, € RP is the mean vector and X, € RP*P is the symmetric covariance

matrix of the real distribution. Similarly, the PDF of z is defined as Fyqke ()
with mean vector py and covariance matrix Xy.

During training, Freq and Fyqre are updated by new (u,,X,) and (us,2y),
which are approximated with the sample mean and sample covariance from the
observations (zl,z2,...,2" € RP) and (x},x?, SR IS RP). We accumulate the
feature observations from every mini batch of training samples and experimen-
tally update two MVG distributions every 0.5 training epochs.

Given MVG distributions of real and fake, the distances between the patch
embeddings Fp from layer K and MVG distributions are used for forgery location
prediction. Assume f;; € RP is the particular feature in position (i,j) of Fp.
We adopt Mahalanobis distance for distance measure between f;; and the MVG
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distributions, defined as

d(fiijreal) = \/(fzj - /’LT)TET_I(fij - Mr)a (2)
d(fijs Frake) = \/(fij — )T X (fij = pp)- (3)

Then, for fake samples, the predicted location map M € RP*? is defined as

a binary distance comparison map. The annotation is predicted as 0 when the
patch feature is more closed to Fj.cq; than Fyqpe, and otherwise predicted as 1,
formalized as:

M. — {1ad(fij7Freal) —d(fij» Frake) > 0 (@)
Y Oad(fij7Freal) - d(,fijaFfake) < 0°

Note that location map M is fixes as the all-zero matrix for real samples. In
particular, in order to guarantee that such patch embeddings from our network
capture more local texture information rather than high-level semantic infor-
mation, we perform several visualizations as shown in Fig.5, and finally utilize
the patch embeddings Fp from Block 6 of UTA-ViT network (i.e. K = 6) for
approximately estimating forgery location map.

Patch Consistency Loss. In each transformer block of the standard Trans-
former Encoder, there is a Multi-head Attention layer that firstly calculate the
compatibility between queries and keys from different input embeddings, called
Attention Map. Unlike PCL+I12G[34] that specially computes the pair-wise sim-
ilarity of their extracted feature, our ViT based method directly uses Attention
Map from middle layers for self-consistency learning.

Define the mean Attention Map between different patch embeddings from
N —n to N Transformer layers as '’ ¢ RP2XP27 where P? is the number of
patch embeddings. T(JZ J),(k,) Tepresents the consistency between the embedding
in position (4, j) and other patch embedding in position (k,), and higher value
means two positions have higher consistency. With the approximate forgery lo-
cation map M, we design the consistency loss to supervise the Attention Map,
formalized as:

C1, lf Mij =0and Mkl =0

Cij), k) = § €25 0f Myj =1and My =1, (5)
cs, else
1 . .
Luper = 55 ) Isigmoid(T{ ;) ) = Ci.en - (6)
1,5,k,1

where c1,co, c3 are learnable parameters to avoid instability optimization when
MVG estimation is biased in the early training. During training process, we
initialize them as (0.6,0.6,0.2), and also optimize ¢1,co to increase and optimize
cs to decrease gradually. After convergence, c1,ca, ¢z eventually tend to (0.8, 0.8,
0.0) in our experiments.
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3.2 Progressive Consistency Weighted Assemble

In order to perform classification, we use the standard approach of adding an
extra learnable classification token to the sequence. However, due to final classifi-
cation embedding capturing more global semantic information rather than local
texture, it is not sufficient to utilize the intra-frame inconsistency clues if merely
feed the final classification embedding into MLP head. Therefore, we propose
a novel module, named Progressive Consistency Weighted Assemble (PCWA),
which progressively combines global features and local inconsistency-aware patch
features for final binary classification.

Specifically, the patch embeddings of final layer are weighted average with
T¢ € RP*P which is defined as the mean Attention Map between classification
embedding and other patch embeddings from N — n to N Transformer layers.
Denote classification embedding and patch embeddings of final layer as F¢ €
RP, FP e RP *xD To avert instability optimization in the early training stage,
we adopt variable weight w along with the current iterations. The scalar w is
gradually decreased to zero controlled by the decreasing function with hyper-
parameters p and #. Then the weighted matrix A" gradually transfers from
averaged weighting (all-one matrix) to consistency weighting, formalized as:

current_ters

w = sigmoid(—p(step — 0)), step = rotal iters C [0,1], (7)

AP = w14 (1 — w) * sigmoid(7). (8)

Ideally, the well optimized ¢ can capture consistency information between
the input global classification embedding and other local patch embeddings, and
suggest which regions should be great considered by the classifier at the end
of network. We adopt A’ as the weighted matrix and apply weighted average
operation to patch embeddings FZ. In the end, the average weighted feature
FAP is concatenated with F€ for final binary classification. The above procedure
can be formulated as:

P
1
AP P P P, TP
ij
¥ = MLP(concat{F¢, FATY}), (10)

where ¥ is the final predicted probability from MLP concatenated after the
PCWA module.
3.3 Loss Functions

Assume y represents the binary labels indicating real or fake of input image.
We use cross-entropy loss to supervise the final predicted probability ¥ to given
binary labels 0/1, defined as:

£cls = _[y logy + (1 - Y) IOg(l - S’)] (11)
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The total loss functions of the proposed method are described as:

Liotat = Lets + MLupcr + >\2(L + L) + Aslcdl, (12)
lcl] |2
where the final two losses are used for optimizing the learnable parameters ¢y, co
to be increased and c3 to be decreased along with the training process. A1, A2 and
A3 are hyper-parameters used to balance the cross-entropy loss and consistency
loss, meanwhile adjust the variations of consistency factors ¢y, co and cs.

4 Experiment

4.1 Experimental Setting

Datasets. We conduct the experiments on four forgery datasets: 1) FaceForen-
sics++ [24] consists of 1,000 original videos and corresponding fake videos
which are generated by four manipulation methods: DeepFakes [4], Face2Face
[29], FaceSwap [6], NeuralTextures [28]. It provides forgery videos of three qual-
ity levels (raw, high, low quality). 2) Celeb-DF [15] is tempered by the Deep-
Fake method and has a diversified distribution of scenarios. The author pub-
lishes two versions of their dataset, called Celeb-DF(v1) and Celeb-DF(v2). 3)
DeepFakeDetection(DFD) [21] is produced by Google/Jigsaw, which con-
tains 3,068 facial fake videos clips generated from 363 original videos. Forgery
videos are tempered by the improved DeepFake method. 4) Deepfake Detec-
tion Challenge [25] (DFDC) preview dataset is generated by two kinds of
synthesis methods on 1,131 original videos. Use the stand testset consisted 780
videos for our experiments.

Implement Details. Following [29], we employ the open source dlib algorithm
to do face detection and landmark localization. All the detected faces are cropped
around the center of the face, and then resized to 224 x 224. We adopt the
ViT-Base architecture [5] as backbone where the input patch size is 16 x 16
and the number of encoder layer is set to 12. The designed GFR is assigned
as 8 x 8 patches in the center region of cropped face. In the training process,
the model is optimized only by cross-entropy loss in the first one epoch, and
optimized by the total loss in the next epoch. Batch size is set to 96 and the
Adam optimizer with the initial learning rate 3e-5 is adopted. The learning rate is
reduced when the validation accuracy arrives at plateau. For the PCWA module,
the hyper-parameters p, 6 of variable weight w is set to 12, 0.7, respectively. In
loss function Eqn.(12), we experimentally set the weight A;, A and Az to 0.06,
0.05, 0.5. These hyper-parameters are experimentally explored in supplementary
materials. While testing, we set the step in Eqn.(7) to 1.0 and use 110 frames
per testing videos following FaceForensics++ [24].

4.2 Quantitative Results

Cross Dataset Experiment. We first evaluate the detection performance
on unseen datasets to demonstrate the generalization ability of our method in
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Table 1. Cross-dataset experimental results. Our models are trained on Face-
Forensics++ and tested on unseen datasets. We report the video-level AUC(%) on
FaceForensics++(high quality) and frame level AUC(%) on other testing datasets

Methods |FF++.HQ| DFD Celeb-DF-v2 Celeb-DF-vl DFDC-P
Xception[24] 96.30 [70.47  65.50 62.33 722
Capsule[20] 96.46 | 62.75  57.50 60.49 65.95
Multi-Attention[33]|  99.29 | 7553  67.44 54.01 66.28
FRLM[19] 99.50 | 68.17  70.58 76.52 69.81
Face X-ray[12] 87.40 | 85.60  74.20 80.58 70.0
LTW(26] 99.17 | 8856  77.14 — 74.58
PCL+12G[34] 99.11 | — 81.80 — —
Local-relation[1] 99.46 89.24 78.26 — 76.53
DCL[27] 99.30 | 91.66  82.30 — 76.71
UIA-ViT 99.33  [94.68  82.41 86.59 75.80

Table 2. Cross manipulation experimental results. Test on each forgery method
dataset (Deepfakes, Face2Face, FaceSwap, NeuralTexture) while training the model on
the remaining three datasets

Training on the remaining three forgery dataset

Methods Deepfakes Face2Face FaceSwap NeuralTextures

ACC(%) AUC(%)[ACC(%) AUC(%)|ACC(%) AUC(%)[ACC(%) AUC(%)

Xception[24]| 85.5 92.5 77.5 84.5 49.3 51.6 70.9 7.3
MLDGJ10] 84.2 91.8 63.4 77.1 52.7 60.9 62.1 78.0

LTW][26] 85.6 927 | 656 802 | 54.9 640 | 653 773
DCL[27] 87.7 949 | 684 829
UIA-ViT 90.4 96.7 | 86.4 94.2 | 514  70.7 | 600  82.8

Table.1. We train the face forgery detectors on all the four types of fake data in
FF++4(HQ) and evaluate them on four unseen datasets, including DeepFakeDe-
tection(DFD), Celeb-DF-v2, Celeb-DF-vl and DFDC preview(DFDC-P). We
report the cross-dataset AUC(%) in frame level of several state-of-art methods,
each of which detects forgery using single frame rather than a video clip.

Table.1 shows that the proposed UIA-ViT outperforms other detection meth-
ods on several unseen datasets compared with recently general face forgery de-
tection methods. Although our method adopts unsupervised forgery location
method, it also superior to PCL+I12G[34] and Local-relation[1] on Celeb-DF,
which both devote to extract intra-frame inconsistency cues with forgery location
annotation. And we also slightly outperform the newly proposed DCL[27], which
designs contrastive learning at different granularities to learn generalized feature
representation for face forgery detection. Except DFDC-P, UIA-ViT achieves the
best performance on unseen datasets. For example, UTA-ViT greatly outperforms
other methods by 3.04+% on DFD, demonstrating the effectiveness of our method
to improve the generalization ability for face forgery detection.
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Fig. 2. Attention Maps of different queries in head-3/6/9/12 of the 11-th layer. Small

squares denotes the query location.

Cross Manipulation Experiment. To assess the generalization ability to un-
seen manipulations without perturbations such as variations in lighting and facial
identities, we conduct the experiments on FaceForensics+-+ which is consisted of
four types of manipulations and the same source videos. We utilize the fake videos
created by four different forgery methods: DeepFakes, Face2Face, FaceSwap and
NeuralTextures. We evaluate face forgery detectors with the leave-one-out strat-
egy. Specifically, we test on each forgery method data using the model trained
on the remaining three forgery methods in the high quality setting (FF++.HQ).

We compare the proposed method with other state of the art methods, and
report the video-level ACC(%) and AUC(%). In the Table.2, there are four com-
pared methods: 1) Xception[24] is trained with official code by ourselves, 2)
MLDGI10] uses meta-learning for domain generalization, which is adapted to
generalized face forgery detection in the work LTW{26]. 3) LTW/[26] also uses
meta-learning strategy to learn domain-invariant model for unseen domain de-
tection. This work reports the cross-manipulation results of LTW and MLDG.
4) DCL[27] designs contrastive learning at different granularity to learn gen-
eralized feature representation. It reports their cross-manipulation results only
on Deepfakes and Face2Face. The results in Table.2 show that the proposed
method consistently achieves superior generalization performance compared to
other frame-level methods, especially on Face2Face and FaceSwap with AUC(%)
evaluation metrics. For example, out method achieves 9.74+% and 6.7+% higher
AUC than other methods, demonstrating the state-of-the-art generalization abil-
ity of UIA-VIiT to unseen forgeries.

4.3 Visualization

To visually illustrate the consistency-aware embeddings learned by the proposed
method, some attention maps of different queries from real or fake samples are
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Fig. 3. Attention Map of layer 8/10/12 (averaged from multiple heads). The left 1

denotes the attention map between patch embeddings. The right ° denotes the at-
tention map between classification embedding and patch embeddings.

Layer 8 Layer 10

Fake

Real

Face2Face NeuralTextures

EYh
IEIIII!

DeepFakeDetectlon Celeb-DF-v1 Celeb-DF-v2

FaceSwap

DeepFakes

Known Dataset
.

Unseen Dataset

Fig. 4. Predicted Location Map of different datasets.

shown in Fig.2. We choose different query locations and show their attention map
with keys of all patch embeddings. The dashed red rectangle in forgery sample
represents the GFR location where the patch embeddings are used for MVG es-
timation. The query locations are indicated by green and red squares. From the
visualizations, we conclude following observations: 1) patch embeddings among
original background of the forged face are similar to each other, and so as those
among forgery regions of the forged face. 2) patch embeddings between original
background and forgery region is less similar. 3) the similarity between patch
embeddings among different locations of real face are relatively equal. Such ob-
servations further illustrate the effectiveness of the proposed method to learn
the consistency-related representations.

Moreover, we show the complete Attention Map (averaged from multiple
heads) from middle layers of our model in Fig.3. 77 € R *xP? i5 the combina-
tion of P2 small attention maps, each of which is of the size P x P. Y¢ € RP*F
is conducted by calculating the attention map between the classification em-
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Table 3. Ablation Study for the effect of different components. All models are trained
in FaceForensics++ and tested on the unseen forgery dataset Celeb-DF. The default
components are expressed in bold

PCL UPCL-hard UPCL[CWA PCWA[Celeb—DF—vl[Celeb—DF—vQ

- - - - - 75.32 76.25
v 77.88 79.85
v 78.54 78.55

v 82.96 80.86

v v 84.77 81.77

v v 86.59 82.41

bedding and the other patch embeddings. The visualizations show the similar
observations described in the preceding paragraph. Meanwhile, it shows that
Attention Maps in later layer are more closed to our designed consistency con-
straint. Though 7¢ has not been constrained by particular attention informa-
tion, it also contains consistency cues between the input global classification
embedding and other local patch embeddings, which indicates the importance
regions should be great considered by the final classifier.

More Predicted Location Map of different datasets are further shown
in Fig.4. The UIA-ViT model is trained on FaceForensics++ consisted of four
manipulation datasets, Deepfakes, FaceSwap, Face2Face, NeuralTextures and
original videos (Real). We observe that our model can well concentrate on the
manipulated regions, e.g. DF, F2F, FS replace the most areas of source faces
with manipulated target faces, and NT manipulates the low-half faces, mainly
on mouth and nose regions. We also show the predicted location maps of other
unseen datasets, including DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2 and
DFDC. They all use face swapping methods, which manipulate the identity of
source faces and retain the original background. Their forgery regions should
locate in center area of faces, like eyes, nose and mouth. When generalizing
to these unseen datasets, we can find that most predicted forgery regions are
consistent with the speculation.

4.4 Ablation Study

To explore the effectiveness of different components of the proposed UTA-ViT, we
spilt each part separately for verification. Specifically, we develop the following
experiment comparisons: 1) baseline: ViT-Base with the same training details.
2) PCL: Patch consistency learning which supervised by fixed GRF as general
location map. 3) UPCL-hard: Unsupervised patch consistency learning mod-
ule, but fix consistency factors ¢;=1,co=1 and ¢3=0. 4) UPCL: Stand unsuper-
vised patch consistency learning module. 5) CWA: Counsistency Weighted As-
semble which fixes progressive weighted function as zero in Eqn.(7). 6) PCWA.
Stand progressive consistency weighted assemble module.

The experimental results are shown in Table.3, and all models are trained on
FaceForensics++ and tested on the unseen forgery dataset Celeb-DF. We draw
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Fig. 5. Predicted Location Map of different layers.
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Table 4. Cross-dataset AUC of different GFR
AUC(%) GFR low GFR large GFR small GFR
Celeb-DF-v2| 79.68 79.33 79.04 82.41
DFDC-P 74.61 73.78 73.13 75.80

Fig. 7. Different GFR.

the following conclusions: 1) Compared with UPCL, the model equipped with
PCL and UPCL-hard are less generalized to Celeb-DF. Because MVG estima-
tion in UPCL can help to amend the prior GFR and generate the predicted loca-
tion map more closed to correct manipulated region. And soft consistency factors
guarantee stable learning in early stage of training. 2) Both CWA and PCWA
further improve the performance based on UPCL, demonstrating the impor-
tance of Attention Map 7¢ which indicates noteworthy regions for final classi-
fier. Between them, PCWA performs better because of the progressive mecha-
nism. 3) Comparing the results of baseline, UPCL and UPCL+PCWA, it
demonstrates that both of proposed modules can improve the forgery detection
performance. The model equipped with both components can obtain further im-
provements by 11% on Celeb-DF-v1 comparing to baseline, which demonstrates
that the two components are complementary to each other.

4.5 Analysis

Determine Which Layer for MVG Estimation. In order to determine
which layer is the best choice to conduct MVG estimation for forgery loca-
tion prediction, we train the baseline ViT-Base model, and extract the patch
embeddings from different middle layers for updating corresponding MVG dis-
tributions. Then, we visualize the predicted forgery location maps estimated by
MVG distributions from 5-th, 6-th, 7-th and 8-th layers. Notice that different
from the binary operation in Eqn.(4), here predicted location map is computed
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as M;; = ReLU(d(fij, Freat) — d(fij, Frake)), where non-zero value indicates
predicting as fake.

The visualizations are shown in Fig.5. The annotation of forgery location
is produced using the mask generation method mentioned in Face X-ray[12]
which delimits the foreground manipulated region of forged image. We observe
that: 1) the distances between real and fake MVG distributions are larger in the
later layers; 2) the extracted features in the foreground and background are also
more distinguishable in the later layers; 3) the predicted location map gradu-
ally expands to the whole image, because features in later layers capture more
high-level semantic information rather than local texture information. Among
them, we find that the predicted location map from 6-th layer is more closed
to the annotation and apply it to conduct MVG estimation for forgery location
prediction. We further make the quantitative analysis on this issue, as shown
in Fig.6. The experimental results show that utilizing the embeddings of 6-th
layer to conduct unsupervised forgery location can achieve better generalization
performance on several unseen datasets.

Determine Which GFR for MVG Estimation. We further explore the
effect of different locations and sizes of General Forgery Region (GFR), and de-
velop following experiments: GFR low, GFR large, GFR small, as shown in
Fig.7. GFR low is assigned as the low-half face, where nearly all pixels are ma-
nipulated in FaceForensics++ but eye region is missing. GFR large is assigned
as the bigger region which contains most manipulated region and several mis-
take real pixels. Relatively, GFR small contains less manipulated region and less
mistake real pixels. GFR is a trade-off proposal that locates in the center square
region of faces, which covers most manipulated region of FaceForensics+4. Com-
paring the performance of different locations and sizes of GFR in Table.4, we
find that the standard GFR is superior than others. It further demonstrates that
the features within GFR in FaceForensics++ can represent the distribution of
actual manipulated face region and thus generalize well to other unseen datasets.

5 Conclusions

In this paper, we propose a novel face forgery detector named UIA-ViT, which is
based on Vision Transformer and equipped with two key components UPCL and
PCWA. UPCL is a training stragety for learning the consistency-related repre-
sentations through an unsupervised forgery location method. PCWA is a feature
enhancement module and can take full advantage of the consistency representa-
tion. Visualizations show the great capabilities on learning consistency-related
representations of our proposed method. Extensive experiments evidence effec-
tiveness of our method for general face forgery detection.
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