
1

A Supplementary Material

A.1 Other Related Work

Hu et al. [5] also explores the spatial temporal masking strategy in the field of
sign language recognition. In addition to being applied in different fields, our
work differs from theirs in the following ways: 1) They set the coordinates of the
masked joints to (0,0), which is a very common position (center of the image).
Thus, this approach will lead to confusion between the masked and unmasked
joints. In contrast, we replace the masked joints with learnable vectors. These
special identifiers enable the model to distinguish whether a joint is masked or
not. 2) They take all 2D poses as inputs, while we only take 2D unmasked poses
as inputs, which greatly reduces the computational complexity of the encoder.

Liu et al. [10] learn 2D human pose embeddings for downstream tasks, which
is similar to our work. Our method differs from theirs in these ways: 1) They
aim to learn view-invariant embeddings by metric learning, while we aim to learn
spatial temporal embeddings by solving the MPM task. 2) The masking strategy
is utilized to increase the difficulty of pre-training in our method, while they use
it to simulate the real-world occlusion situation. 3) We use Transformer, whose
token design is more suitable for masking. 4) We explore the spatial temporal
masking strategy, while they do not.

A.2 Detailed Network Architecture

The detailed architecture of STMO is illustrated in Fig. 1. For N = 243, we
choose 485 frames and downsample them using TDS with the temporal down-
sampling rate s set to 2. The tensor sizes are shown in parentheses. For example,
(243,34) denotes 243 frames and 34 channels, meaning that there are J = 17
joints in each frame, and each joint has 2 coordinates (x, y). (243/3i,256) means
the temporal dimension is reduced by 3i as 1D temporal convolution is used and
the stride is the same as the kernel size M = 3. i = 1, 2, ..., L2, where L2 = 5 is
the number of layers of MOFA.

A.3 Implementation Details

All experiments are carried out on a single GeForce GTX 3080Ti GPU. The
proposed method is implemented using PyTorch [11]. For both stages, we train
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Fig. 1. Detailed architecture of the proposed STMO model in Stage II.
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Table 1. Results on Human3.6M in millimeter under P-MPJPE. 2D poses detected
by CPN are used as inputs. N is the number of input frames. The best result is shown
in bold, and the second-best result is underlined.

P-MPJPE (CPN) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Lin et al. [8] BMVC’19 (N=50) 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 36.8
Pavllo et al. [12] CVPR’19 (N=243) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5

Xu et al. [16] CVPR’20 (N=9) 31.0 34.8 34.7 34.4 36.2 43.9 31.6 33.5 42.3 49.0 37.1 33.0 39.1 26.9 31.9 36.2
Liu et al. [9] CVPR’20 (N=243) 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6

Wang et al. [15] ECCV’20 (N=96) 32.9 35.2 35.6 34.4 36.4 42.7 31.2 32.5 45.6 50.2 37.3 32.8 36.3 26.0 23.9 35.5
Chen et al. [1] TCSVT’21 (N=243) 33.1 35.3 33.4 35.9 36.1 41.7 32.8 33.3 42.6 49.4 37.0 32.7 36.5 25.5 27.9 35.6

Shan et al. [13] MM’21 (N=243) 32.5 36.2 33.2 35.3 35.6 42.1 32.6 31.9 42.6 47.9 36.6 32.1 34.8 24.2 25.8 35.0
Zheng et al. [18] ICCV’21 (N=81) 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6

P-STMO (N=243) 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4

Table 2. Results on Human3.6M in millimeter under MPJPE. The ground truth of
2D poses are used as inputs. N is the number of input frames. The best result is shown
in bold, and the second-best result is underlined.

MPJPE (GT) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Pavllo et al. [12] CVPR’19 (N=243) 35.2 40.2 32.7 35.7 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8
Lin et al. [8] BMVC’19 (N=50) - - - - - - - - - - - - - - - 32.8
Liu et al. [9] CVPR’20 (N=243) 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7

Zeng et al. [17] ECCV’20 (N=243) 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0
Chen et al. [1] TCSVT’21 (N=243) - - - - - - - - - - - - - - - 32.3
Zheng et al. [18] ICCV’21 (N=81) 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3
Shan et al. [13] MM’21 (N=243) 29.5 30.8 28.8 29.1 30.7 35.2 31.7 27.8 34.5 36.0 30.3 29.4 28.9 24.1 24.7 30.1

P-STMO (N=243) 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3

our model using the Adam [6] optimizer for 80 epochs. The initial learning rate
is 1e−4 for Stage I and 7e−4 for Stage II. The learning rate decays by 3% after
each epoch. The batch size is set to 160. We use horizontal flipping as the data
augmentation approach during training and testing. The balance factor λ in the
loss function is set to 1 empirically.

For SEM, we utilize an MLP block as the backbone. The number of sub-
blocks is L = 1. The dimension of the latent features is set to 256. For TEM
as well as the decoder in Stage I, we utilize a vanilla Transformer [14] as the
backbone. The depth of Transformer for these two modules is set to 3,2 (for
P-STMO-S) or 4,3 (for P-STMO), respectively. Besides, the dimension of the
QKV matrices is 256. The number of heads in self-attention is 8. For MOFA,
STE [7] is used as the backbone. The basic settings are the same as TEM. For
N = 27, 81, 243, the depth of Transformer is set to 3, 4, 5, respectively. The
stride of 1D convolution is set to 3 for each Transformer layer.

A.4 Additional Quantitative Results

We provide additional quantitative results of the proposed method on Human3.6M
dataset. When CPN [2] is used as the 2D keypoint detector, our method achieves
promising results under P-MPJPE (34.4mm), as shown in Table 1. To explore
the lower bound of the proposed method, we utilize the ground truth of 2D poses
as inputs. In this way, the input noise is removed. As shown in Table 2, P-STMO
outperforms other methods with 29.3mm under MPJPE.



3

Table 3. Analysis on model hyperparameters. Only the number of parameters and
FLOPS of Stage II are included in the calculation results. L1, LD are the depth of
TEM and the decoder in Stage I respectively. d is the dimension of latent features of
all Transformers.

L1 LD d Params(M) FLOPs(M) MPJPE↓

4 2 256 6.7 868.5 43.0
4 3 256 6.7 868.5 42.8
4 4 256 6.7 868.5 42.9
4 5 256 6.7 868.5 43.3

2 3 256 5.7 613.7 44.4
3 3 256 6.2 741.4 43.1
4 3 256 6.7 868.5 42.8
5 3 256 7.3 995.9 43.4

4 3 64 1.1 121.8 44.9
4 3 128 2.6 307.0 43.7
4 3 256 6.7 868.5 42.8
4 3 512 19.5 2755.1 45.5

A.5 Analysis on Model Hyperparameters

As shown in Table 3, we mainly investigate three hyperparameters in our method:
the depth of TEM (L1), the depth of the decoder in Stage I (LD), and the
dimension of latent features of all Transformers (d). Following [4], we adopt an
asymmetric encoder-decoder design. Unlike classical auto-encoders, the depth
of the decoder can be different from that of the encoder. Since we only care
about the speed of inference, the number of parameters and FLOPs of the pre-
training stage are not included in the calculation results. Thus, these results are
not affected by different settings of LD. The best performance is achieved when
L1 = 4, LD = 3, d = 256.

A.6 Reconstruction Results in the Pre-Training Stage

In Fig. 2, we give some qualitative results of the 2D pose reconstruction in the
pre-training stage. The 2D input sequence is masked with qT = 0.8,mS = 2,
which means only 18.7% of the joints are visible to the network. It can be seen
that the network is able to perform a rough recovery of the 2D poses in the
original sequence by virtue of only a small number of visible joints.

A.7 Visualization of Multi-Head Self-Attention

We perform a subjective analysis of the self-attention mechanism in Transformer
in both stages. The results are shown in Fig. 3-6. The x-axis (horizontal) and
y-axis (vertical) correspond to the index of key (K) and query (Q) in the multi-
head self-attention respectively. The output is the normalized attention weight.
We set the input frame number to N = 243.
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Fig. 2. Qualitative results of the 2D pose reconstruction in Stage I.

Stage I. We set the temporal masking ratio to qT = 0.8 and spatial masking
number to mS = 2. Therefore, the number of unmasked frames is a = (1− qT) ·
N = ⌊48.6⌋ = 48. The number of masked frames is b = N − a = 195. The
unmasked frames are fed to the encoder (SEM+TEM). The attention maps of
TEM are shown in Fig. 3. Since the input is randomly masked, two adjacent
frames in the unmasked frame sequence are most likely to be non-adjacent in
the original sequence. Our goal is to recover all the masked frames between two
adjacent frames in the unmasked frame sequence. Therefore, most heads of TEM
focus on aggregating neighbouring information around the query frame. Others
(e.g., head 6) capture long-term dependencies.

The attention maps of the decoder are shown in Fig. 4. An obvious cross
can be seen in each attention map because we utilize the same implementation
as [4]. Specifically, to improve the efficiency, we append a list of temporal padding
embeddings after the encoded unmasked embeddings at the decoder side. Then,
we add positional embeddings to these padding embeddings to restore their
original positions. Therefore, the first half of the sequence (before frame 48)
behaves differently from the second half (after frame 48). Each attention map
can be divided into four matrices as follows. 1) The matrix D1 ∈ Ra×a in the
upper left corner measures the self-attention of unmasked frames. The patterns
are very similar to those in Fig. 3. 2) The matrix D2 ∈ Ra×b in the upper
right corner measures the degree of attention paid to the masked frames by the
unmasked frames. The values of most heads are 0, which means that the masked
frames provide little help to the unmasked ones. A small number of heads behave
differently (e.g., head 0), which can be explained by the need to interpret the
continuity of the entire pose sequence. 3) The matrix D3 ∈ Rb×a in the bottom
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Table 4. Analysis on the robustness in terms of MPJPE↓. ‡: w/o pre-training. RS:
random shuffle.

Method GT GT+N (0,0.01) GT+N (0,0.03) GT+N (0,0.05) GT+RS CPN

STMO-S‡ 30.3 34.8 48.2 70.9 59.4 43.9
P-STMO-S 29.3(↓3.3%) 33.7(↓3.2%) 46.9(↓2.7%) 69.5(↓2.0%) 57.7(↓2.9%) 43.0(↓2.1%)

left corner measures the degree of attention paid to the unmasked frames by
the masked frames. For a particular masked frame, it resorts to the unmasked
frames that are close to it. As a result, some heads (e.g., head 4) exhibit a
locally relevant pattern. In addition, non-local patterns can also be observed
in other heads (e.g., head 3). 4) The matrix D4 ∈ Rb×b in the bottom right
corner measures the self-attention of masked frames. Since the masked frames
mainly obtain information from the unmasked frames, the self-attention pattern
of masked frames is not pronounced. Nevertheless, we can still find some patterns
learned by a small number of heads, such as capturing long-term dependencies
(e.g., head 0) and short-term dependencies (e.g., head 1).

Stage II. After the pre-trained model is loaded into STMO, TEM is tuned
to acquire long- and short-term information that contributes to the overall 3D
pose sequence prediction. As illustrated in Fig. 5, Transformer learns a variety
of patterns. The local patterns (e.g., head 0) focus on a small region around the
query frame, while the global patterns (e.g., head 5) exploit relevant features
over a longer time span.

As we use STE [7], a Transformer-based method, as the backbone network
of MOFA, its attention maps can also be visualized in Fig. 6. For N = 243,
the depth of Transformer is 5. Only the first 4 layers are shown. STE uses 1D
convolution to reduce the temporal dimension layer by layer. As we set the stride
to 3, the number of frames in each layer is reduced to 1/3 of that in the previous
layer. A vertical line can be seen in all heads because MOFA is designed to
predict the 3D pose in the current frame. Transformer forces all frames to attend
to the current frame and its neighbours. Besides, the multi-head attention maps
of MOFA and TEM show different patterns. The divergence of the functionality
of these two modules is attributed to the presence of multi-frame loss.

A.8 Qualitative Results on in-the-wild Videos

We train our method on Human3.6M dataset and evaluate on in-the-wild videos.
We use AlphaPose [3] as the 2D keypoint detector to generate 2D poses. As shown
in Fig. 7, our method generalizes well to in-the-wild videos that often contain
rare or unseen poses in the training set.

A.9 Generalization Ability and Robustness

To validate the generalization ability of the proposed pre-training method, we
conduct experiments on Human3.6M, where three camera views (cam 0,1,2) are
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used in Stage I and the other camera view (cam 3) is used in Stage II. The results
show that P-STMO-S (w/ pre-training) and STMO-S (w/o pre-training) achieve
44.4mm and 45.2mm MPJPE respectively, which demonstrates that pre-training
on several cameras can help the network generalize to a different camera view.

To validate the robustness of the proposed pre-training method, we utilize the
ground truth (GT) of 2D keypoints as noiseless inputs, to which Gaussian noise
with different σ is added. Note that CPN can be regarded as adding complex
noise introduced by the 2D detector to the ground truth. Besides, the random
shuffle (RS) strategy is tested. This strategy randomly disrupts the order of the
input frames while leaving the order of the output frames unchanged. Table 4
shows pre-training still delivers performance gains in the case of input noise and
RS, which verifies its robustness.
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Fig. 3. Visualization of multi-head attention maps of TEM in Stage I.
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Fig. 4. Visualization of multi-head attention maps of the decoder in Stage I.
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Fig. 5. Visualization of multi-head attention maps of TEM in Stage II.
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Fig. 6. Visualization of multi-head attention maps of MOFA in Stage II. We only show
the first two heads in each Transformer layer.
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Fig. 7. Qualitative results of the proposed method on in-the-wild videos.
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