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In the supplemental document, we provide:

8A Derivations of the dynamics quantities.
8B A more detailed explanation of differentiable sampling.
§C Architectures of the kinematics backbone, DyNet and attentive PD con-
troller.

8§D Details for contact annotations.

SE Experiments that compare D&D with more baselines.
¢F Physical-based results on the 3DPW dataset.
8G Global trajectory results on the Human3.6M dataset.
¢H Computation time of the whole system.

¢ Pseudocode of D&D.

8J More qualitative results.

A Derivations of the Dynamics Quantities

Inertia Matrix. Following Featherstone et al. [1], the inertia matrix M is de-

rived as:
N

M= "miJy Ju, + ] Lo o, (1)

where I, denotes the inertia tensor of the i-th body joint and .J,,, € R3*(3N;+6)

denotes the angular Jacobian matrix that relates angular velocity to pose veloc-
ity. J,, can be computed recursively:

Ju, = ij + ij—n" (2)

where j = P(i) is the parent index of the i-th joint and J,,_,, represents the rela-
tive angular Jacobian matrix that can be computed from ¢. The linear Jacobian
matrix of the i-th joint .J,, can be computed based on J,,:

Jv,i - ij - [Ari]XJwia (3)

where [Ar;]« is the skew-symmetric matrix of the body-part vector Ar;.
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Angular Jacobian Matrix. The angular velocity of the i-th body joint w; can
be computed recursively:
Wi = Wj + Wj—i, (4)

where j = P(i) is the parent index of the i-th joint and w;_,; denotes the relative
angular velocity. Notice that the angular Jacobian matrix of the i-th body joint
Jw,; should satisfy:

Ww; = leq (5)

Therefore, we can build the recursive equation for J,, by replacing w; with J,,
in Eqn. 4:

Jwi = ij + Jw]'*n') (6>
where
Wj—i = ijﬂiq" (7)

To compute .J,,,;, we now need to compute J,,,_,, in each step. Denote (c, B;, Vi)
as the relative rotation of the i-th joint in Euler angles. Then J,,_,, is defined
as:

i = [03x(3j+3) Wy, 0PX@Ni=89)| (8)
where
cos B;cosy; —siny; 0O
Wi = | cosB;siny; cosy; 0 |- ()
—sin fB; 0 1

For the root joint that has no parent, we have:
Jw _ 03><(3N]‘+6) (10)
0 .
Linear Jacobian Matrix. The linear velocity of the i-th body joint v; can be
computed based on the angular velocity:
V; = V5 +w; X Ar; = v; — [Ari]xwu (11)

where Ar; denotes the vector of the i-th body part. Notice that the linear Jaco-
bian matrix of the i-th body joint J,, should satisfy:

V; = Jvlq (12)

Therefore, we can compute J,, by replacing v, with J,, and w; with J,, in
Eqn. 11:
Jo, = Ju, — [Ar;]x Jw, - (13)

For the root joint that has no parent, we have:
T = {ngg, 03x(3Nj+3)} , (14)

where E3*3 denotes the 3 x 3 identity matrix.
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Inertia Tensor. Let I; denote the inertia tensor of the i-th body joint under
the rest pose that can be pre-computed. The inertia tensor of the i-th body joint
under the pose g can be computed as:

I, = Ri[;R], (15)

where R; denotes the rotation matrix of the i-th body joint.

B Differentiable Sampling

Non-differentiable Process. The Gumbel-Max trick [2, 6] provides a simple
way to draw samples from a categorical distribution. The contact distribution
of the j-th joint follows the Bernoulli distribution:

To draw sample /b\j with class probability p;, we can conduct:

~

b; = arg max|[g;, + log Pr(b; = k)], (17)
k

where k € {0,1}. Then the corresponding ground reaction torque can be com-
puted as:

N. N,
Bger = 3 1y = DA = D biJi A (18)
j j

Differentiable Process. However, Gumbal-Max is not differentiable. There-
fore, we adopt Gumbel-Softmax [3] to conduct differentiable sampling from the
predicted distribution. Gumbel-Softmax is a continuous and differentiable ap-
proximation to Gumbel-Max by replacing argmax with the softmax function:

exp(logPr(b; = 1) + g;1)

by = . (19)
/ Zke{o,l} exp(logPr(b; = k) + gjx)
Therefore, the corresponding ground reaction torque can be computed as:
~ Ne p.egjl
bt = > ' To A (20)

— pjett + (1 —pjlesr

Alternatively, we can compute the expectation of the ground reaction torque,
which is also differentiable:

Nc
Bgrf = ZpJJUJ)\J (21)
J

However, using the expectation to generate motion cannot encourage well-calibrated
probabilities [4], i.e., DyNet is not encouraged to generate high probabilities for
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Fig. 1. Estimated contact forces of the walking sequence.

the correct contact states. Consequently, the contact forces might be incorrect
since the model is trained without direct supervision. We plot the contact forces
of the walking motion using the model trained with the torque expectation in
Fig. 1(b). It shows that using the torque expectation makes the contact forces
lie in an unreasonable range.

C Network Architecture
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Fig. 2. The detailed architecture of the kinematics backbone.

The detailed network architecture of the kinematics backbone is illustrated
in Fig. 2. We implement an extended version of HybrIK [5] as the backbone net-
work. The original HybrIK model first predicts 2.5D joints of the body skeleton.
Then the RootNet [8] is adopted to predict the distance of the root joint to the
camera plane and obtain the 3D joints in the camera frame via back-projection.
In our implementation, we design an integrated model that directly estimates
the 3D joint positions. Specifically, we add a fully-connected layer to regress the
camera parameters (s, t;,t,). Therefore, we can obtain the 3D joint positions as
well as the initial motion within a single model.
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Fig. 3. The detailed architecture of DyNet.

The detailed network architecture of the DyNet is illustrated in Fig. 3. For
all 1D convolutional layers, we use the kernel of size 3 and channel of size 256.
The output layer consists of a bilinear GRU layer with the hidden dimension of
1024 and a fully-connected layer to predict the physical properties.

C.3 Attentive PD Controller
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Fig. 4. The detailed architecture of attentive PD controller.

The detailed network architecture of the attentive PD controller is illustrated
in Fig. 4. The kernel size and channel number are set to 3 and 256, respectively.
To predict the attention weights that satisfy Z;‘Ll wh = 1, we use a softmax
layer for normalization.
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D Details for Contact Annotations

To provide supervision signals for contact states, we generate contact annotations
on the AMASS dataset [7]. Given a video sequence, we first retrieve the toe joints
of the body in each frame and then fit the ground plane using the toe positions.
Finally, the joints within 4cm of the ground are labeled as in contact. Following
previous works [10, 9], we use N, = 4 contact joints, i.e., toes and heels. In daily
scenes, the human body might contact the environment with other joints, such
as hips and hands. The current model will compensate these undefined contact
forces with the residual force, and it is easy for our model to extend to more
contact joints.

E Comparason with Baselines.

To further assess the effectiveness of D&D, we conduct experiments to compare
D&D with two baselines: the acceleration network (AccNet) and the velocity
network (VelNet). Instead of predicting physical properties like forces and con-
tacts, AccNet and VelNet directly predict the pose acceleration and velocity,
respectively. The acceleration and velocity are used to control the human mo-
tion. The architectures of AccNet and VelNet are similar to DyNet, with an
output layer that predicts the pose acceleration and velocity. Other training set-
tings are the same as the proposed D&D. As shown in Tab. 1, D&D obtains
superior performance to AccNet and VelNet. It demonstrates that the improve-
ment of D&D comes from the explicit modeling of the physical properties, not
controlling human motion with acceleration or velocity.

Table 1. Comparason with baselines on 3DPW and Human3.6M datasets.

| 3DPW Human3.6M

| MPJPE | PA-MPJPE | ACCEL | | MPJPE | PA-MPJPE | ACCEL |
AccNet 101.4 72.1 10.1 90.1 58.2 14.1
VelNet 79.3 47.0 8.4 74.1 48.8 8.5
D&D (Ours) | 73.7 42.7 7.0 52.5 35.5 6.1

F Physical-based Results on the 3DPW Dataset.

We report two physical-based metrics, foot sliding (FS) and ground penetration
(GP), to measure the physical plausibility on the 3DPW dataset. We remove the
video sequences that contain stairs since it is inaccurate to measure the ground
penetration in these cases. Quantitative results are provided in Tab. 2. It shows
that D&D can predict physically plausible motion in daily scenes with dynamic
camera movements.
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Table 2. Physical-based Results on the 3DPW dataset.

Method | FS | GP |

HybrIK [5]| 37.3 29.9
Ours 9.8 1.5

G Global Trajectory Results on the Human3.6M Dataset.

We compare the predicted global trajectory using the simulated moving camera
with the results using the static camera on the Human3.6M dataset. Quantitative
results are reported in Tab. 3. When testing on the static camera, we directly
use the predicted trajectory from HybrIK [5] in camera coordinates as the global
trajectory. We then follow the standard evaluations for open-loop reconstruction
(e.g., SLAM and GLAMR [11]) to remove the effect of the accumulative error.
G-MPJPE and G-PVE are computed using a sliding window (10 seconds) and
align the root translation with the GT at the start of each window. We can
see that using static camera obtains better results than the closed-loop results
of D&D with the moving camera. When we follow the open-loop protocol to
eliminate the accumulative errors, D&D obtains better results than using the
static camera.

Table 3. Results of the global trajectory on the Human3.6M dataset.

Method | G-MPJPE | G-PVE |
Static Camera 674.7 681.5
Ours 785.1 793.3
Ours (open-loop) 525.3 533.9

H Computation Complexity.

The whole system is run online by using a sliding window with a length of 16
frames and a stride of 16 frames. The system takes 1349ms for each window
(84.3ms for each frame).

I Pseudocode

The pseudocode of the proposed D&D is given in Alg. 1.
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Algorithm 1 Pseudocode of D&D in a PyTorch-like style.

# inp_video: [B, T, 3, H, W]

# init_motion: [B, T, 75]

# betas: [B, 10]

init_motion, betas = kinematics_net(inp_video)

# Dynamics Networks
eta, a_ine, w_ine, g, lambda, p = DyNet(init_motion)
kp, kd, alpha, w = AttenPDController(init_motion)

# Initialize pose at time O

final_q, final_dq = [q_0], [dq_0]

final_qtrans, final_dqtrans = [qtrans_0], [dqtrans_O]
rot_cam = 0

# Analytical Computation
for t in range(time_len - 1):
current_q, current_dq = final_q[t], final_dql[t]
current_qtrans, current_dqtrans = final_qtrans[t], final_dqtrans[t]

# Compute Inertia Matrix and Jacobian

M, Jv, Jw, m = get_jacobian(current_q, betas)

# Compute physical torques

target_q_state = torch.sum(w[t + 1] * initial_motion, dim=1)

tau = kp[t] * (target_q_state - current_q) - kd[t] * current_dq + alphalt]

I = compute_inertia(m, Jv[t], a_ine[t], w_int[t])
h_g = compute_gravity(m, Jv[t], gltl)
h_grf = PCT(Jv, pl[t], lambdalt])

# Inertial Forward Dynamics
ddq = M.inv() .matmul(tau + h_g + h_grf + I)

rot_cam = rot_cam + w_ine * delta_t

# Trajectory Forward Dynamics
ddqtrans = rot_cam.to_matrix().T.matmul(etalt] + h_grf[:, 0:3] + h_g[:, 0:3]) / m[:, O]

# Constrained Update
dq = current_dq + ddq * delta_t
dgtrans = current_dqtrans + ddqtrans * delta_t

dq, dqtrans = cvx_layer(dq, dqtrans, Jv[t], p[t], rot_cam)

q = current_q + dq * delta_t
qtrans = current_qtrans + dqtrans * delta_t

final_q.append(q)
final_dq.append(dq)
final_qtrans.append(qtrans)
final_dqtrans.append(dqtrans)

final_q = torch.cat(final_q, dim=1)
final_qgtrans = torch.cat(final_qtrans, dim=1)

J Qualitative Results

Additional qualitative results are shown in Fig. 5, Fig. 6 (the Human3.6M
dataset), Fig. 7, Fig. 8, Fig. 9 and Fig. 10 (the 3DPW dataset).
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Fig. 6. Qualitative results on the Human3.6M dataset.
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Fig. 7. Qualitative results on the 3DPW dataset.

Fig. 8. Qualitative results on the 3DPW dataset.
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Fig. 9. Qualitative results on the 3DPW dataset.

Fig. 10. Qualitative results on the 3DPW dataset.
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