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Abstract. In this supplementary document, we provide details and ex-
tended evaluations omitted from the main paper for brevity. Sec. 1 gives
additional method details, Sec. 2 provides implementation details, Sec. 3
and 4 contain extended experimental evaluations, and Sec. 5 provides
more detailed discussions on limitations and failure cases.

1 Additional Method Details

1.1 Root Depth Reasoning

As mentioned in the main paper, the root depth is inferred by the geometry of
human joints instead of a deep neural network. We divide human joints into two
classes: torso joints (including head, neck, pelvis, shoulders, and hips) and limb
joints. The depth of pelvis can be inferred by the depth of visible torso joints.

To do so, we define two different kinds of symmetry pairs based on their
expected errors when estimating root depth (Fig. 1). For example, the pelvis is
defined to be the center of two hips in the MPI15 joint definition, which means
given the positions of two hips, we can estimate the pelvis depth without error.
Therefore, they are defined as the first-class symmetry pair. During inference, the
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Fig. 1: The root depth can be inferred by the torso joints.
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(a)   Model architecture of original PifPaf
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(b)   Model architecture of PifPaf with our reasoning module

Fig. 2: Apply our occluded keypoints reasoning module to PifPaf.

detection module outputs the 3D positions of all visible torso joints (including
pelvis) and their confidence maps. Based on the confidence maps, we can first
select all joint predictions with high confidence. If the pelvis is predicted with
high confidence, then we directly use its estimate as root depth, otherwise, we
select the visible symmetry pairs following the pre-defined order. After that, the
root depth is computed based on the detected symmetry pairs.

1.2 DSED-based Reasoning Module on PifPaf

PifPaf [8] is a bottom-up method for multi-person 2D HPE. It uses a Part In-
tensity Field (PIF) to localize body parts and a Part Association Field (PAF) to
associate body parts with each other to form full human poses. At every output
location (i, j), a PIF predicts a confidence c and a vector (x, y) with spread b
and scale σ. Combining all information of a PIF, we can get a more accurate
heatmap prediction (See [8]). PAFs are slightly different from the PAFs in HU-
POR, but they also provide skeleton information, thus we can still directly use
them. Therefore, the encoder of PifPaf provides all the intermediate results we
need for the reasoning module. We can directly insert our DSED-based reasoning
module between the encoder and the decoder (Fig. 2). During training, we first
train the network without the reasoning module following the settings in [8], but
only provide supervision for the visible keypoints, then we freeze the rest part
of the network and train the reasoning module with only occluded keypoints.
When training the reasoning module, we set λocc

k = λocc
p = λall

k = λall
p = 0.5

and we linearly anneal ωextract from 0.0 to its full value of 2.0 over the first half
of the training process. Other settings of training the reasoning module follow
HUPOR. Note that we only use a one-stacked DSED model here.

1.3 DSED-based Reasoning Module on HigherHRNet

Different from PifPaf, HigherHRNet [2] uses associative embedding for keypoint
grouping. Therefore, to apply our reasoning module to it, we need first add a
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CNN

CNN

Heatmaps

PAFs

DSED

+

reasoning module

CNN

CNN

Heatmaps

PAFs

DSED

+

(b)   Model architecture of HigherHRNet with our reasoning module

Fig. 3: Apply our occluded keypoints reasoning module to HigherHRNet.

new branch to the network to output PAFs-like intermediate results, then we can
apply our reasoning module (Fig. 3). During training, we first train the network
without the reasoning module following [2], with a weight of 0.5 added to the
loss of PAFs. Then we freeze the rest part of the network and train the reasoning
module with only occluded keypoints. We set λocc

k = λocc
p = λall

k = λall
p = 0.1

and we linearly anneal ωextract from 0.0 to its full value of 5.0 over the first half
of the training process. Other settings of training the reasoning module follow
HUPOR. Note that we only use a one-stacked DSED model here.

2 Implementation Details

2.1 HUPOR

The visible keypoint detection module is a three-stacked hourglass model [11]
and the occluded keypoint reasoning module is a two-stacked DSED model. Both
of them use Adam [6] with a learning rate of 2×10−4 and weight decay of 8×10−6

as the optimizer. The detection module is trained for 10 + 10 epochs and in the
first 10 epochs, it is trained alone without the reasoning module. The reasoning
module is trained together with the detection module in the second 10 epochs.
Similar to [15,14,21], we use a batch size of 32, and 50% of the data in each
mini-batch is from COCO2017 [12]. All the images are resized to 832× 512. The
weights of 3D losses are set to 0 when data from COCO2017 is fed.

During training, λvis
k = λvis

p = λocc
k = λocc

p = λall
k = λall

p = 0.1, λvis
r = 10,

and a scale factor of 50 is applied to the z dimension of the PAFs. We linearly
anneal ωextract from 0.0 to its full value of 1.0 over the first quarter of the training
process.

Different from [21] that uses fully-connected layers as RefineNet, the Re-
fineNet we use consists of Graph Convolution Networks (GCN) with 4 hidden
layers and hidden sizes of 128. We compare their difference in Sec. 3.4. Training
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Table 1: Performance and efficiency on MuPoTS-3D. We significantly
surpass SOTA top-down [16] and bottom-up [21] methods in almost all metrics
while remains high efficiency. 2Hg represents a 2-stacked hourglass model. When
comparing model efficiency, we only consider the process of keypoint detection
and reasoning. (i.e., the main difference of HUPOR and SMAP)

Matched people All people Efficiency (3-people) Efficiency (20-people)

PCKabs PCKrel PCKocc PCKabs PCKrel Time(ms) Memory(M) Time(ms) Memory(M)

Moon et al . [16] 31.8 82.5 66.8 31.5 81.8 147.7 2517 250.7 3441

SMAP (4Hg) [21] 38.6 80.9 73.1 35.2 73.7 87.1 1537 95.4 1537
Ours (2Hg+2DSED) 39.0 85.9 74.6 35.9 78.3 99.8 1661 104.7 1661

is performed using batches of 1024 poses for 200 epochs with Adam and setting
lr = 1× 10−2. Other settings follow [21].

2.2 SSF (and Details of ShapeInit, Skeleton2Pose, ShapeOpt)

For a fair comparison, we follow [10] and use ResNet-34 [3] as the network
backbone, followed by fully-connected layers with 2 hidden layers and hidden
sizes of (1024, 512), and a final layer to match with the output dimensions, to
build the ShapeInit model. The Skeleton2Pose model is adopted from [10]. The
ShapeOpt model consists of 4-layer CNN to handle the input mask, followed
by fully-connected layers with 2 hidden layers and hidden sizes of (1024, 512).
Then the output of the final layer is concatenated with the parameters of the
reconstructed mesh. After that, fully-connected layers with 2 hidden layers and
hidden sizes of 512 are used to compute the final outputs. We use Pointrend [7]
to predict 2D segmentation masks.

During training, learning rate is set to 1×10−3 at first and reduced by a factor
of 10 at the 50th and 100th epoch. When generating occlusion labels, learning
rate is set to 1×10−5. Training is performed with batch size of 32 for 150 epochs
with Adam. We set λθ = 1,λβ = 0.5, λpos = 10, and λsil = 0.1 during training
and λθ = λβ = 0 when generating occlusion labels in an self-supervised manner.

3 Additional Experiments

3.1 Model Performance and Efficiency

Table 1 compares the performance, running time, and memory of SOTA methods
and HUMOR. Bottom-up methods are usually inferior in accuracy but superior
in speed, especially when a large number of people appear. Our method surpasses
both bottom-up and top-down methods in accuracy while remains high efficiency.

3.2 Broader Study of the Reasoning Module and the DSED
Network on CrowdPose

CrowdPose is a more challenging 2D dataset compared with COCO. It fea-
tures crowded scenes and contains more images with severe occlusions. We train
all models on the training set of CrowdPose. Results are reported in Table 2.
Compared with the original HigherHRNet, the DSED-based reasoning module
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Table 2: Broader study on 2D human pose. Results are reported on Crowd-
Pose. Reason stands for the reasoning module, Hg for the hourglass model. Our
reasoning module brings more improvements in crowded scenes with occlusions,
demonstrating the effectiveness of explicit occlusion reasoning.

AP AP50 AP75 APE APM APH

single-
scale

HrHRNet-W48 [2] 65.9 86.4 70.6 73.3 66.5 57.9
+ Reason (Hg) 64.6 85.0 69.8 73.4 65.0 55.8
+ Reason (DSED) 70.3 (+4.4) 88.0 (+1.6) 76.5(+5.9) 78.2 (+4.9) 71.0 (+4.5) 61.3 (+3.4)

multi-
scale

HrHRNet-W48 [2] 67.6 87.4 72.6 75.8 68.1 58.9
+ Reason (Hg) 66.1 85.9 71.6 75.4 66.6 57.1
+ Reason (DSED) 71.4 (+3.8) 88.7 (+1.3) 77.1 (+4.5) 79.3 (+3.5) 72.2 (+4.1) 62.1 (+3.2)

Table 3: Comparisons on Human3.6M. For our method, no ground-truth
bounding box information is provided. We yield clear performance improve-
ments. MPJPE is used.

Method MPJPE

top
down

Lcr-net++ [18] 63.5
Moon et al . [16] 54.4
HMOR [19] 48.6

bottom
up

ORPM [14] 69.9
XNect [13] 63.6
SMAP [21] 54.1
Ours 50.3
Ours(w/ Synth) 47.6

improves the results by 4.4 AP with single-scale testing and 3.8 AP with multi-
scale testing, which are more significant than on COCO. Our reasoning module
brings more improvements in crowded scenes with occlusions.

3.3 Comparison on Human3.6M

Human3.6M is a single-person dataset. Following [4,17], subjects 1,5,6,7,8 are
used for training, and 9 and 11 for testing. The synthetic data here is different
from the previous one. We generate a single-person synthetic dataset for this
experiment. Results are reported in Table 3. Note that those top-down methods
are essentially performing single-person pose estimation in a given bounding box,
thus are more suitable for this dataset.

3.4 GCN vs. MLP

Different from [21], we use GCN instead of MLP for RefineNet. Table 4 shows
the difference between them. The performance they achieve is similar, but GCN
is more stable and in our implementation, it takes less training time. In addi-
tion, we think GCN is able to encode the skeleton information, thus may have

Table 4: Ablation study on RefineNet.
PCKrel ↑ MPJPErel ↓ PCKocc ↑ MPJPEocc ↓ Training time on single GPU (hours)

RefineNet (MLP) 83.9 93.3 74.0 121.3 ∼ 7.5
RefineNet (GCN) 84.3 90.8 74.1 119.4 ∼ 5.6
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Table 5: Effect of layer-by-layer supervision. All models are trained without
synthetic data. S-1/2/3 represents the model trained with supervision on the
first, second, and third convolutional blocks. Others are named in the same way.

PCKrel ↑ MPJPErel ↓ PCKocc ↑ MPJPEocc ↓

S-1/2/3/4 78.77 106.75 58.98 155.71
S-2/3/4 75.07 113.74 54.83 168.18
S-3/4 75.07 113.74 54.80 167.92
S-4 75.11 113.70 54.81 168.33
S-1/4 77.95 106.77 57.97 156.86

Table 6: Ablation study on training with and without using images.

PCKrel ↑ MPJPErel ↓ PCKocc ↑ MPJPEocc ↓
Det + Reason (w/o image) 78.77 106.75 58.98 153.12
Det + Reason (w/ image) 78.23 106.14 58.58 154.08

more potential for better performance (but is beyond the scope of this paper).
Therefore, we use GCN as the RefineNet of our HUPOR.

3.5 Effect of layer-by-layer supervision

Considering the use of skip connection and two encoders, and this specific task,
we provide layer-by-layer (block-by-block) supervision between these two en-
coders and name this model “deeply supervised” model. Table 5 shows the effect
of layer-by-layer supervision. We find that providing supervision for each block,
especially for the first block, is very important for this task.

3.6 Training reasoning module with images

Table 6 shows the results of training reasoning module with and without using
images as input. We see similar performance under these two settings, which
proves that the intermediate results of the detection module already provide vis-
ible cues similar to what our network can extract from images. However, training
with images will limit the use of synthetic data and cause extra computational
resources. Therefore, our reasoning module doesn’t use images as input.

4 Additional Qualitative Results

4.1 Explanation of DSED

When training DSED, We minimize the MSE of the outputs of all layers be-
tween the teacher and the student encoder. To better explain DSED, we visualize
the output features of these two encoders in Fig. 4. Note that the teacher
encoder we visualized here is only trained with occluded joints.

4.2 Qualitative Results of HUPOR on Images from MuPoTS-3D,
3DPW, and YouTube

Qualitative results of human pose estimation on images fromMuPoTS-3D, 3DPW,
and YouTube videos can be found in Fig. 5. Compared with the current SOTA
method (i.e., SMAP), HUPOR is more robust under severe occlusions and trun-
cation, and generalizes much better to in-the-wild images. HUPOR works well
in real-world applications with occlusions.
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 Output: layer 1 channel 1 
(shape:128*208)

Output: layer 2 channel 1 
(shape:64*104)

Output: layer 2 channel 1 
(shape:64*104)

Output: layer 1 channel 1 
(shape:128*208)Input Input

Fig. 4: Output features of the teacher and the student encoder in
DSED. We visualize one channel of the first two layers (256 and 512 chan-
nels). Occluded keypoints are visualized as empty circles. During training, the
teacher encoder takes occluded joints and learns features to reconstruct them
and infers nearby skeletons. The student uses visible joints as input. It extracts
useful information for occlusion reasoning from visible joints, and tries to infer
occluded joints. During inference, only the student is used. Both encoders try to
output the same features: features that are the best for reconstructing occluded
joints and meanwhile, the easiest to be extracted from visible cues. Here input
images are selected from test set, and the teacher is only used for visualization.

4.3 Qualitative Results of SSF

Qualitative results of human mesh reconstruction on MuPoTs-3D can be found
in Fig. 6. Compared with the baseline method, SSF is more accurate and robust
to images not seen before.

4.4 Visualization of Keypoint Detection and Reasoning

Fig. 7 provides more visualization results of the occluded joints reasoning pro-
cess. For each image, we randomly select three occluded joints and visualize the
outputs of the detection module and the DSED-based reasoning module. Our
method detects the visibility of each keypoints and precisely localizes the po-
sition of visible joints, and more importantly, with the help of our reasoning
module, it is able to reasonably infer occluded joints.

5 Limitations and Failure Cases

Fig. 8 shows some challenging scenarios. First, our method doesn’t explicitly pre-
dict which occluded joints can be inferred and which cannot. Therefore, when
severe occlusion or truncation occurs, HUPOR may give implausible estimates
for those occluded joints. We think this problem can be solved by explicitly
predicting which occluded joints can be inferred and regressing multiple plausi-
ble poses [5,9,1,20] for joints that cannot be inferred. The second problem our
method suffers from is the noisy background. HUPOR may give false-positive
predictions when handling images with very noisy backgrounds or with objects
that look similar to a human (e.g . a doll).
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Fig. 5: Qualitative results of HUPOR on images from MuPoTS-3D,
3DPW, and YouTube. From left to right: input image, (a) SMAP results,
(b) our results. HUPOR is more robust under occlusions and truncation, and
generalizes much better to in-the-wild images (YouTube).
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Fig. 6: Qualitative results on human shape estimation.

Fig. 7: Keypoint detection and reasoning. Images are cropped only for visu-
alization. For each image, we randomly select three occluded joints and visualize
the outputs of the detection module and the DSED-based reasoning module.
Our method is able to reasonably infer occluded joints.
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Fig. 8: Failure cases. HUPOR fails to produce fairly good estimate when han-
dling severe occlusions (a,d), severe truncations (b,c), and very noise back-
grounds (c).
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