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Abstract. Occlusion poses a great threat to monocular multi-person 3D
human pose estimation due to large variability in terms of the shape, ap-
pearance, and position of occluders. While existing methods try to handle
occlusion with pose priors/constraints, data augmentation, or implicit
reasoning, they still fail to generalize to unseen poses or occlusion cases
and may make large mistakes when multiple people are present. Inspired
by the remarkable ability of humans to infer occluded joints from visible
cues, we develop a method to explicitly model this process that signif-
icantly improves bottom-up multi-person human pose estimation with
or without occlusions. First, we split the task into two subtasks: visi-
ble keypoints detection and occluded keypoints reasoning, and propose
a Deeply Supervised Encoder Distillation (DSED) network to solve the
second one. To train our model, we propose a Skeleton-guided human
Shape Fitting (SSF) approach to generate pseudo occlusion labels on
the existing datasets, enabling explicit occlusion reasoning. Experiments
show that explicitly learning from occlusions improves human pose esti-
mation. In addition, exploiting feature-level information of visible joints
allows us to reason about occluded joints more accurately. Our method
outperforms both the state-of-the-art top-down and bottom-up methods
on several benchmarks. The code is available for research purposes1.
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1 Introduction

Monocular 3D multi-person human pose estimation (HPE) is a fundamental
task in computer vision with wide applications in robotics, human activation
recognition, human-computer interaction, etc. Despite great advances brought by
neural networks, it remains a very challenging task due to the depth ambiguity,
high degrees of freedom in human poses, and frequent occlusion of various forms.
Among these challenges, we focus on occlusion which accounts for huge errors
in state-of-the-art (SOTA) methods, e.g . SMAP [84], as shown in Fig. 1.

Some existing methods handle occlusion by imposing pose prior and kine-
matic constraints either explicitly [64] or implicitly [65]. These priors are learned
from a limited training set thus may not generalize well. Others reason about
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1 https://github.com/qihao067/HUPOR
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Fig. 1: Current methods may still fail in presence of heavy occlusion, and lead
to (a) extra person, (b) missing person, (c) incomplete skeleton, and (d) wrong
position estimate. We improve the robustness by enabling the network to infer
occluded joints from visible cues explicitly. Red box is only used for visualization.

occlusion implicitly through redundant pose encoding [47,46] or attention mech-
anism [30,17], where models need to identify occluded joints implicitly without
any supervision during training and deal with unreliable intermediate repre-
sentations with complex conflicts, making learning increasingly difficult. More
importantly, most of these methods, even those designed for multi-person tasks,
still solve the problem of occlusion from the perspective of single-person, thus
requiring assembling pose first. However, the task of grouping human joints from
incomplete keypoints detection is already error-prone. Thus these methods may
make large mistakes when multiple people are present.

To alleviate the occlusion problem in multi-person scenarios, we revisit hu-
man’s ability to reason about occluded joints. Given an image with occluded
people (e.g . Fig. 1), humans can first precisely ‘detect’ visible joints and visible
skeleton information. Then we can reasonably infer the occluded keypoints based
on the detected information/cues, combined with local and global contexts, and
our prior knowledge on human pose, shape, and motion. We argue that if we al-
low the network to fully and properly exploit the detected and restructured cues
at the feature level, our method should also be able to reason about occluded
joints more accurately, just like humans, without bells and whistles.

To achieve this, we follow the discussion above and split the commonly used
single-step keypoint detection into two steps: visible keypoint detection and oc-
cluded keypoint reasoning. For the first part, any detection method that provides
heatmaps of detected keypoints and skeleton information should work. We di-
rectly adopt the SOTA bottom-up method as our detection module. Then based
on the intermediate results, we propose a reasoning module that efficiently learns
structure information to explicitly infer occluded joints from visible ones. After
that, we group both detected and inferred joints into individuals and refine the
results. We name this model HUPOR (HUman Pose estimation via Occlusion
Reasoning). We show that even using the same detection network and grouping
policy, our method significantly improves the ability of 3D bottom-up meth-



Explicit Occlusion Reasoning for 3D HPE 3

ods to precisely predict visible keypoints and reasonably infer occluded joints.
Furthermore, our method also benefits 2D human pose estimation, by using 2D
keypoint detection methods as the detection module and slightly modifying the
reasoning module of our method.

Although explicit occlusion reasoning is to some degree intuitive, not enough
attention has been paid to it due to the lack of annotations and the poor per-
formance of existing networks (e.g . hourglass [53,37]) in occlusion reasoning. We
propose two methods to solve these problems separately:

First, explicit occlusion reasoning requires per-joint visibility label which is
not available on most 3D human pose datasets. To this end, we first fit parametric
shape models [41] to the image and then use projection relationships to determine
whether the joint is visible. For human shape fitting, the SOTA 2D/3D pose-
based methods [14] usually fail to predict accurate shape while the image-based
methods [31,27] may get better shape but worse pose estimate and are very
sensitive to noise. Therefore, we propose a Skeleton-guided human Shape Fitting
(SSF) method that combines the advantage of these two lines of work. From the
reconstructed mesh, pseudo occlusion labels are then generated. Unlike previous
work [13] which only captures self-occlusion, our method finds self-occlusion,
object occlusion, and occlusion by other people. We demonstrate that SSF is
crucial to generate accurate occlusion labels for explicit occlusion reasoning,
while previous methods are either inaccurate [13] or require manual labeling [83].

Another challenge is how to effectively reason about occlusions. We find that
directly training an hourglass model to predict occluded joints from visible joints
or images does not yield good results. This is due to the complexity that the
network should identify useful information among all input features for recon-
structing occluded joints. To solve this problem, we propose a stacked Deeply
Supervised Encoder Distillation (DSED) network. DSED splits the reasoning
task into two: reconstruct and imitate, with the help of two encoders. The first
encoder acts as a teacher to select the most useful information for occluded joint
reconstruction, and the second one learns to extract the same information from
just visible cues. Compared with the vanilla hourglass model, DSED has a much
stronger capability to reason about occluded joints. Compared with using pre-
defined constraints, our method improves the performance by giving the network
freedom to extract the information it finds the most useful, leading to better cues
for occlusion reasoning. More importantly, occlusion reasoning in feature level
before assembling pose makes our method more suitable for handling occlusion
in multi-person scenarios than previous methods.

To evaluate the performance of our method, we perform experiments on the
MuPoTS-3D [47], MuPoTS-synthOcc, 3DPW [43], 3DPW-OCC [43,83], CMU
Panoptic [26], and Human3.6M [23] datasets. The results show that our method
yields consistently higher accuracy than the SOTA methods for both occlusion
and non-occlusion cases. Our bottom-up method surpasses the SOTA bottom-up
methods by 6.0 PCK and SOTA top-down methods by 2.8 PCK on MuPoTS.
In addition, we apply our DSED-based reasoning module to two recent 2D HPE
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methods (i.e. PifPaf [32] and HigherHRNet [11]) and we also observe consistent
improvements, ranging from 0.9 to 1.7 AP, on COCO [39] and CrowdPose [35].

In summary, our contributions are three folds:

– We advance the bottom-up pose estimation paradigm by exploiting its in-
termediate results for explicit occlusion reasoning, to which not enough at-
tention has been paid before. We demonstrate its efficacy and potential in
both 3D and 2D human pose estimation (HPE).

– We propose DSED network to infer occluded joints efficiently. It solves the
reasoning tasks that hourglass fails. We demonstrate that it is superior in
scalability and performance, and is crucial for explicit occlusion reasoning.

– Our 3D HPE method, denoted as HUPOR, enables more accurate visi-
ble keypoints detection and occluded keypoints reasoning, and significantly
outperforms SOTA methods on several benchmarks for both occlusion and
non-occlusion cases, while generalizing well to in-the-wild images.

2 Related Work

2D Multi-person Human Pose Estimation. Current methods typically
follow one of two paradigms:

Top-down methods [53,16,18,15,21,55,10,76,68,50,67,35,73,82,20,6,63,29]
split the task into two subtasks: (1) detecting bounding box for all people in
the image, and (2) performing single person pose estimator for each detected
region. These methods typically work better than bottom-up methods and are
currently the best performers on datasets such as COCO [39] due to the single
human assumption and the pose prior the assumption implies. However, these
methods struggle in cases of occlusion [35] and interactions [29]. In addition,
these two-step methods lack efficiency due to the need for separate human de-
tectors and the repeat of pose estimation for each bounding box.

Bottom-up methods [52,62,22,8,54,32,11,25,34,87,5] start by first detecting
identity-free keypoints over the entire image and then grouping joints into indi-
viduals. They are usually superior in speed but inferior in accuracy. To handle
the grouping problems, recent work predicts offset fields [62,54] or part affinity
fields [8,32], or uses associative embeddings [52] to get joint relationships. Dif-
ferent from the work that only uses PAFs to associate body parts, we also use
them for occlusion reasoning since they encode useful context information.

3D Multi-person Human Pose Estimation. In recent years a lot of work
focuses on single-person 3D poses [1,9,59,45,69,44,51,86,48,28,79,60]. Only a few
methods explore multi-person pose estimation:

Top-down methods [65,66,49,38,72] require off-the-shelf human detection,
then anchor poses-based classification [65,66] or root-joint localization [49] is
performed for better estimation. Recent work exploits the prior knowledge of
human size [38] or ordinal relations among multiple people [72] to get more
accurate depth estimation. However, these methods only focus on depth relations
and discards many other useful cues. In addition, similar to the 2D top-down
methods, they struggle in cases of occlusion and interactions and lack efficiency.
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Although bottom-up methods [81,47,46,84] are inferior in accuracy, they
have their inherent advantage in handling occlusion using joint relationships.
Mehta et al . [47] propose occlusion-robust pose-map (ORPM) for full-body pose
inference. It utilizes joint location redundancy to infer occluded joints, but can
only be applied to extremity joints, and needs a predefined skeleton and an extra
read-out process. Recently, Xnect [46] encodes joint’s immediate local context
in the kinematic tree to handle occlusion. However, this method can only use
joint locations but fails to use link orientation and other cues. Zhen et al . [84]
propose a depth-aware part association algorithm to add robustness to occlusion.
However, it is only designed for associating body parts but cannot infer occluded
joints. In addition, all these methods handle occlusion from the perspective of
single-person and require grouping joints into individuals first, which leads to
error-prone estimates in multi-person.
Occluded Pose. In addition to the bottom-up methods above [47,81,46,48],
many methods have made good progress in occluded pose estimation. One com-
mon way to infer occlusion is to first reconstruct a full-body skeleton and then
complete missing joints according to statistical and geometric models [64,65,3,46].
However, these methods only work for a single person but as mentioned, are less
effective in multi-person scenarios, and depend on a library of known poses and
structure that is easily biased to training data. Attention mechanism is intro-
duced to enforce the model to focus on non-occluded areas and thus adding
robustness to occlusion [17,30,85]. Temporal information [77,71,13,74,56,40,2,7]
is another commonly used cue, but such methods require videos input. Using
data augmentation [57,78,12,61] can also alleviate the problem but with minimal
effects compared with other methods and does not fully capture the complexity
of occlusions in real world [30]. Some recent methods regress multiple plausible
poses [24,33,4,75] to handle heavy occlusion, in which almost no cue exists. For
many occluded cases, human can infer occluded joints from pose prior or local
and global context cues. Unlike previous work, we explore explicit modeling of
occlusion reasoning. Recently, Zhang et al . [83] represent human meshes by UV
maps and handle occluded parts reconstruction as image-inpainting problem.
The requirement of accurate saliency maps limits the performance and general-
ization ability, and it is designed for single person scenarios.

3 HUPOR

The overall framework of our HUman Pose estimaion network via Occlusion
Reasoning (HUPOR) is depicted in Fig. 2. It consists of three main stages: given
an image I ∈ R4h×4w, we first use a visible keypoints detection module to
detect visible cues, then an occluded keypoints reasoning module is used
to reasoning about the invisible information from the visible ones, and finally,
all representations are combined to reconstruct 3D poses by the grouping and
refinement module. Implementation details are provided in Sup. Mat.

3.1 Visible Keypoints Detection

Following SMAP [84], we use a stacked hourglass [37] model to regress several
intermediate representations, including 2D keypoint heatmaps, 3D part affinity
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Fig. 2: Schematic view: HUPOR splits the two-step bottom-up methods into
three separate tasks: visible keypoint detection, occluded keypoint reasoning,
and grouping. In the detection module, a stacked hourglass model [37,53] is used
to extract the intermediate results of all visible joints from the input image.
In the reasoning module, DESD network is proposed to better infer occlusion
joints from detected visible cues. Finally, all intermediate results are fed to the
grouping module to reconstruct the human pose.

fields (PAFs), and root depth maps. Let J be the number of joints being consid-
ered. Keypoint heatmaps Hk ∈ Rh×w×J indicate the probability location of each
type of joint for all people in the image. 3D PAFs Hp ∈ Rh×w×3(J−1) are exten-
sion of 2D PAFs [8]. 2D PAFs describe a set of 2D unit vectors pointing from the
father node to the child node of the skeleton. For 3D tasks, the relative depth is
added to the third dimension. Notice that the first two dimensions are defined in
pixel and normalized while the relative depth is in mm without normalization.
Root depth maps Hr ∈ Rh×w×7 represent the absolute root depth of all people
in the images. Different from previous work [49,84] that directly estimates the
pelvis depth, we estimate the depth of all the 7 torso joints, including shoulders,
pelvis, neck, head, and hips. By doing so, it provides redundant information to
infer pelvis depth under occlusion.

During training, we treat the occluded joints as noises and only provide
supervision of visible joints. It makes our model more accurate when detecting
visible keypoints and PAFs. This module is trained by minimizing Lvis = λvis

k ·
Lvis
k + λvis

p · Lvis
p + λvis

r · Lvis
r , where

Lvis
k = ||Hk − Ĥvis

k ||22 Lvis
p = ||Hp − Ĥvis

p ||22 (1)

Lvis
r =

7∑
t=1

N∑
i=1

||Hr,t(u
t
i, v

t
i)− Ẑt

i ||1 (2)

where Ĥvis
k and Ĥvis

p denote ground-truth heatmaps of visible keypoints and

visible PAFs, respectively. (ut
i, v

t
i) is the detected position of the tth torso joint
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(b)   DSED model during inference

Fig. 3: Overview of DSED network: We only illustrate a single-stacked net-
work here. We also use feature aggregation [37] but omit it for clear visualization.

of the ith person, Hr,t denotes the predicted depth map of torso joint t (i.e.,

root depth map), and Ẑ is the ground-truth normalized depth.

3.2 Occluded Keypoints Reasoning

The goal of this module is to infer occluded joints from visible joints. A straight-
forward idea is to reuse the stacked hourglass model [53,37]. However, our ex-
periments show that such a model cannot solve this problem. This indicates the
difficulty of identifying useful information for occlusion reconstruction from all
input information. Therefore, inspired by knowledge transfer [58], we propose
DSED network to alleviate the difficulty of learning by splitting the task into
two subtasks, reconstruct and imitate. This is done by adding an encoder to
serve as a teacher to select the most useful information from occluded joints2

and supervise the second encoder to extract the same information from just
visible cues. This model is summarized in Fig. 3.

During training, the first encoder (blue) takes heatmaps of occluded joints
as input, followed by a decoder to reconstruct these heatmaps, aiming to learn
the best feature-level information needed for reconstruction. The second encoder
(red) uses detected/visible joints as input and learns to extract the same infor-
mation used for occlusion reconstruction, but only from visible cues. During
inference, only the second encoder and the decoder are used. The reconstructed
heatmaps of occluded joints and the detected heatmaps of visible joints are added
together as the output of this module. Our experiments also show that using all
joints as the input of the teacher can also improve performance, by enabling
students to denoise and refine the detected joints while inferring occluded joints.

To train this model, we deeply supervise each layer of the encoders and the
decoder and seek the parameters that minimize the loss function

Lreason = Lall + ωextract · Lextract (3)

Each term of Lall = λall
k · Lall

k +λall
p · Lall

p is similar to Eq. 1, but the supervision

of all joints (Ĥall
k and Ĥall

p ) are provided. Lextract denotes the MSE loss for the
output of each layer between these two encoders.

2 In this section, joints represent both keypoints and 3D PAFs
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For root depth reasoning, we find that using the symmetry of the human torso
can already yield good results. Therefore, instead of neural networks, we use a
tree search method: if the pelvis is detected with high confidence, we directly
use its estimate as root depth, otherwise, we search for the symmetry torso joint
pair that has high-confidence estimates, and then compute the root depth based
on the skeleton structure. (Please see Sup. Mat. for details.)
Joint training with real and synthetic data.One problem of HPE is the lack
of generalization ability. Meanwhile, 3D dataset generation and multi-person mo-
tion capture under strong occlusions are expensive and challenging, which worsen
this problem. To better capture the complexity of occlusions and generalize to
in-the-wild data, the reasoning module is designed to be trained without image
input, thus is free from the domain gap between real data and synthetic. This
enables us to build a synthetic dataset with a large range of pose and occlusion
distribution and train our model on it. We design two training modes to train
the reasoning module alternately: the first mode uses the output of the detec-
tion module as input while the second one uses artificially generated heatmaps of
visible joints from the synthetic data as input. The former makes the occlusion
reasoning more targeted at what the keypoint detection module can detect and
the latter ensures the generalization ability of the reasoning module. Note that
Gaussian distribution is used to model uncertainties when generating supervi-
sions Ĥk, but the output of the detection module cannot be a perfect Gaussian
distribution. When training with the first mode, the reasoning module is more
likely to prune the given heatmaps of detected joints instead of predicting oc-
cluded joints. Thus we provided extra supervision Locc = λocc

k · Locc
k + λocc

p · Locc
p

for occluded joints to avoid converging to this trivial solution. Locc
k and Locc

p are

similar to Lvis
k and Lvis

p in Eq. 1, but only for occluded joints.

3.3 Grouping and Refinement

This module is not the main contribution of our method. For joint association,
we directly use the depth-aware part association from SMAP [84] to get the
connection relations, followed by a standard process to get the 3D pose from
2D joint location and relative depth. Finally a RefineNet is used to refine 3D
root-relative pose. (Please refer to [84] for details.)

4 SSF for Occlusion Label Generation

To explicitly learn from occluded joints, we need the occlusion label for each
joint. However, existing 3D human pose datasets have no occlusion labels. Re-
cently, Cheng et al . [13] propose the “Cylinder Man Model”, in which they
model the human body as cylindrical segments with pre-defined diameters and
then project the human model into 2D to determine the degree of occlusion for
each joint. This model is simple enough, but using cylinders with fixed diameters
causes a very rough representation of human shape and low accuracy. More im-
portantly, It cannot handle occlusion caused by other people and objects. Using
a more complex human body model like SMPL [41] is a straightforward exten-
sion. However, current methods cannot provide a sufficiently accurate estimate to
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Fig. 4: Schematic view of human shape estimation and occlusion label
generation. Test-time-optimization is used when generating occlusion labels.

generate occlusion labels. To solve the problem of human shape estimation from
given poses and to enable the occlusion-label generation model to accurately
detect occlusion of self, objects, and other people, we proposed Skeleton-guided
human Shape Fitting (SSF). Note that SSF is not our major novelty, but an
essential step to generate occlusion labels (Sec. 5.5) and requires extra effort.

The overall framework of this method is illustrated in Fig. 4. Given an image
I and the 3D pose P of all people in the image as input, an off-the-shelf instance
segmentation method is used to generate instance masks Sins for objects and
people in the image. Then for each person, we learn the shape parameters β ∈
R10 from the ShapeInit model. The shape parameters β are then used to obtain
the canonical human mesh Mc with body part segmentation from the SMPL
model. Next, a Skeleton2Pose model is utilized to predict the pose parameters
θ ∈ R24×3 from Mc, β, and P . Due to the same function and similar input, we
modify the Adaptive HybrIK [36] and use it as the Skeleton2Pose model here.
After that, we use the shape β and the pose θ to calculate the SMPL body mesh
Minit = M(θ, β). Finally, mask Sins and reconstructed mesh Minit are passed
through the ShapeOpt model to obtain a more accurate mesh reconstruction
Mopt. More details are provided in the Sup. Mat.

The overall loss function for training this model is given by:

LHS = λβLβ + λθLθ + λposLpose + λsilLsilhouette (4)

where for the i-th person,

Lβ = ||βi − β̂i||2 Lθ = ||θi − θ̂i||2 (5)

Lpose = ||W15(M(θi, βi))− P i||22 (6)

Lsilhouette = ||Πc(M(θi, βi))− bi(I)||22 (7)

where β̂ and θ̂ denote ground-truth shape and pose parameters respectively.
W15 is a pretrained linear regressor to output 15 joints locations consistent with
the MPI15 keypoint ordering, Πc is the image formation function of a weak-
perspective camera c, and bi(I) is the binary segmentation mask of person i pro-
vided by the segmentation model. Lsilhouette is used to reduce the error caused by
the inaccurate pseudo-ground-truth SMPL annotations for in-the-wild datasets.
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Lpose and Lsilhouette are weakly supervised loss and are also used to optimize
the shape parameters when generating occlusion labels.

After getting the human part segmentation labels Spart of the reconstructed
human mesh Mopt from the SMPL model, we can then generate the occlusion
label oj ∈ {0, 1, 2} of joint j by checking the pixel label of (uj , vj) given by
the instance segmentation masks Sins and the human part segmentation labels
Spart. oj = 0, 1, 2 denote truncated, occluded, and visible, respectively.

5 Experiments

5.1 Dataset and Metrics

Dataset. For 3D human poes estimation (Sec. 5.2), we report results on MuPoTS-
3D [47], CMU Panoptic [26], 3DPW [43], 3DPW-OCC [43,83], 3DOH [83] and
Human3.6M [23] datasets. Inspired by PARE [30], we randomly generate syn-
thetic occlusions on the image of MuPoTS-3D and name it MuPoTS-synthOcc. It
is only used for evaluation. For experiments on MuPoTS-3D, MuPoTS-synthOcc,
3DPW, and 3DPW-OCC, we follow SMAP [84] and train our model on the
MuCo-3DHP [47] dataset. In addition, for a fair comparison, we mix the data
with COCO2017 [39] during training and 50% of data in each mini-batch is from
it (same as [47,48,84]). For Panoptic, following [80,84], we choose cameras 16 and
30, and randomly select 9600 images from four activities (Haggling, Mafia, Ulti-
matum, Pizza) as test set, and 160k images from other sequences as training set.
The synthetic dataset for training the DSED reasoning module is built based on
AMASS [42]. Results on Human3.6M are reported in Sup. Mat.

For the broader study of the reasoning module and the DSED network
(Sec. 5.4), we apply our reasoning module to two SOTA methods (PifPaf [32]
and HigherHRNet [11]) and evaluate them on COCO [39] and CrowdPose [35].
For a fair comparison, we directly adopt the official implementation and use the
same training data. Results on CrowdPose are reported in Sup. Mat.
Metrics. For pose estimation, we consider mean per joint position error (MPJPE)
in mm and percentage of correct keypoints (PCK) in 3D. Following [84], a key-
point is declared correct if the Euclidean distance error is smaller than 150mm.
We evaluate absolute pose accuracy (subscript abs), relative pose accuracy with
root alignment (subscript rel), and relative pose accuracy of occluded joints (sub-
script occ). For human mesh reconstruction, we consider MPJPE, Procrustes-
aligned mean per joint position error (PA-MPJPE), and per vertex error (PVE).

5.2 Benchmark Evaluation

MuPoTS-3D and MuPoTS-synthOCC. Table 1 compares our method with
previous monocular HPE methods. In terms of the relative pose accuracy on
which our work mainly focuses, our method significantly surpasses previous
bottom-up methods in both visible and occluded joints estimate. Remarkably,
even though we use a very similar detection module and the same grouping
method, our method outperforms SMAP, which is also the previous SOTA
bottom-up method, by 6 PCKrel and 5.6 PCKrel on matched people of MuPoTS-
3D and MuPoTS-synthOCC, respectively. When considering all people, we still
surpass previous art by 5.9 PCKrel and 4.6 PCKrel on these two datasets.
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Table 1: Comparisons on MuPoTS-3D and MuPoTS-synthOCC. Results
on MuPoTS-synthOcc are generated from the official pre-trained model and code
if they are released. The PCKocc evaluates the same joints in both datasets to
better analyze the occlusion reasoning ability under different levels of occlusion.
Best in bold, second best underlined.

MuPoTS-3D MuPoTS-synthOCC

Matched people All people Matched people All people

PCKabs PCKrel PCKocc PCKabs PCKrel PCKabs PCKrel PCKocc PCKabs PCKrel

top
down

Lcr-net++ [66] - 74.0 - - - - - - - -
Moon et al . [49] 31.8 82.5 66.8 31.5 81.8 26.9 74.2 57.9 15.4 45.8
HMOR [72] 43.8 82.0 - - - - - - - -
HDNet [38] 35.2 83.7 - - - 25.8 72.3 55.9 - -

bottom
up

ORPM [47] - 69.8 - - - - - - - -
XNect [46] - 75.8 57.8 - - - 69.2 56.2 - -
SMAP [84] 38.7 80.5 72.9 35.4 73.5 36.4 76.1 68.9 23.9 49.1

Ours 38.9 84.3 74.1 35.8 76.9 36.3 80.1 71.0 24.3 52.6
Ours (w/ synthetic) 39.3 86.5 74.9 36.5 79.4 37.9 81.7 72.1 25.5 53.7

Table 2: Comparisons on 3DPW, 3DPW-OCC, 3DOH, and Panoptic.
Our method yields clear improvements among all datasets. MPJPE is used.

3DPW 3DPW-OCC 3DOH

Moon et al . [49] 98.4 104.3 89.5
XNect [46] 118.5 124.7 -
SMAP [84] 101.5 105.2 90.6

Ours 95.8 96.9 -
Ours (w/ Synth) 93.1 94.4 80.9

(a) 3DPW, 3DPW-OCC, and 3DOH

Haggling Mafia Ultim. Pizza Average

Moon et al . [49] 89.6 91.3 79.6 90.1 87.6
Zanfir et al . [81] 72.4 78.8 66.8 94.3 72.1

SMAP [84] 63.1 60.3 56.6 67.1 61.8
Ours 54.7 55.2 50.1 66.4 56.1

Ours (w/ Synth) 55.2 55.0 50.4 61.4 55.0

(b) CMU Panoptic

More importantly, although top-down methods have the inherent advantage
on accuracy since they can use off-the-shelf human detection method and can
simplify the problem to single-person pose estimation, our method still outper-
forms them by 2.8 PCKrel on MuPoTS-3D when considering matched people,
and is comparable to them when considering all people. Meanwhile, depending
on the number of people in the image, we are faster than the SOTA top-down
methods during inference. Overall, the strong results and the relatively fast in-
ference speed prove the effectiveness and efficiency of our method.
3DPW, 3DPW-OCC, and 3DOH. These dataset are designed for multi-
person human shape reconstruction. It is unfair to compare the errors between
the skeleton-based method with SMPL model-based method due to the different
definitions of joints. Table 2 mainly focuses on skeleton-based methods. Results
of baselines are generated from the official model. We use the same scripts to
match the predicted person with ground-truth and compute the error based on
MPI15 joint definition. Therefore, the relative values are more meaningful.

5.3 Ablation Study

Effect of each module. Compared with other bottom-up methods, we add
the occlusion keypoint reasoning module. First, we validate the efficiency of this
module and the continuous improvement of different modules. The results can be
found in Effect of each module in Table 3. We achieve a continuous improvement



12 Q. Liu et al.

Table 3: Ablation studies on MuPoTS-3D dataset. Det, Reason, and Ref
stand for detection, reasoning, and refinement module, respectively. Hg stands
for hourglass model, NL for nonlocal blocks. Det of SMAP uses all joints during
training and Det of ours uses visible joints only.

PCKrel ↑ MPJPErel ↓ PCKocc ↑ MPJPEocc ↓
Effect of each module of SMAP[84]

SMAP Det 70.9 122.1 56.8 158.4
SMAP Det + Ref 80.5 103.3 72.9 122.8

Effect of each module
Det 74.87 116.36 51.48 184.31
Det + Reason 79.28 104.33 61.24 145.94
Det + Reason + Ref 86.54 87.28 74.92 118.60

Training without occlusion label (OccL)
Det (w/o OccL) 71.12 123.02 56.53 163.74
Det (w/o OccL) + Reason 74.76 112.77 58.70 118.61

Deeply Supervised Encoder Distillation
Det + Reason (Hg) 75.58 113.35 55.30 154.76
Det + Reason (DSED) 79.28 104.33 61.24 145.94
Det + Reason (DSED + NL) 79.81 102.32 61.56 143.59

in the accuracy of both visible and occluded joints with different modules. In
addition, compared with SMAP that predicts all keypoints at the same time
and then uses single-person refinement to complete the missing prediction, the
idea of splitting the detection step into detection and reasoning already yields
an improvement of 3.97 PCKrel after detection module and 8.38 PCKrel after
reasoning module. Note that SMAP and our method use the same three-stacked
hourglass architecture and output similar intermediate results.

Training with occlusion label. Next, we evaluate the effect of using occlusion
labels. We can find that without using occlusion labels, the network will try to
estimate both visible and occluded joints at the same time. It achieves a higher
accuracy (56.53 PCKocc vs. 51.48 PCKocc) on occluded joint detection but gets
a lower accuracy (71.12 PCKrel vs. 74.87 PCKrel) on all joints. Training the
detection module with occluded joints can to some degree improve the ability of
occluded joint detection, but increasing the training difficulty and adding noises
by many unpredictable joints. When the reasoning module is used in this case,
the accuracy is enhanced but still lower than the model trained with occlusion
labels by 4.52 PCKrel due to the false-positive prediction and the noise on visible
keypoint prediction that is hard to be fixed by the following reasoning module.

DSED network. Compared with only using the detection model, both the
hourglass-based reasoning model and DSED-based reasoning model yield im-
provement on occluded joints prediction. However, the DSED model achieves a
much higher accuracy on occlusion reasoning by 5.94 PCKocc. More importantly,
the overall accuracy only improves 0.71 PCKrel when using the hourglass model
but 4.41 PCKrel with the DSED model. This is mainly due to the false-positive
estimates and noises given by the hourglass model (see Fig. 5). In addition, us-
ing non-local (NL) blocks can also yield an improvement of 0.53 PCKrel after
carefully design, but it also increases the memory and time required for training.
We do not add it to our final model but only show the results here.
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Fig. 5: Keypoint detection and reasoning. We visualize the right knee here.
More results are provided in Sup. Mat. From left to right: input image, (a)
detected keypoints, keypoints inferred by (b) DSED, and by (c) hourglass model.

Table 4: Broader study on 2D human pose. We show results in single-scale
testing setting. Reason stands for reasoning module, Hg for hourglass model.

COCO val-dev AP AP50 AP75 APM APL AR

PifPaf [32] 67.4 - - - - -
+ Reason (Hg) 67.5 86.5 73.6 62.0 75.8 70.9
+ Reason (DSED) 69.1 87.0 75.3 64.7 76.9 75.5

HrHRNet-W48 [11] 69.9 87.2 76.1 - - -
+ Reason (Hg) 68.2 86.7 75.9 64.3 76.6 72.1
+ Reason (DSED) 70.8 87.9 77.0 66.0 78.3 76.6

(a) COCO val-dev 2017

COCO test-dev AP AP50 AP75 APM APL AR

PifPaf [32] 66.7 - - 62.4 72.9 -
+ Reason (Hg) 66.9 88.1 72.9 62.3 73.1 70.4
+ Reason (DSED) 68.0 88.7 75.2 64.1 74.7 75.6

HrHRNet-W48 [11] 68.4 88.2 75.1 64.4 74.2 -
+ Reason (Hg) 67.2 87.4 74.6 63.0 73.8 71.8
+ Reason (DSED) 69.5 89.0 76.6 65.2 76.2 75.7

(b) COCO test-dev 2017

5.4 Broader Study of the Reasoning Module and DSED Network

The previous section discusses the effect of the reasoning module and DSED
network in 3D HPE, now we consider a more general task, i.e., 2D human pose
estimation. We delete the depth-related structure of the reasoning module and
modify the DSED network, then apply them to PifPaf and HigherHRNet. We use
the official implementation with small modifications on their network to make
it compatible with our 2D reasoning module (see Sup. Mat. for details). The
results are reported in Table 4. All methods are trained on 2017 COCO training
set. We can see that even though the reasoning module is not designed for 2D
tasks since the bone length is more accurate when computed in 3D, it still yields
stable improvement (up to 1.7 AP) and achieves SOTA performances. We can
also find that DSED is crucial for the reasoning module.

Table 5: Evaluation of occluded joint detection. The left half compares
the generated occlusion labels and the right half shows the model performance
trained on these labels. For the left half, we randomly select 500 from 200k
images in MuCo-3DHP and manually annotate them to get ground-truth labels.

Precision Recall F1-score PCKabs PCKrel PCKocc

Cylinder [13] 0.653 0.401 0.497 - - -
HybrIK-based [36] 0.800 0.602 0.687 38.4 83.1 73.0
ours (SSF-based) 0.885 0.805 0.843 39.3 86.5 74.9
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Table 6: Evaluation of human mesh recovery on 3DPW dataset.
MPJPE PA-MPJPE PVE

SPIN [31] 96.9 59.2 116.4
ROMP (ResNet-50) [70] 91.3 54.9 108.3
PARE (ResNet-50) [30] 84.3 51.2 101.2

Adaptive HybrIK (ResNet-34) [36] 80.0 48.8 94.5
Ours (w/o Synth, ResNet-34) 79.1 49.3 92.3

5.5 SSF and Occlusion Label Generation

Occlusion label generation. We compare our method with the Cylinder hu-
man model and the SMPL-based human mesh fitting method (i.e., Adaptive
HybrIK). We implement the Cylinder model and modify it to detect occlusion
by other people. For comparison with HybrIK, we directly use the official model
to fit the SMPL models and then use the same graphics pipeline in our SSF to
generate the occlusion labels. Note that the ground-truth skeleton is provided
for all methods. The results can be found in Table 5. Our method generates
more accurate occlusion labels with much higher precision and recall. More im-
portantly, the labels generated by previous methods reduce performance. SSF is
essential to generate occlusion labels for explicit occlusion reasoning.
3D human mesh reconstruction.We evaluate our SSF on the 3DPW dataset.
We use the proposed HUPOR to generate 3D skeletons, and then use the esti-
mated skeletons and the image as input to estimate SMPL parameters. For a
fair comparison, we strictly follow HybrIK [36] to prepare the training data and
use ResNet-34 [19] as backbone. The results are reported in Table 6. Compared
with baselines, SSF can recover body mesh more accurately. Qualitative results
on human shape estimation can be found in Sup. Mat.

6 Conclusions

Although occlusion is a well-known problem in HPE, not enough attention has
been paid to learning from occlusion. In this work, we show its value by incor-
porating our proposed 3D occlusion reasoning method in an existing framework,
and present HUPOR. It solves the keypoint detection in a detect-and-reason
pipeline, which is effective but being ignored. For occlusion reasoning, we pro-
pose a Deeply Supervised Encoder Distillation (DSED) network to effectively
infer occluded joints from visible cues, and greatly improve current SOTA 3D
and 2D methods. We also propose a Skeleton-guided human Shape Fitting (SSF)
method for better human mesh reconstruction and occlusion label generation.
Experiments show the effectiveness of our reasoning method in both 2D and 3D
HPS. Meanwhile, we demonstrate that both the SSF and the DSED are crucial.
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