APPENDIX

In this appendix, we provide additional information about the dataset, imple-
mentation details, post-processing techniques. We also discuss on the current
limitation as future research perspectives.

1 Dataset

1.1 Motion Data

Table 1 shows a detailed break down of our dataset in terms of different types
of interactions. Our dataset consists of 3 hours of MoCap with over 500 motion
sequences. In addition to the dataset, we explain the data structure and provide
the demonstration code on how to use the dataset [1].

Table 1: Distribution of the COUCH dataset with different types of interaction.
Interaction Type|Minutes %
Right Hand 36.3 17.3
Left Hand 294 14.0
Both Hand 60.5 28.9
No Contact 36.5 174
Free Interaction| 31.9 15.2
Locomotion 151 7.2

1.2 Data Processing

SMPL Fitting. We segment the human in captured RGB images by running
Detectron V2 [9] followed by manual correction with [8] on the segmentation
masks. These masks are then used to segment multi-view depth maps and lift
human point clouds from 2D to 3D. We use FrankMocap [7] to initialize the
SMPL pose from the images and then apply instance specific optimization [4]
to fit the SMPL model to the segmented human point cloud. For more accurate
fitting, we additionally obtain the SMPL shape parameters of each subject from
3D scans using [5].

Synchronization with the IMUs. The fitted SMPL model provides us with
accurate contacts with the scene, however, the fitted motion sequence is prone
to occlusion and drastic body movements, as a result, the fitted motion can be
jittery at times. On the other hand, the pose captured with the IMUs is smooth
over time, but it might not accurately capture the contacts. To this reason, we
synchronize the Kinect captured data with the body sensors by incorporating
the SMPL fitted poses into the IMU pose sequences. After synchronization, we



optimize the joint rotations j; to achieve temporal smoothness via the objective
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where J ; represents the acceleration of the body joints in frame ¢ approximated
by central difference.

We additionally use the binary contact labels of the toes and the heels de-
tected by the IMU sensors to remove foot-sliding on the motion data. To remove
the foot-sliding, we compute the average joint positions over the duration of the
contacts grouped by the positive contact labels. This computation is performed
for all four foot joints. This forms a sequence of target joint positions of the feet
f. € R**3. We then optimize the objective function
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where f, represents the foot joint positions at frame . The resulting motion
sequence is temporally smooth and has accurate contacts registered with the
chair models.

Object Processing. To obtain object segmentation, we pre-scan objects using
a 3D scanner [2,3]. We then use multi-view object keypoints, marked by manual
annotators on the images, to fit the pre-scanned chair meshes to the given frame.
The segmentation masks are then obtained by projecting fitted object meshes to
the images. Since the chairs remain static during the capture, we average over
the 6D pose of the fitted chair model during each capture session to obtain the
final transformation of the chair.

2 Training Details

2.1 ControlNet

As shown in Figure 1, the contact network is a two-layer LSTM architecture.
Each layer has a hidden dimension of 512. The pose and the control signals (hand
trajectories, and the local phases) are each encoded through a two-layer fully
connected network with of shape {128, 128} before passing through the LSTM.
We apply scheduled sampling on hand trajectories for better model performance.
For the local phases, we always use the ground truth. Each of our training
samples is in a sequence of 60 frames. The ControlNet is trained for 150 epochs
with an Adam optimizer. The initial learning rate is 1le-3 and a cosine learning
rate scheduler was used to decay the learning rate gradually to 5e-6. The full
training of a subject-specific model takes approximately 1 hour on an NVIDIA
V100 GPU.
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Fig.1: Our method that combines the ControlNet and the PoseNet.

2.2 PoseNet

The PoseNet adopts the mixture-of-expert structure [6]. It consists of different
feature encoders of structures shown in Table 2. The gating network and the
prediction networks are both three-layer fully-connected networks, with hidden
dimensions of 128 and 512 respectively. The number of experts is set to 10.
The PoseNet is trained for 150 epochs with an Adam optimizer. The initial
learning rate is le-4 and a cosine learning rate scheduler was used to decay the
learning rate gradually to 5e-6. The full training of a subject-specific model takes
approximately 6 hours on an NVIDIA V100 GPU.

Table 2: Details on different encoder networks of the PoseNet.
Networks Architecture
Encoder for C | {128,128,128}
Encoder for {J, T}|{512, 512, 512}
Encoder for G | {128,128,128}
Encoder for I [{512, 512, 512}
Encoder for E | {256,256,256}

2.3 ContactNet

The ContactNet encodes the scene I through a three-layer fully connected net-
work of shape {512, 512, 64}. The latent vector z of the VAE is of size 6. The
weight of the Kullback-Leibler divergence  is 0.1. We use the Adam optimizer
with a learning rate of 1e-3 and train ContactNet for 150 epochs. The full train-
ing of a subject-specific model takes approximately 10 minutes on an NVIDIA
V100 GPU.



3 Decomposition Improves Performance

To demonstrate the importance of decomposition into motion planning and mo-
tion prediction, we introduce two additional ablative baselines: 1) A vanilla
PoseNet without conditioning on the contacts, to demonstrate the importance
of contacts. 2) A PoseNet variant (denoted as PoseNet™) that uses a straight
line from hand to the contact, instead of our control signal, to demonstrate the
usefulness of our control signal. It is important to note that COUCH leverages
the spatio-temporal control signal, and although PoseNet™ conditions on the
direction of the contact, it does not consider the velocity or the non-linear as-
pect of the hand movements. As a result, this linear proxy of the control signal
induces ambiguity for the pose prediction which causes a increase in penetration
(Figure 2) and a degrade in model performance (Table 3).

Fig.2: Qualitative comparison between PoseNet™ (left) and COUCH (right)
when approaching from the same point.

Table 3: Foot Skating Error (cm) during the approaching phase, Penetration/In
Contact (% of frames), Distance to Contact (cm).
PoseNet PoseNet™ Ours
Foot Skating] 3.69 3.77 3.60
Penetration| 21.16 21.58 20.85
Distance to Contactl.| 10.61 10.24 4.73

4 Contact Projection and Trajectory Fitting

To ensure the ContactNet predicts contacts that land exactly on the surface of
the object, we perform a post-processing step, when the distance of the network
predicted contact to the surface is less than a set threshold of 10 cm, we sim-
ply project the contact onto the nearest point on the chair surface. When the



distance is greater than 10 cm, we simply neglect the predicted contact. The
ControlNet predicts the future hand trajectories, and it would be possible to fit
the predicted pose to the predicted hand position from the hand trajectories at
each frame to further improve the satisfaction of the contact constraints. Note,
in the evaluation of the main paper we do not apply such fitting technique.

5 Controlling with a Series of Contacts.

One useful application of our approach is to automatically generate a motion
sequence with a series of desired contacts in the context of animation, character
control, when executing a set of complex actions. For instance, the person can
be instructed to first sit with their hands on the armrest, then lift the arms to
support the head before bringing the hands back to the armrest, see Figure 3.
Our approach can be adapted for this task by iteratively providing the new goal
locations for the hands as input after the present locations are reached.

Fig.3: COUCH can also be extended by specifying a series of contacts for to
automatically synthesize more complex interactions. The past poses are indicated
by blue skeletons.

6 Limitations and Future Direction

We observe the synthesized motion can slightly intersect with the chair. A so-
lution to this problem would be to apply a post-processing step to avoid such
collision. In order to generalize to more different chair shapes, it would be useful
to investigate better ways of encoding the scene geometry while trying to avoid
over-fitting.

Different shaped person can intersect with the same object very differently
even when performing the same motion. The COUCH dataset captures human
interaction with different body shapes. With the dataset, it is possible to study
how to build subject-variant motion synthesis model and how to effectively con-
dition on the body shapes. These are challenges in motion synthesis that have
not been tackled.



Our work on controllable human-chair interaction. It would be useful to ex-
tend the scope of interacted objects, especially considering the cases when the
objects are non-static, when performing motions such as lifting a box, or open-
ing a door. Another possible direction would be to further apply contact-based
control in these interactions.
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