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Abstract. This paper first proposes and solves weakly supervised 3D
human pose estimation (HPE) problem in point cloud, via propagating
the pose prior within unlabelled RGB-point cloud sequence to 3D do-
main. Our approach termed C3P does not require any labor-consuming
3D keypoint annotation for training. To this end, we propose to trans-
fer 2D HPE annotation information within the existing large-scale RG-
B datasets (e.g., MS COCO) to 3D task, using unlabelled RGB-point
cloud sequence easy to acquire for linking 2D and 3D domains. The self-
supervised 3D HPE clues within point cloud sequence are also exploited,
concerning spatial-temporal constraints on human body symmetry, skele-
ton length and joints’ motion. And, a refined point set network structure
for weakly supervised 3D HPE is proposed in encoder-decoder manner.
The experiments on CMU Panoptic and ITOP datasets demonstrate
that, our method can achieve the comparable results to the 3D fully su-
pervised state-of-the-art counterparts. When large-scale unlabelled data
(e.g., NTU RGB+D 60) is used, our approach can even outperform them
under the more challenging cross-setup test setting. The source code is
released at https://github.com/wucunlin/C3P for research use only.

Keywords: 3D human pose estimation, weak supervision, RGB-point
cloud sequence, spatial-temporal constraints

1 Introduction

3D human pose estimation (HPE) in depth data (e.g., depth map or point
cloud) is of wide-range applications towards human action recognition [22, 1,
23], human-robot interaction [38], virtual [29], etc. With the introduction of
deep learning technologies (e.g., CNN [36, 12] or PointNet [30, 31]), 3D HPE’s

†Yang Xiao is corresponding author (Yang Xiao@hust.edu.cn).
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Fig. 1. The main research idea of our weakly supervised 3D human pose estimation
approach in point cloud. RGB-point cloud pairs bridge 2D and 3D domain. 3D priors
of human pose in point cloud sequences are also utilized as self-supervision signals. For
test, we only need point cloud as input, and output 3D human pose in world coordinate.

performance has been enhanced remarkably in fully supervised learning manner.
However, deep network’s data-hungry property leads to the high demand on 3D
pose annotation both on quality and quantity, which is essentially labor and time
consuming. Nevertheless, the existing annotated 3D HPE datasets are generally
of relative small size. For example, ITOP [11] only involves 50K samples from 20
subjects in laboratory setting. While, as the 2D RGB counterpart MS COCO [21]
contains over 200K samples from 250K subjects under in the wild conditions.
Accordingly, the existing RGB-based 2D HPE approaches [4, 43, 42, 28, 5] are
generally of stronger generality. Thus, we raise the question that whether the
rich 2D annotation information within RGB domain can be transferred to depth
domain for facilitating 3D HPE, which has not been well concerned before.

Due to the emergency of low-cost RGB-D cameras (e.g., MS Kinect [25,
24]), 3D human pose’s unlabelled RGB-D pair sequence can be easily acquired
to link 2D and 3D domains. It also involves rich human pose prior information.
Particularly, for RGB stream 2D human pose can be acquired with the existing
well-established 2D HPE approaches [43] pre-trained on large-scale RGB dataset-
s (e.g., MS COCO [21]). Within depth stream, the physical 3D constraints on
human body symmetry, skeleton length and joints’ motion are maintained. Al-
though the supervision priors above, to our knowledge, there is still no work that
concerns applying unlabelled RGB-D pair sequence to address 3D HPE.

To fill this gap, a novel weakly supervised 3D HPE approach termed C3P for
depth data is proposed by us, based on unlabelled RGB-D sequence. It conducts
cross-domain pose prior propagation from RGB to depth in weakly supervised
manner, with self-supervised learning in depth domain jointly. Human pose an-
notation supervision is only from the third-party 2D RGB datasets. To alleviate
projection distortion [18], depth map will be transformed into point cloud.

For weakly supervised learning, the key idea is to build correspondence be-
tween 2D and 3D HPE results in 3D space. Compared with the existing 2D
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supervision manner [7] for RGB-based 3D HPE, our method can better reveal
3D characteristics. Particularly after acquiring 2D HPE result on RGB stream
with state-of-the-art 2D method [43], it will be back projected into 3D space in
ray form according to RGB camera’s intrinsic and extrinsic parameters. Then, for
each predicted 3D joint its distance to the corresponding 2D oriented projection
ray is minimized to establish accurate 3D to 2D correspondence as supervision.

To leverage performance, self-supervised learning in 3D domain is jointly exe-
cuted. The supervision information derives from the intrinsic natural constraints
on human body symmetry, skeleton length limitation and joint’s temporal mo-
tion continuity thanks to cloud sequence’s spatial-temporal characteristics.

Technically, the encoder-decoder based point set network (i.e., P2P [9]) for
3D hand pose estimation is used as our backbone network. Since under weakly-
supervised setting joint’s ground-truth 3D heatmap cannot be acquired for P2P’s
training, we propose to refine it with an additional per point aggregation mod-
ule with integral regression design [37]. Accordingly, 3D heatmap is no longer
required. Overall, our main research idea is shown in Fig. 1.

The experiments on CMU Panoptic [16, 17] and ITOP [11] datasets verify the
effectiveness of our proposition. It is impressive that, when large-scale unlabelled
data is introduced our weakly supervised approach can even outperform the fully
supervised counterparts under the challenging cross-setup test setting.

The main contributions of this paper include:
•We first propose the research problem of weakly supervised 3D human pose

estimation in point cloud without requiring 3D annotation;
• C3P: a novel weakly supervised 3D human pose estimation approach that

relies on unlabelled RGB-point cloud sequence.

2 Related work

In this section, we mainly introduce the depth image and point cloud based
HPE methods. Since the proposed C3P is a weakly-supervised method, we also
introduce other related weakly supervised HPE works.

Depth image and point cloud based HPE methods. Non-deep learning
approaches [13, 34, 45] plays an important role in early research on depth image
based human pose estimation. These methods rely on hand-crafted features and
subsequent processing by regression or classification to obtain results on human
posture. However, due to the limited discriminative power of these features, their
performance is usually not as high as that of deep learning methods. Recently,
numerous deep learning based HPE methods [27, 44, 52, 46, 48] were proposed
due to the fitting ability of neural networks. V2V-PoseNet [27] converts depth
image to Voxel, and uses 3D CNN to predict the coordinate of human joints,
however, the 3D CNN is time-consuming. A2J [44] proposes an anchor based 2D
CNN method which predicts in-plain offset estimation branch, depth estimation
branch and anchor proposal branch, and uses the element-wise multiplication
to get final results. A2J does not fully consider the intrinsic 3D information in
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Fig. 2. Illustration of the essential characteristics of different weakly-supervised 3D
human pose estimation methods.

depth data, and the data augmentation strategies such as normalization, scale
scaling will destroy the original 3D structure. Ge et al. [8, 9] propose a series of
point cloud based 3D hand pose estimation methods. Ying et al. [46] propose
an RGB-D based 3D HPE method, which extracts the joint point heatmap
based on the RGB image, and then regresses the joint point offset and distance
on the point cloud to obtain the final prediction results. Compared to Ying’s
method [46], our method only requires point clouds during testing. Note that
the methods mentioned above are based on fully supervised training paradigm
with labeled 3D data. However, collecting the annotated 3D dataset is labor and
time consuming, leading to the fact that existing annotated 3D HPE datasets
in depth form are generally of relative small size [11].

Weakly supervised HPE methods. The difficulty of data collection for
3D HPE leads researchers to use unlabeled data for facilitating model training.
Here, the mainstream weakly supervised methods (i.e., multi-view and synthetic
model based) are introduced as shown in Fig. 2. Most multi-view methods [19,
26, 15, 32] need images from three or more views and the complex calibration
using intrinsic and extrinsic camera parameters among these views. Thus, ac-
cumulated errors are often faced. Towards this problem, some works only use
two views [32] or try to predict camera parameters by deep network [40], which
reduces the dependence of multi-view data. However compared with single-view
data, collecting multi-view images is essentially difficult, which hinders the prac-
tical application. Another research avenue resorts to generating more training
samples with synthetic software [35] or rendering predicted keypoints to depth
or RGB images with pre-defined human skeleton model [39, 3, 2, 20]. Supervisory
signals of synthetic data or rendered images facilitate training procedure of 3D
pose estimator. However, these methods suffer from the domain shift problem
between synthetic (or rendered) and real data. Human pose prior is also impor-
tant for HPE. Some works use 2D annotation and limb proportions of human
bodies [51, 49]. These methods often suffer from incomplete 3D information in
RGB domain [51]. The prior information cannot be fully utilized, resulting in the
need on fully annotated samples [51, 49]. In our work, unannotated RGB-point
cloud pairs is used to link 2D and 3D domains. The 2D keypoints are obtained
via pre-trained RGB pose estimator, which provides weak supervisory signals
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Fig. 3. The main technical pipeline of the proposed C3P approach.

for 3D HPE. To the best of our knowledge, there is still no work that concerns
applying unlabelled RGB-D pair sequence to address 3D HPE problem.

3 Method

Here, C3P will be illustrated in details. It takes point cloud P = {pi}Ni=1

as input, and yields body joints’ position J = {jk}Kk=1, where N is the number
of points as input, K indicates the number of body joints, and jk ∈ R3 is the
coordinate of body joints in real world distance w.r.t. camera. Each input point
is of form pi ∈ R3+D, where the first 3 dimensions denote the coordinate in world
coordinate system and D = 3 is the surface normal of points as in P2P [9].

C3P’s main technical pipeline is shown in Fig. 3. In training stage, the input
is RGB-point cloud sequence. Two point cloud networks (P2P [9] and PT [50])
are used as backbone to extract high level semantic features of raw points. Off-
set between each point and joint location is predicted. Under weakly-supervised
setting, joint’s ground-truth 3D heatmap cannot be obtained for training P2P
or PT. Thus we propose to refine it with additional per point aggregation mod-
ule with integral regression design [37], which integrally ensembles all points’
prediction to obtain 3D joint location. In C3P, RGB based 2D pose estimator
plays the role of providing weak supervision for training 3D pose estimator. A
state-of-the-art 2D HPE method [43] pre-trained on MS COCO is adopted in
C3P to predict accurate 2D joint location. Then, it will be back projected into
3D space in ray form according to RGB camera’s intrinsic and extrinsic param-
eters. For each predicted 3D joint, its distance to the corresponding 2D oriented
projection ray is minimized to establish accurate 3D to 2D correspondence as
the supervision signal. Additionally, self-supervised learning in 3D domain is
jointly proposed to leverage performance, including constraints on human body
symmetry, skeleton length limitation and joint’s temporal motion continuity.

In test stage, RGB image is no longer required. The weakly supervised P2P or
PT will take point cloud as input and yield 3D joint position in world coordinate.
Next, we will illustrate the weakly-supervised training part within C3P.
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Fig. 4. Different supervision signals from RGB data. The solid line and sky blue box
indicate that 3D keypoints are projected onto the image plane to calculate the planar
pixel error. The dashed line and orange box indicate that the 2D keypoints are back-
projected as 3D rays and the point-to-line distance error is calculated in 3D space.

3.1 Weak supervision signal from RGB image

As aforementioned, a 2D pose estimator [43] pre-trained on COCO dataset is
used to get the RGB image based prediction results C = {ck}Kk=1, where K is
the number of body joints, and ck ∈ R2 is the k-th joint on image plane. The
point cloud based 3D pose estimator’s output is J = {jk}Kk=1, and jk ∈ R3 is
the k-th joint coordinate in world coordinate. Now the problem is how to use
2D joint prediction C ∈ R2∗K to supervise the 3D output J ∈ R3∗K .

First, J is transformed into camera coordinate system using RGB camera’s
intrinsic and extrinsic parameters. We use Ĵ = {ĵk}Kk=1 to represent the 3D

points in RGB camera coordinate system, and Ĉ = {ĉk}Kk=1 is the 2D projec-

tion results of Ĵ . For one point jk = (xk, yk, zk)T , ĵk = (x̂k, ŷk, ẑk)T and the
projection result ĉk = (ûk, v̂k)T is formulated as:[

x̂k ŷk ẑk
]T

= Rp−r
[
xk yk zk

]T
+ Tp−r, (1)

[
ûk v̂k 1

]T
=

1

ẑk
Krgb

[
x̂k ŷk ẑk

]T
, (2)

where Rp−r and Tp−r are the rotation and translation matrix from point cloud
to RGB camera coordinate system, Krgb is RGB camera’s intrinsic parameter.

One simple idea is to directly project the 3D joint predictions to 2D RGB
image plane, distance between the projected joint locations ĉk and 2D pose ck
can be utilized to formulate the loss function as:

Lrgb =

K∑
k=1

‖ck − ĉk‖2 . (3)

We argue that the above approach [7] may not be optimal. First, the optimization
process of 3D estimator is different from 2D counterpart. That is, computing
loss in 2D space inevitably yields discrepancy for training 3D network. Secondly
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for weakly-supervised task, in the initial stage of training network’s prediction
results are indeed inaccurate. The projection process will result in huge loss in
2D plane when z is small, which leads to unstable training. And the unit of Lrgb

is pixel, which may cause difficulty in 3D model tuning.
Accordingly, we propose to back-project the pre-computed keypoints ck on

image plane to ray forms in 3D space, and then calculate the distance between
predicted 3D points and back-projected 3D rays as in Fig 4. The proposed back-
projection method can yield more stable 3D training supervision signal.

Technically, the distance between jk and the ray back-projected by ck needs
to be calculated. And, the point cloud and RGB camera coordinate system need
to stay consistent. ĵk is used to calculate divergence.Dp−ray,k is applied to denote

distance between ĵk = (x̂k, ŷk, ẑk) and the ray back-projected by ck = (uk, vk):

Dp−ray,k =

∥∥∥K−1rgbẑk
[
uk vk 1

]T − ĵk∥∥∥
2∥∥∥K−1rgb

[
uk vk 1

]T∥∥∥
2

. (4)

The weakly supervised signal from 2D keypoints is formulated as:

L2d =

K∑
k=1

Dp−ray,k

µ
, (5)

where we set the hyper parameter µ =
∥∥∥ĵk∥∥∥

2
to prevent the network from

converging to trivial solution (i.e., zero vector).

3.2 Self supervision signal from point cloud

To further exploit the intrinsic prior information of human pose in depth cloud,
we propose to build self-training supervision signals with the constraints on
human body symmetry, bone length and joint’s temporal motion continuity.

Bone length is an important prior knowledge of human bodies, especially
in point cloud based method. We can acquire the real world scale, and estimate
the absolute coordinates under world coordinate. This prior naturally provides
useful information to regularize the output of 3D joint prediction as:

Llen =

N∑
n=1

∥∥Bn − B̄n

∥∥2
2
, (6)

where N is the number of pre-defined bones; Bn is the n-th bone length, B̄n is
the mean length of the n-th bone across the dataset. With Llen, the predicted
3D human poses are limited to a reasonable scale.

Human body symmetry is also an important prior. Being different from
most existing RGB based methods that adopt 2.5D pose representation [14]
(i.e, 2D image coordinates and depth related to root joint), C3P is under world
coordinates. This makes the human symmetry prior easy to incorporate into



8 C. Wu et al.

our proposition. Generally, the left bone (Bn) has almost equal length with the
corresponding right counterpart (Bcor

n ) as:

Lsym =

N∑
n=1

∥∥∥∥ Bn

Bcor
n

− 1

∥∥∥∥ . (7)

It is worthy noting that, we do not use the form of loss like ‖Bn −Bcor
n ‖ since

it may cause the final bone length approach to 0.
Motion consistency of joints in point cloud sequence is also a useful super-

vision signal. Intuitively, the movement of human joints in a temporal sequence
is generally a continuous process. Requiring the 3D joints prediction to be con-
tinuous in the adjacent frames can well avoid jittering of ambiguous joints. In
C3P, we concern the keypoints are moving at a constant speed:

Lcon1 =

K∑
k=1

I−1∑
i=2

∥∥∥∥∥jik − ji−1k + ji+1
k

2

∥∥∥∥∥ , (8)

where I is number of video frames; jik is location of k-th keypoint in i-th frame.
In addition, the length of bones of the same person are constant in video:

Lcon2 =

N∑
n=1

∥∥∥∥Bn

B̄v
n

− 1

∥∥∥∥ , (9)

where B̄v
n is the mean bone length in video for n-th bone.

The overall consistency loss is formulated as:

Lcon = Lcon1 + λ0Lcon2, (10)

where λ0 is weight factor to balance two loss terms.

3.3 Per points aggregation

The network used by us for point cloud based 3D human pose estimation is
P2P [9] and PT [50]. The two networks are designed for 3D hand pose estimation
and point cloud semantic segmentation, which directly takes the 3D point cloud
as input and yields dense prediction of each point. While our network output the
per point heatmap and unit vector field to joint on the point cloud (similar to
P2P [9]). The original P2P [9] uses the ground-truth heatmap to supervise the
training procedure. However in weakly-supervised setting, there is no available
annotation to generate 3D ground-truth heatmap and unit vector.

Towards this problem, we propose to use a points aggregation module to
regress final predictions. During C3P’s forward process, we select the results of
the nearest points within a certain range to acquire the final joint prediction via
weighted regression. The heatmap and unit vector field predictions of selected
points integrally contribute to the final joint locations in ensemble manner [37].
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This facilitates the training of 3D encoder-decoder based network without the
need of ground-truth heatmap annotations.

In the predicted heatmap, the value of heatmap reflects the distance between
current point and keypoint to be predicted, and the unit vector fields specify the
direction. Small value in heatmaps means long distance. If the distance is above
the threshold, this point will be abandoned when calculating the final result.
The unit vector field specifies the direction between current point and target
keypoint. Then, the result predicted by current point can be calculated.

The settings in our network enforces the final prediction results are surround-
ed by a set of points in point cloud. It is useful for our C3P method. Compared
with the direct regression network [8], the dense prediction and per points ag-
gregation module can guarantee the output of network at a relatively reasonable
initial value, especially in the initial phase of training. This makes the weakly
supervised training phase more stable.

3.4 Learning procedure of C3P

In the C3P’s training stage, RGB-point cloud pairs are used as input. The 2D
RGB human pose estimator is a frozen model that provides human pose in 2D
space as weak supervision signal. The parameters in 3D depth-based network
are updated with the 2D supervision and 3D self-supervision signals as well:

L = λ1L2d + λ2Llen + λ3Lsym + λ4Lcon (11)

where L2d, Llen, Lsym, Lcon are defined by Eq. (5)-(10). We set λ1 = 10, λ2 = 1,
λ3 = 0.002, λ4 = 0.1 to balance each loss term.

In test phase, RGB images are no longer required. Given the raw 3D point
cloud input, the trained 3D human pose estimator can yield 3D joint locations
directly. This essentially expands the application scenarios of C3P.

4 Experiment

4.1 Datasets and evaluation metrics

CMU Panoptic Dataset [16, 17] contains 480 VGA videos, 31 HD videos and
10 Kinect videos, including depth and RGB images in indoor scene. Calibration
and synchronous data are also provided. The 3D human pose annotation for VGA
and HD videos are provided at the same time. We use 3D human pose in HD
videos, the calibration clue, and synchronous data to get 3D human pose labels
for Kinect. Since we only focus on point cloud based 3D human pose estimation
for single person, experiments are carried on the ”range of motion” class Kinect
data with 9 available video sequences. The 6th and 9th videos (”171204 pose6,
171206 pose3”) are used for testing, and the remaining 7 videos are for training.
The evaluation metrics is the mean average precision (mAP) with 10-cm
rule [11]. The average 3D distance error [9] is also used as evaluation metric.
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Table 1. Performance comparison on CMU Panoptic Dataset [16, 17]. C3P (P2P)
and C3P (PT) indicate C3P with the different backbone networks (i.e., P2P [9] and
PT [50]). The unit of test error is cm.

Nose Eyes Ears Shoulders Elbows Wrists Hips Knees Ankles mAP Error
Fully-supervised methods

HandPoint[8] 79.8 78.9 79.6 80.6 5.3 0.2 89.6 84.5 75.1 62.8 12.0
P2P[9] 98.1 98.1 98.2 96.9 95.0 89.8 94.5 94.1 93.7 95.2 4.1
PT[50] 99.6 99.3 99.2 98.8 97.0 92.0 96.8 95.0 95.7 96.9 3.3

Weakly-supervised methods
C3P(P2P) 96.3 95.8 95.0 93.9 91.4 81.5 90.9 78.4 85.2 89.4 6.1
C3P(PT) 99.1 98.6 95.9 95.4 94.4 85.4 93.1 91.1 94.0 93.8 5.3

ITOP Dataset[11] is a widely used benchmark dataset in depth image based
and point cloud based 3D human pose estimation. It contains 40K training and
10K testing depth images and point clouds data for each front-view and top-view
track. This dataset contains 20 actors and 15 human body parts are labeled with
3D coordinates relative to the depth camera. In our experiment, we use the front-
view data to evaluate the effectiveness of the method. The evaluation metrics is
the mean average precision (mAP) with 10-cm rule [11].

NTU RGB+D Dataset [33] is a large-scale RGB-D action recognition
dataset. It contains over 40 subjects and 60 actions. The actions can cover most
daily behavior. There are 17 different scenes in it. The size and diversity are
much larger than current human pose dataset. This dataset also contains 3D
skeleton joint position labeled by Kinect V2 SDK. But the annotation accura-
cy is not satisfactory. Nevertheless, the weakly-supervised setting in C3P can
well leverage this large-scale RGB-D dataset. We conduct the cross-dataset test
to demonstrate that, C3P trained on large-scale unannotated dataset can even
better adapt to scene variation than the fully-supervised counterparts.

4.2 Implementation details

C3P is implemented using PyTorch. The input point number is set to 2048, and
point cloud normalization operations is the same as P2P [9]. Adam is used as
optimizer. The learning rate is set to 0.0001 in all cases. C3P is trained for 140
epoch. The learning rate decay by 0.1 at 90-th and 110-th epoch.

4.3 Comparison with fully-supervised method

Here, C3P is compared with the state-of-the-art fully-supervised depth-based
3D HPE methods. The network structure and experimental setup are the same
for the different datasets.

Results on CMU Panoptic dataset. C3P is compared with the fully-
supervised 3D HPE methods (i.e., HandPoint [8], P2P [9], and PT [50]). Two
different point cloud based networks (i.e., P2P[9] and PT[50]) are used to validate
C3P’s generality. Experimental results are listed in Table 1. We can see that:
• C3P achieves comparable results to fully-supervised counterparts. Without

labeled data, its result is only inferior about 3% in mAP and 2cm in mean error;
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Table 2. Performance comparison on ITOP Dataset [11]. C3P (P2P) and C3P (PT)
indicate C3P with the different backbone networks (i.e., P2P [9] and PT [50]).

Head Neck Shoulders Elbows Hands Torso Hips Knees Feet mean
Fully-supervised methods

RF[34] 63.8 86.4 83.3 73.2 51.3 65.0 50.8 65.7 61.3 65.8
RTW[47] 97.8 95.8 94.1 77.9 70.5 93.8 90.3 68.8 68.4 80.5
IEF[6] 96.2 85.2 77.2 45.4 30.9 84.7 83.5 81.8 80.9 71.0
VI[11] 98.1 97.5 96.5 73.3 68.7 85.6 72.0 69.0 60.8 77.4

CMB[41] 97.7 98.5 75.9 62.7 84.4 96.0 87.9 84.4 83.8 83.3
REN-9*6*6[10] 98.7 99.4 96.1 74.7 55.2 98.7 91.8 89.0 81.1 84.9

V2V*[27] 98.3 99.1 99.2 80.4 67.3 98.7 93.2 91.8 87.6 88.7
A2J[44] 98.5 99.2 96.2 78.9 68.4 98.5 90.9 90.8 86.9 88.0
P2P[9] 97.6 98.6 95.5 78.0 63.9 97.8 88.9 90.6 85.1 86.5
PT[50] 97.7 98.6 96.0 78.6 64.1 98.5 90.1 90.8 86.5 87.2

Weakly-supervised method
C3P(P2P) 97.0 97.4 91.4 75.6 63.1 96.4 85.2 88.7 84.2 84.5
C3P(PT) 97.3 97.0 91.3 76.3 66.5 94.9 81.7 87.8 83.4 84.3

(a) Precision with different D (b) Joints’ mean precision

Fig. 5. Results on cross view test setting. C3P (P2P CMU Panoptic) and C3P (P2P N-
TU RGB+D) indicate C3P models with P2P [9] and are trained on CMU panoptic [16,
17] and NTU RGB+D [33] respectively.

• C3P can be applied to the different point cloud networks [9, 50]. This indi-
cates that the proposed weakly-supervised 3D HPE manner is not sensitive to
the choice of backbone network;

• Although performance drop for joints (e.g., hand and feet) of fine appear-
ance pattern, C3P’s performance is still high (93.8 at mAP and 5.3mm at error).

Results on ITOP dataset. ITOP Dataset only contains depth images. Ac-
cordingly, we use the 2D annotation on depth image to replace the ”supervision
signal from RGB image” in C3P. State-of-art fully-supervised methods [44, 27,
10, 11, 41, 6, 47, 34] are compared to verify C2P’s effectiveness. The performance
comparison results are listed in Table 2. It can be observed that:

• C3P can achieve comparable results to fully-supervised methods. With the
same 3D network, C3P’s performance drop is slight (about 2-3% at mAP) .

• The results indicate that C3P can still work well when RGB images are
missing. That is 2D annotation can also be used to train C3P.

Cross view test. To compare the generalization capacity of different 3D
HPE methods, we conduct a cross view test on CMU Panoptic dataset. The



12 C. Wu et al.

Table 3. Performance comparison between different weak supervision methods (i.e.,
our 2D-to-3D ray projection manner vs. 3D-to-2D projection way) on ITOP dataset.

mAP
Head Neck Shoulders Elbows Hands Torso Hips Knees Feet mean

3D-to-2D manner 95.9 95.0 90.0 67.8 48.6 91.7 80.5 85.6 76.5 78.7
2D-to-3D manner (ours) 97.0 97.4 91.4 75.6 63.1 96.4 85.2 88.7 84.2 84.5

Table 4. Effectiveness of self supervision signals within C3P.

Component Mean error (cm) mAP (@10cm)
w/o bone length Llen 6.9 86.6

w/o human body symmetry Lsym 6.6 87.5
w/o motion consistency Lcon 7.4 85.5

C3P (ours) 6.1 89.4

HPE methods are trained on one view and tested on another. To enhance gener-
alization ability of deep learning model, previous efforts often resort to complex
data augmentation strategies [9, 44]. However, C3P can use massive unannotated
RGB-D data (e.g., NTU RGB+D [33] dataset) to achieve this goal. Specifically,
we train C3P on NTU RGB+D dataset, and test it on CMU Panoptic dataset
with cross view setting. The performance comparison among the different ap-
proaches is shown in Fig 5. We can summarize that:
• In this challenging test case, performance of all 3D HPE methods drops

remarkably. However compared to the fully-supervised counterpart (i.e., P2P),
C3P can consistently acquire better performance when large-scale unannotated
dataset (i.e., NTU RGB+D) is used to enhance generality;
• The results above reveal that C3P can benefit from large-scale unannotated

RGB-D data easy to collect, which is preferred by practical applications. C3P’s
performance tends to be further facilitated when more unannotated data is used.

4.4 Ablation study

Weak supervision signal. To verify the effectiveness of the proposed weak
supervision information via 2D-to-3D ray projection against existing 3D-to-2D
projection way, they are compared on ITOP dataset. 2D ground-truth human
pose annotation is used to resist the effect of 2D HPE. The results are listed in
Table 3. It can be observed that:
• The proposed 2D-to-3D ray projection is superior to existing 3D-to-2D

counterpart. This is mainly due to the fact that, our method can better measure
the distance between the predicted and target joints in world coordinate system;
• For joints (e.g., feet and hands) of high freedom degrees, the 3D-to-2D ray

projection supervision outperforms the 3D-to-2D projection strategy by large
margins (i.e., +7.7% on feet and +14.5% on hands) at mAP.

Self supervision signal. In our method, three self supervision signals (i.e,
bone length, human body symmetry and temporal consistency constrains of
human pose) are proposed. To validate their effectiveness, we conduct ablation
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Table 5. Impact of 2D human pose estimator on CMU Panoptic dataset. C3P* indi-
cates C3P model trained with 2D ground-truth pose. The unit of error is cm.

Nose Eyes Ears Shoulders Elbows Wrists Hips Knees Ankles mAP error
C3P* (P2P) 98.1 98.2 97.6 95.8 93.4 82.8 94.5 82.3 91.4 92.4 4.7
C3P* (PT) 99.2 98.9 98.4 97.1 96.2 89.5 96.0 94.8 95.3 96.0 3.7
C3P (P2P) 96.3 95.8 95.0 93.9 91.4 81.5 90.9 78.4 85.2 89.4 6.1
C3P (PT) 99.1 98.6 95.9 95.4 94.4 85.4 93.1 91.1 94.0 93.8 5.3
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Fig. 6. C3P’s qualitative results on CMU Panoptic dataset.

test on CMU Panoptic dataset by removing them item by item respectively. The
results are listed in Table 4. It can be observed that:
• All the three self supervision signals are essential for leveraging perfor-

mance. Among them, the temporal consistency constraint contributes the most
towards the final result (i.e., 1.3cm at mean error and +3.9% at mAP).

Impact of 2D human pose estimator. 2D human pose estimator plays
the important role for generating C3P’s weak supervision signals. Hence the
effectiveness of 2D pose estimator can affect C3P’s training phase remarkably.
To investigate the impact of 2D human pose estimator, we compare it with the
ground-truth 2D annotation on CMU Panoptic dataset. The results are listed in
Table 5. It can be observed that:
• The impact of 2D pose estimator is remarkable to C3P. More accurate 2D

pose estimation result leads to better 3D HPE;
• The performance gain brought by more accurate 2D keypoint locations is

consistent across all human joints. This reveals that, improving the quality of
weak supervision signals (i.e., 2D pose estimation) is critical to C3P.

4.5 Qualitative results

Some C3P’s qualitative results on CMU Panoptic Dataset and NTU RGB+D
Dataset are shown in Fig. 6. Generally, C3P works well towards variational hu-
man poses. The failure cases are mainly due to serious self-occlusion and missing
points in point cloud. While, we also find that C3P is still of some anti-occlusion
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Fig. 7. C3P’s qualitative results for anti-occlusion on NTU RGB+D dataset.
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Fig. 8. Intuitive comparison between C3P and MicroSoft Kinect V2 SDK on NTU
RGB+D dataset.

capacity as shown in Fig. 7, which may be due to the introduction of self super-
vision signals on temporal consistence and bone length. C3P is also compared
with Kinect V2 SDK in Fig. 8. Under human-object interaction condition, C3P
even outperforms Kinect V2. This indeed verifies C3P’s application potentiality.

5 Conclusions

In this paper, C3P is proposed as a novel weakly supervised 3D HPE method
towards point cloud. Its training phases does not require any 3D human pose
annotation. Instead, we propose to propagate the 3D pose prior within the unla-
belled RGB-point cloud sequence to 3D domain. The supervision signals derive
from the well-established 2D pose estimator and the physical constrains of 3D
human body. Extensive experiments demonstrate that C3P can achieve compa-
rable or even better performance than the fully supervised counterparts. How to
enhance C3P’s anti-occlusion capacity is what we mainly concern in future.
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