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In these supplementary materials, we first derive Equation 7 given in the
main paper, then take a further discussion about the CLIFF input and its per-
formance when applied to videos, and finally provide more details about the
CLIFF annotator.

1 Derivation of Equation 7

Equation 7. CLIFF computes the reprojection loss in the full frame instead
of the cropped image, so we need to calculate the root translation tfull =
[tfullX , tfullY , tfullZ ] in the coordinate system of the original camera Mfull. Inserting
Equation 1 into Equation 7, we have:

tfullX = tx +
2 · cx
b · s

,

tfullY = ty +
2 · cy
b · s

,

tfullZ =
2 · fCLIFF

b · s
,

(7.1)

where s, tx, and ty are the scale and translation parameters of the weak-perspective
projection, (cx, cy) is the crop location relative to the full image center, b is the
size of the original crop (detection result), and fCLIFF is the focal length of the
original camera. See Fig. 1 for the illustration.

A weak-perspective projection can be regarded as an orthogonal projection
followed by a perspective projection [9]. As shown in Fig. 1, the human body is

first projected (parallel to the Z
′
axis) onto the virtual plane Z

′
= tfullZ , and

then onto the image plane Z
′
= fCLIFF by a perspective projection. A T-pose

human body of the mean shape is about 1.8m× 1.8m (m denoting meters). We
enclose it with a slightly enlarged box B of size 2m × 2m, and align the center
of B at the root of the human body (the green point R in Fig. 1). B is projected
to be a square region of size b · s in the image. Since the two triangles △OGH
and △OPQ in Fig. 1 (in blue) are similar, we have:

2

tfullZ

=
b · s

fCLIFF
, tfullZ =

2 · fCLIFF

b · s
. (7.2)

Note that here b and fCLIFF are in pixels, and tfullZ is in meters.
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Fig. 1. The transformation from weak-perspective projection to perspective projection
(bird’s eye view). A weak-perspective projection can be regarded as an orthogonal
projection followed by a perspective projection. Best viewed in color.

Let D (the projection of F) be the image center, and C (the projection of
E) be the crop (i.e., detection result) center. Then the root translation of the
human body along the X

′
axis is calculated by:

tfullX = tx +∆tfullX , (7.3)

where ∆tfullX is the X
′
coordinate of point E. Since the two triangles △OCD

and △OEF in Fig. 1 (in yellow) are similar, we have:

∆tfullX

tfullZ

=
cx

fCLIFF
. (7.4)

Combining Equations 7.2 and 7.4, we obtain:

∆tfullX =
2 · cx
b · s

. (7.5)

Similarly, it also holds for the root translation along the Y
′
axis:

tfullY = ty +∆tfullY

= ty +
2 · cy
b · s

.
(7.6)
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Fig. 2. Qualitative results on the AGORA test samples. CLIFF works well in crowded
and occluded scenes, even when large body parts are missing in the BBoxes.

The orthogonal projection in the weak-perspective projection omits the Z
′

coordinate discrepancy inside the human body, which assumes the human body
is far from the camera whose focal length is unrealistically large (corresponding
to a very small field-of-view) [5,8]. This is not true for many cases. Thus we use
the perspective projection with an appropriate focal length to calculate the 2D
reprojection loss, because this is how the original image is captured. However,
we still let the model predict the weak-perspective projection parameters, since
for most cases, tx ∈ [−1, 1], ty ∈ [−1, 1], s ∈ [0, 1], meaning that they have the
normalization property, which makes them suitable to be the CNN predictions.

2 Impact of the BBox Quality

The BBox quality is important to our method, just like other top-down methods.
However, taking the BBox information as the additional input does not make
our method rely more on the BBox quality. As demonstrated in the AGORA
evaluation, we use the BBox predicted by Mask R-CNN which is trained on
COCO without finetuning on AGORA; yet CLIFF still reaches the first place
on the leaderboard, outperforming other top-down and bottom-up methods by
large margins. Note that AGORA contains a lot of crowded and severely occluded
scenes, as shown in Fig. 2. CLIFF is robust to inaccurate BBox detection, mainly
thanks to the data augmentation such as random scaling and cropping.
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Fig. 3. Impact of the focal length on estimation errors.

Table 1. Comparison between CLIFF and video-based methods on 3DPW

Annotator MPJPE ↓ PA-MPJPE ↓ PVE ↓ Accel Error ↓

HMMR [6] 116.5 72.6 - 14.3
TCMR [2] 86.5 52.7 102.9 7.1
VIBE [7] 82.7 51.9 99.1 23.4
MAED [10] 79.1 45.7 92.6 17.6

CLIFF (Res-50) 72.0 45.7 85.3 24.7
CLIFF (Res-50) w/ OneEuro 74.0 46.2 87.6 10.6
CLIFF (HR-W48) 69.0 43.0 81.2 20.5
CLIFF (HR-W48) w/ OneEuro 70.1 43.1 82.3 11.3

3 Impact of the Focal Length as Part of the Input

We conduct this experiment on the 3DPW test set by perturbing the focal
length from its GT value fGT . As shown in Fig. 3, CLIFF is robust (with less
than 5% error increase) when the estimated focal length is in [0.4fGT , 3fGT ].
The estimation fCLIFF =

√
w2 + h2 is within this range for most cases (except

for super telephotos). Moreover, in practical applications, fGT is often known,
making the performance guaranteed.

4 Smoothness Comparison with Video-Based Methods

We can apply CLIFF to a video frame by frame, and perform temporal smooth-
ing to reduce jitter, such as OneEuro filtering [1]. Video-based methods [6,2,7,10]
usually make temporally smooth 3D predictions, which is their advantage over
frame-based methods. However, they cost much computation by processing ad-
ditional adjacent frames. Here we compare CLIFF with these video-based meth-
ods, especially on the smoothness evaluation, as shown in Table 1. The metric
for evaluating temporal smoothness is acceleration error, which measures the
average difference between ground truth 3D acceleration and the predicted 3D
acceleration of each joint in mm/s2. CLIFF, as a frame-based method, achieves
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Fig. 4. The curves of training the CLIFF annotator on the 3DPW test data. The
evaluation errors do not diverge even for long training, which means there is no need
for the CLIFF annotator to choose a generic stopping criterion carefully.

Table 2. Ablation study of the CLIFF annotator on 3DPW

Annotator MPJPE ↓ PA-MPJPE ↓ PVE ↓

ProHMR - 52.4 -
BOA 77.2 49.5 -
EFT - 49.3 -
DynaBOA 65.5 40.4 82.0
Pose2Mesh 65.1 34.6 -

HMR-based (Ours) 63.6 38.7 72.6
CLIFF-based (Ours) 52.8 32.8 61.5

comparable smoothness performance with video-based methods. With the addi-
tional OneEuro filtering as post-processing which costs negligible extra compu-
tation, the smoothness performance is improved significantly with slightly larger
pose errors, which are still much smaller than those of the competitors.

5 CLIFF Annotator Training

In Fig. 4, we show the evaluation error curves of training the CLIFF annotator
on the 3DPW test data. The learning rate starts from 5 × e−5, and is reduced
by a factor of 10 at the 45th epoch. We can obtain a fine model before the
60th epoch, and the evaluation errors do not diverge even for longer training
(120 epochs in total), and may decrease for a better performance. It means that
the CLIFF annotator is robust in the optimization, because the proposed priors
prevent the annotator from overfitting to the 2D keypoints and from producing
implausible poses. Consequently, there is no need for our annotator to choose a
generic stopping criterion carefully, which is a serious problem for EFT [4].

6 Ablation Study of the CLIFF Annotator

We implement the proposed pseudo-GT annotator based on HMR, and compare
it to the CLIFF-based one on 3DPW. As shown in Table 2, the errors increase
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when switching the base model from CLIFF to HMR, but the HMR-based an-
notator is still better than other SOTA methods. Note that Pose2Mesh [3] as a
model-free method produces only 3D vertices but no SMPL parameters.

7 More Qualitative Pseudo-GT Results

In Fig. 5, we show additional qualitative results in the CLIFF annotator experi-
ments. We test the pretrained annotator on the target images to get predictions
as the explicit prior, which may not be accurate but usually plausible. The final
pseudo-GT achieves better pixel alignment, and maintains the plausibility with
the help of the proposed priors.
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Fig. 5. More pseudo-GT samples from the CLIFF annotator. From left to right: 2D
annotation, front view of the explicit prior, side view of the explicit prior, front view
of the pseudo-GT, and side view of the pseudo-GT.
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