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In this supplementary material, we present additional experimental details
about dataset descriptions, implementation details in Sec. 1. In Sec. 2, we show
more experimental analyses on existing Spatio-temporal models, comparison
with filters on 2D/3D pose estimation, analysis of additional metrics, compari-
son with learnable RefineNet, and smoothness on synthetic data. Moreover, we
conduct more ablation studies on the effect of the loss function, motion modali-
ties, normalization strategies which are not shown in the main paper due to the
space limitation. Lastly, in Sec. 3, we visualize qualitative results to verify the
effectiveness and necessity of SmoothNet. For more visualization, please refer
to our website1

1 Experimental Details

1.1 Dataset Description

– Human3.6M [11] consists of 3.6 million frames’ 50 fps videos with 15 actions
from 4 camera viewpoints. 3D human joint positions are captured accurately
from a high-speed motion capture system. We can use the camera intrinsic
parameters to calculate their accurate 2D joint positions. Following previous
works [2, 33, 22, 25], we adopt the standard cross-subject protocol with 5 sub-
jects (S1, S5, S6, S7, S8) as the training set and another 2 subjects (S9, S11) as
the testing set.
– 3DPW [21] an in-the-wild dataset consisting of more than 51, 000 frames’
accurate 3D poses in challenging sequences with 30 fps. It is usually used to
validate the effectiveness of model-based methods [13, 17, 16, 6].
– AIST++ [19] is a challenging dataset that comes from the AIST Dance Video
DB [28]. It contains 1, 408 3D human dance motion sequences with 60 fps, provid-
ing 3D human keypoint annotations and camera parameters for 10.1M images,
covering 30 different subjects in 9 views. We follow the original settings to split
the training and testing sets.
– MPI-INF-3DHP [23] contains both constrained indoor scenes and complex
outdoor scenes, covering a great diversity of poses and actions. It is usually used

1 Website: https://ailingzeng.site/smoothnet
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to verify the generalization ability of the proposed methods. We use this dataset
as the testing set.
– MuPoTS-3D [24] is a testing set for multi-person 3D human pose, containing
20 indoor and outdoor video sequences. We also use it as the testing set.

1.2 Implementation Details

For data preprocessing, we normalize 2D positions into [−1, 1] by the width
and length of the videos, and we use root-relative 3D positions with the unit
of meter, where they can range in [−1, 1]. For SMPL estimation, we use the
original 6D rotation matrix without any normalization.

For the usage of motion modalities, in the training stage, we use 3D positions
to train SmoothNet by default. Because SmoothNet shares its weights as
well as biases among different spatial dimensions, it can be used directly across
different motion modalities. In the inference stage, we can use the trained model
to test different motion modalities. If the number of skeleton points is N , the
outputs of 2D (C = 2∗N) and 3D (C = 3∗N) pose estimation are a series of 2D
and 3D positions. The outputs of mesh recovery are the pose parameters as 6D
rotation matrix [34] (C = 6∗N), 10 shape parameters and 3 camera parameters.
Different datasets have different N (e.g. N is 17 in Human3.6M, MPI-INF-3DHP
and MuPoTS-3D, N is 24 in 3DPW and AIST++).

For the AIST++ dataset [19], we find that some inaccurate fitting from
SMPLify [1] causes misleading supervision in 6D rotation and high errors because
of lacking enough keypoints as constraints. Thus, we simply threw away the test
videos with MPJPE s (computed by the estimated results of VIBE and the given
ground truth) bigger than 170mm.

For training details, the initial learning rate is 0.001, and it decays exponen-
tially with the rate of 0.95. We train the proposed model for 70 epochs using
Adam [15] optimizer. The mini-batch size is 128. Our experiments can be con-
ducted on a GPU with an NVIDIA GTX 1080 Ti.

For hyperparameters of filters, in the lower part of Table 1 in the main paper,
we set the window size of the Savitzky-Golay filter as 257 and the polyorder
(order of the polynomial used to fit the samples) as 2 to obtain the comparable
Acceleration errors with us. For the Gaussian1d filter, we set the sigma (standard
deviation for Gaussian kernel) as 4 and window size as 129. For the One-Euro
filter, the cutoff (the minimum cutoff frequency) is 1e−4, and the lag value (the
speed coefficient) is 0.7. Meanwhile, in the upper part of Table 1, to obtain
comparable MPJPE s, we set 31 as the window size with the polyorder as 2 for
the Savitzky-Golay filter. We apply 31 as the window size with sigma as 3 for
the Gaussian1d filter and modify the cutoff to 0.04 for the One-Euro filter. In
addition, we follow the common tools to implement One-Euro2, Savitzky-Golay3

and Gaussian1d filters4.

2
https://github.com/mkocabas/VIBE/blob/master/lib/utils/one euro filter.py

3
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol filter.html

4
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian filter1d.html
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2 Experimental Analyses
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(a) 3D Skeleton-based Methods [22, 25]
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(b) SMPL-based Methods [16]

Fig. 1. Comparison MPJPE and Accel during training and testing stages of single-
frame (T = 1) [22] and temporal (T = 27 or T = 16) [25, 16] pose estimation and mesh
recovery methods. w/Acc. loss adds an acceleration loss in the training stage. In (b) T
= 1, we simply remove GRUs and set sequence length as 1.

2.1 Rethink Existing Spatio-temporal Models

To explore the bottleneck of existing methods using spatio-temporal models
to optimize precision and smoothness concurrently, we perform experiments on
popular 3D skeleton-based methods [22, 25] and SMPL-based methods [17, 16].
In terms of the single-frame approaches (T = 1), we implement the simple base-
line FCN [22] for 3D pose estimation tested on the Human3.6M dataset and
remove GRUs in VIBE [16] for body recovery tested on the 3DPW dataset.
For multi-frame methods (T > 1), we apply the video-based 3D pose estimator
VPose [25], conducting temporal convolution networks with dilated convolution
along the time axis and the official VIBE [16]. The difference between single-
frame methods and multi-frame methods is different from aggregation strategies
along the temporal dimension. Two evaluation metrics, mean position errors
(MPJPE ) and acceleration errors (Accel) are used.

Figure 1 illustrates the training and testing performance for both MPJPE
and Accel. For single-frame models (T = 1) [22, 17], we observe that the position
errors decrease, but the acceleration errors become larger as the epochs increase,
indicating that the single-frame methods which extract only spatial information
are likely to sacrifice smoothness in exchange for localization performance im-
provement. It is important to exploit temporal information explicitly.

For multi-frame approaches [25, 16] (T = 27), they make use of temporal
information by TCNs [25] and GRUs [16] respectively and improve both precision
and smoothness. Yet, their loss function is applied to each frame, and their
smoothness is still far from satisfactory, which is intuitively not beneficial for
smoothness optimization.

Accordingly, to further improve smoothness as previous works did [14, 30],
we add an acceleration (Acc.) loss on the per-frame L1 loss, which constrains the
estimated acceleration to be as close as the ground truth’s acceleration. As shown
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in the right ones (T = 27 w/ Acc. loss), although the acceleration errors decrease
slightly, the position errors increase instead. It implies that it is hard to achieve
optimal precision and smoothness simultaneously within existing frameworks
(including models and loss functions). The reasons behind this may lie in that
temporal and spatial information may generalize and overfit at different rates as
two different modalities [31]. MPJPEs are always larger than Accels, making the
models pay more attention to optimizing spatial errors and hard to reduce Accels
greatly. This observation motivates us to design the temporal-only refinement
paradigm.

Moreover, to quantitatively explore the combination strategies of Smooth-
Net with existing backbones, whether training two models together (the one-
stage strategy) or training them separately (the two-stage method), we try each
of them on 3d pose estimation and body recovery. Specifically, if SmoothNet is
trained together with the backbones in an end-to-end manner (w/ B), it be-
longs to the one-stage strategy. And if SmoothNet is trained separately, it
is called the two-stage method. As presented in Table 2, we can find that (i)
the spatio-temporal model [25] with multiple frames as inputs will gain in both
Accel (smoothness) and MPJPE (precision), but the computational costs will
be increased; (ii) adding acceleration loss or SmoothNet in an end-to-end way
can benefit Accel but harm MPJPE ; (iii) adding intermediate L1 supervision
between the backbones and SmoothNet (w/ B ◦) shows a slight drop in per-
formance, but after adding an additional acceleration loss will improve both
metrics. Compared with one-stage strategies, two-stage solutions with a refine-
ment network show their strengths in boosting both smoothness and precision.

Table 1. Comparison results of the body recovery from VIBE [16] of different training
strategies on 3DPW. × means acceleration loss added in the loss function. B means to
add SmoothNet behind the backbones trained in an end-to-end manner.

Strategy Accel MPJPE PA-MPJPE MPJVE

B
a
ck

b
o
n
e
s In = 1 32.69 84.54 57.94 102.05

In = 16 23.21 83.03 56.77 99.76

In = 16 × 20.42 84.51 57.81 101.62
In = 16 w/ B 21.65 86.56 59.93 105.08

O
u
rs In = 1 w/ ours 6.12 82.98 57.27 100.67

In = 16 w/ ours 6.05 81.42 56.21 98.83

2.2 More Comparison with Filters

In main paper Sec. 5.2, we compare the performance with filters on human
body recovery. We first visualize the qualitative results on a specific axis to
demonstrate the effectiveness of SmoothNet.
Qualitative comparison. Figure 2 illustrates the output positions of VIBE,
VIBE with several Gaussian filters (G.F.,) of different kernel sizes, VIBE with
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Table 2. Comparison of the 3D pose estimation results from VPose [25] of different
training strategies on Human3.6M. × means acceleration loss added in the loss func-
tion. B means to add SmoothNet behind the origin network trained in an end-to-end
manner. ◦ adds an intermediate L1 supervision between the backbone and Smooth-
Net.

Strategy Accel MPJPE Params.

B
a
ck

b
o
n
e
s

In = 1 19.17 54.55 6.39M
In = 27 5.07 50.13 8.61M

In = 27 w/ × 4.12 51.48 8.61M
In = 27 w/ B 2.78 52.65 8.65M
In = 27 w/ B × 2.87 52.18 8.65M
In = 27 w/ B ◦ 5.46 51.06 8.65M
In = 27 w/ B ◦ × 2.69 50.94 8.65M

O
u
rs In = 1 w/ ours 1.03 52.72 0.03M

In = 27 w/ ours 0.88 50.04 0.03M

our method, and the ground truth. The filters can relieve jitter errors with the
increase of kernel size but suffers from over-smoothness when the kernel size is
larger than 65, leading to worse position errors. Instead, with a learnable design
and long-range temporal receptive fields, SmoothNet has the capability to
learn the long-range noisy patterns and capture more reliable estimations (e.g.,
near the 70th and 220th frames) of inputs, making it can not only relieve jitters
but also narrow down biased errors consistently.
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Fig. 2. Performance comparison between filters and SmoothNet on refining the esti-
mated results of VIBE on AIST++ dataset.

Quantitative comparison on 2D and 3D pose estimation. We further
show more results on the tasks of 2D pose estimation and 3D pose estimation on
Human3.6M. In Table 3, the upper half table of each task compares the results
of filters with the closest MPJPE s to ours, and the lower half table compares the
performance of filters with the most similar Accel to ours. We can conclude that
our approach achieves better performance on both precision and smoothness,
validating that the temporal-only network with a long-range effective receptive
field will be a good solution.
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Table 3. Comparison of most used filters with different estimated poses from CPN [5]
(2D) and FCN [22] (3D) on Human3.6M.

Method Accel MPJPE PA-MPJPE Test FPS

2
D

P
o
se

CPN [5] 2.91 6.67 5.18 -

w/One-Euro [3] 0.51 7.86 5.47 2.28k
w/Savitzky-Golay [26] 0.20 6.52 4.99 67.39k
w/Gaussian1d [32] 0.51 6.55 5.00 35.97k

w/One-Euro [3] 0.19 9.21 6.01 3.93k
w/Savitzky-Golay [26] 0.15 8.23 5.89 65.10k
w/Gaussian1d [32] 0.14 6.73 4.99 43.74k

w/Ours 0.14 6.45 4.96 71.60k

3
D

P
o
se

FCN [22] 19.17 54.55 42.20 -

w/One-Euro [3] 3.80 55.20 42.73 2.27k
w/Savitzky-Golay [26] 1.34 53.48 41.49 66.37k
w/Gaussian1d [32] 2.43 53.67 41.60 29.54k

w/One-Euro [3] 0.94 143.24 85.35 3.72k
w/Savitzky-Golay [26] 0.92 74.38 57.25 65.56k
w/Gaussian1d [32] 0.95 83.54 68.53 28.93k

w/Ours 1.03 52.72 40.92 66.67k

2.3 Results of Additional Metrics

To explore the effect on significant errors and long-term jitters, we calculate the
worst 1% of MPJPE s (MPJPE -1%) and the worst 1% Accel (Accel -1%) and
the corresponding improvement by SmoothNet. The results of Humane3.6M
is shown in the main paper. For the reason that significant errors and long-term
jitters are usually accompanied by large estimation errors, as shown in Tab. 4
and Tab. 5, the improvement onMPJPE -1% and Accel -1% proves the smoothing
ability of SmoothNeton long-term and large jitters.

Table 4. MPJPE -1% and Accel-1% improvement on 3D pose estimation. The results
of Humane3.6M is shown in the main paper.

Improvement of MPJPE-1% and Accel-1% on 3D pose estimation

Dataset AIST++ 3DPW

Estimator SPIN TCMR VIBE EFT PARE SPIN TCMR VIBE

MPJPE-1% 352.93 373.18 339.56 278.51 225.72 289.89 249.11 257.83

MPJPE-1% w/ours 236.85 328.53 235.01 210.72 192.26 224.64 239.53 208.26

Accel-1% 195.48 43.94 177.07 218.71 132.82 199.33 43.81 123.92

Accel-1% w/ours 12.38 12.30 11.98 29.73 31.75 25.88 30.80 26.11

Dataset MPI-INF-3DHP MuPoTS

Estimator SPIN TCMR VIBE TposeNet TposeNet w/RefineNet

MPJPE-1% 273.73 255.93 253.58 354.87 277.79

MPJPE-1% w/ours 241.62 246.64 238.57 347.36 265.98

Accel-1% 107.00 16.73 57.05 33.75 26.65

Accel-1% w/ours 9.89 9.24 9.11 6.17 8.75
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Table 5. MPJPE -1% and Accel-1% improvement on SMPL pose estimation.

Improvement of MPJPE-1% and Accel-1% on SMPL Pose

Dataset AIST++ 3DPW

Estimator SPIN TCMR VIBE EFT PARE SPIN TCMR VIBE

MPJPE-1% 355.85 374.36 341.80 272.32 232.71 283.56 251.94 255.49

MPJPE-1% w/ours 270.94 352.54 274.19 223.91 207.05 236.66 249.34 218.57

Accel-1% 195.00 44.13 176.63 205.32 130.74 185.50 38.26 118.80

Accel-1% w/ours 19.97 24.51 23.19 42.32 31.96 33.18 36.39 31.28

2.4 Comparison with RefineNet

For learning-based jitter mitigation methods, we choose RefineNet [29] for com-
parison on the multi-person 3D pose estimation dataset MuPoTS-3D [24]. We
compare them on the universal coordinates, where each person is rescaled accord-
ing to the hip and has a normalized height. We also show the refinement results
with two filters for comparison. As RefineNet [29] has compared with the inter-
polation methods and One-Euro filter [3] and showed better performance, we do
not list their results here. To better fit the test set MuPoTS-3D, RefineNet is
trained on two multi-person 3D poses datasets: MPI-INF-3DHP dataset [23] and
an in-distribution MuCo-Temp dataset generated by the authors. In contrast,
SmoothNet is trained on VIBE-AIST++ (the same model used in the previous
experiment) without any finetuning to explore the generalization capability of
SmoothNet across datasets.

Table 6. Comparison results on multi-person MuPoTS-3D dataset [24].
SmoothNet is directly tested on it, while RefineNet [29] has been trained on in-
domain datasets.

Method Accel MPJPE PA-MPJPE

TPoseNet [29] 12.70 103.33 68.36
TPoseNet w/ RefineNet [29] 9.53 93.97 65.16
TPoseNet w/ Savitzky-Golay 8.29 102.79 68.30
TPoseNet w/ Gaussian1d 8.61 102.70 68.17
TPoseNet w/ Ours 7.23 100.78 68.10

RefineNet w/ Savitzky-Golay 7.22 93.75 65.34
RefineNet w/ Gaussian1d 8.40 93.65 65.19
RefineNet w/ Ours 7.21 91.78 65.06

In Table 6, we first analyze the refinement results for the TPoseNet pose
estimator [29], which is a temporal residual convolutional network for 2D-to-
3D pose estimation used as the backbone network in RefineNet. Although the
MPJPE of RefineNet drops the most as it has been trained on the relevant
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datasets, its Accel is the highest, indicating that the smoothing capability of
RefineNet cannot outperform filter-based solutions [32, 26]. Our method further
improves on Accel by 8.35% compared to the best filter solution. At the same
time, as a data-driven method, even though SmoothNet is trained on a different
dataset, it shows a 1.9% reduction in pose estimation errors compared to the
motion-oblivious filter-based solutions.

Finally, it is possible to refine the pose outputs from RefineNet with filters
and SmoothNet, and we show the results in the bottom half of Table 6. As
observed from the table, all the methods result in performance improvement.
Among them, SmoothNet again obtains the largest improvements, i.e., 24.3%
and 2.3% in Accel and MPJPE, respectively. Such results demonstrate the effec-
tiveness of the proposed solution on top of any learning-based pose estimators.

2.5 Smoothness on Synthetic Data

Due to the lack of pairwise labeled data, some approaches [27, 8, 7, 20, 9, 4] for
Mocap sensors denoising verify the validity of their approaches on synthetic
noise, like Gaussian noises. We follow their methods to generate the noisy poses,
adding different levels of Gaussian noises on the ground truth data. We take the
Human3.6M dataset as an example. In the training stage, we generate Gaussian
noises with the probability p and noise variance σ on the ground truth 2D or
3D positions for 2D or 3D pose estimation respectively as synthetic training
data. SmoothNet can be trained on these synthetic data. In the inference
stage, we also add the same noise level to the testing set as the synthetic test
data. Table 7 gives the corresponding results of our model. SmoothNet can
refine the noises/jitters at a large margin without any spatial correlations since
it utilizes the smoothness prior of human motions. For instance, in terms of 3D
pose estimation, either as the variance of Gaussian noises increase from 10mm
to 100mm or the probability changes from 0.1 to 0.9, SmoothNet can decrease
Accel and MPJPE at a large margin. Those results indicate SmoothNet will
be also beneficial to remove different synthetic noises.

2.6 More Ablation Study

Impact on Loss Function. As mentioned in the main paper Sec 4.3, we use
Lpose+Lacc as our final objective function. Here we explore how the loss func-
tions affect the performance in Table 8. First, we find that only single-frame
supervision Lpose would be slightly worse than our result by 5.51% in Accel,
while the MPJPE s are competitive. It shows the precision can be optimized well
by the Lpose. Next, only with Lacc will make all results worst, indicating the
significant necessity of Lpose supervision. Last, adding Lpose and Lacc together
to train the SmoothNet will benefit both smoothness and precision, proving
that Lacc companies with Lpose can play its smooth role.
Impact on Motion Modalities.Motivated by this natural smoothness charac-
teristic, we can unify various continuous modalities and make SmoothNet gen-
eralize well across them. In particular, 2D, 3D positions, and 6D rotation matri-
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Table 7. Comparison of the 3D pose with different synthetic noises from Gaussian
Noise on Human3.6M. p is the probability of adding noise, and σ means the variance.
pix. is the abbreviation of the pixel.

Gaussion Noise In Accel Out Accel In MPJPE Out MPJPE

2
D

P
o
se

p = 0.5, σ = 10 pix. 10.10 0.20 3.56 0.83
p = 0.5, σ = 50 pix. 50.53 0.35 17.80 2.02
p = 0.5, σ = 100 pix. 101.06 0.31 35.59 1.42

p = 0.1, σ = 50 pix. 14.31 0.19 3.90 0.67
p = 0.5, σ = 50 pix. 50.53 0.35 17.80 2.02
p = 0.9, σ = 50 pix. 72.26 0.57 28.97 6.00

3
D

P
o
se

p = 0.5, σ = 10mm 26.25 0.84 9.68 3.54
p = 0.5, σ = 50mm 131.25 1.55 48.42 7.00
p = 0.5, σ = 100mm 262.49 1.24 96.84 20.38

p = 0.1, σ = 50mm 40.68 1.03 11.46 2.46
p = 0.5, σ = 50mm 131.25 1.55 48.42 7.00
p = 0.9, σ = 50mm 184.32 2.10 74.46 16.85

Table 8. Comparison of refined results by different loss functions based on the outputs
of the SMPL-based method EFT [12] on the 3DPW dataset.

Method Accel MPJPE PA-MPJPE

EFT 32.71 90.32 52.19

Lpose 6.42 86.63 50.82
Lacc 7.63 446.54 356.61
Lpose+Lacc 6.30 86.39 50.60

ces are continuous modalities of the same space in neural networks. In contrast,
the rotation representations as axis-angle or quaternion are discontinuous in the
real Euclidean spaces [34], which may be hard for neural networks to learn. Ac-
cordingly, we explore the effects of these modalities used to train SmoothNet on
EFT [12]. Table 9 shows the training results on each motion modality. We can
see that the axis-angle or quaternion obtains worse results on both smoothness
and precision. They may encounter some sudden changes/flips leading to poor
results due to the discontinuity of the expression. Instead, the 6D rotation ma-
trix and 3D position will be more suitable to learn and improve all metrics.
Furthermore, 3D positions reach the best performance by decreasing 82.15% in
Accel, 5.72% in MPJPE, and 3.60% in PA-MPJPE.

Table 9. Comparison of refined results trained by different motion modalities based
on the outputs of EFT [12] on the 3DPW dataset.

Method Accel MPJPE PA-MPJPE

EFT [12] 32.71 90.32 52.19

Angle-Axis 77.89 172.17 51.38
Quaternion 28.50 91.23 51.03
6D Rotation 6.43 86.92 50.87
3D Position 6.30 86.39 50.60



10 A. Zeng et al.

Last, to explore whether there is also better generalization between differ-
ent continuous modalities, such as 3D position and 6D rotation matrix, cross-
modality tests were carried out demonstrated in Table 10. We can summarize
these observations: (i) when tested across modalities, all results will be worse
relative to the modality the model trained on; (ii) SmoothNet trained in 3D
positions, smoothed directly over the representation of the 6D rotation matrix,
can achieve even better performance than training on the 6D rotation matrix
itself. Hence, these results motivate us to use 3D positions as supervision by de-
fault, where 3D positions contain more information than 2D positions, and their
ground-truth are usually more precise than the 6D rotation matrix (explicitly
found in the AIST++ dataset, like Figure 3).

Table 10. Comparison of refined results by cross motion representations testing based
on the outputs of EFT [12] on the 3DPW dataset. Cross-Test means training the
SmoothNet on a motion representation while testing it on another modality directly.

Method Accel MPJPE PA-MPJPE

EFT 32.71 90.32 52.19

6D Rotation 6.43 86.92 50.87
Cross-Test on 3D Position 7.10 88.13 51.79

3D Position 6.30 86.39 50.60
Cross-Test on 6D Rotation 6.47 86.82 50.81

Fig. 3. Comparison the results of the ground truth, VIBE [16] with VIBE w/ Smooth-
Net on AIST++ dataset.

Effect of Normalization Strategies. Normalization is an effective way to
calibrate biased errors and improve the generalization ability. As a plug-and-
play network, we also explore how different normalization strategies influence
the results, especially the generalization ability. In the main paper, we do not
use any normalization by default.

We adopt three normalization strategies. Particularly, w/o Norm. denotes
taking the original estimated results without normalization. Sequence Norm. in-
dicates normalizing each input axis Ŷi with means and variances computed from
input sequences along the axis. Because the estimated inputs are always noisy
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and the bias shift between the training data and testing data, the above nor-
malization methods will be affected. Instead, using the mean and variance from
the ground truth (with †) along each axis can avoid such influences and we can
explore the upper bound performance under the Sequence Norm. normalization.

Table 11. Comparison of the results of different normalization based on the outputs
of EFT [12] and cross-backbone testing on the outputs of TCMR [6] on 3DPW dataset.
† means using the same mean and variance as the ground truth to explore the upper
bound performance.

Method Accel MPJPE PA-MPJPE

EFT [12] 32.71 90.32 52.19

w/o Norm. 5.80 85.16 50.31
Sequence Norm. 5.82 88.21 51.06
Sequence Norm. † 5.80 61.65 44.28

TCMR [6] 6.76 86.46 52.67

w/o Norm. 5.91 86.04 52.42
Sequence Norm 6.00 86.34 52.87
Sequence Norm † 5.92 68.51 49.15

In Table 11, we compare the performance of different normalizations based
on the outputs of EFT [12] on the 3DPW dataset in the upper table. We can
discover that the smoothing ability for all normalizations is similar, and the
main difference lies in the degree of biased error removal. To be specific, under
the Sequence Norm. † normalization, the MPJPE can decrease from 85.16mm
to 61.65mm, improved by 27.5%. To explore the generalization ability across
backbones, we further test SmoothNet trained on EFT-3DPW on TCMR [6]-
3DPW. From the lower part of the table, we can get similar conclusions as
above. In specific, SmoothNet can reduce Accel from 6.77mm/frame2 to about
6mm/frame2, and the upper bound of MPJPE can be 68.51mm (improvement
by 20.8%) from the refinement stage.

3 Qualitative Results

As jitters seriously affect visual effect, we visualize the results from several tasks,
such as 2D pose estimation, 3D pose estimation, and model-based body recovery.
For 2D and 3D pose estimation, we show two kinds of actions on Human3.6M
respectively with the corresponding Accel and MPJPE for each frame. The es-
timated 2D poses are from the single-frame SOTA method RLE [18], and the
estimated 3D poses are from the single-frame method FCN [22]. For model-based
methods, the estimated results come from VIBE [16] on AIST++ dataset and
SPIN [17] on 3DPW dataset.

We can observe that the jitters in a video are highly-unbalanced, where most
frames suffer from slight jitters while long-term significant jitters will be accom-
panied by large biased errors. SmoothNet can relieve not only small jitters but
long-term jitters well. And it can boost both smoothness and precision signif-
icantly. Specifically, unlike low-pass filters [7, 26, 10], our method can estimate
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the high-frequency movements well, like the action Posing. Finally, we observe
that the ground-truth 6D rotation matrices from AIST++ is not quite accurate,
as the SMPL annotations are fitted with few constraints. For example, the red
arrow in Figure 3 illustrates that a SMPL fitting from AIST++ has a bulging
back problem. Instead, their 14 skeletal 3D positions are more precise. When it
comes to model training, the quality of annotation is crucial for the success of
a data-driven model. As SmoothNet is devised to operate on temporal axis, it
is capable of training on one modality and testing on the other, so as to have
the flexibility of choosing more precise annotated modality for training. This
property makes SmoothNet applicable to datasets with different annotation
qualities from different modalities.
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