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Abstract. Human pose estimation aims to accurately estimate a wide
variety of human poses. However, existing datasets often follow a long-
tailed distribution that unusual poses only occupy a small portion, which
further leads to the lack of diversity of rare poses. These issues result in
the inferior generalization ability of current pose estimators. In this pa-
per, we present a simple yet effective data augmentation method, termed
Pose Transformation (PoseTrans), to alleviate the aforementioned prob-
lems. Specifically, we propose Pose Transformation Module (PTM) to
create new training samples that have diverse poses and adopt a pose
discriminator to ensure the plausibility of the augmented poses. Besides,
we propose Pose Clustering Module (PCM) to measure the pose rarity
and select the “rarest” poses to help balance the long-tailed distribution.
Extensive experiments on three benchmark datasets demonstrate the ef-
fectiveness of our method, especially on rare poses. Also, our method is
efficient and simple to implement, which can be easily integrated into
the training pipeline of existing pose estimation models.

Keywords: Pose Estimation, Data Augmentation

1 Introduction

Human Pose Estimation (HPE) is the task of localizing human body keypoints
(also referred to as joints) from an image. It serves as a fundamental tech-
nique for numerous applications, including action recognition, pedestrian track-
ing, and virtual/augmented reality. Recently, deep convolutional neural networks
(DCNN) [41,35,34] have achieved drastic improvements on standard benchmark
datasets. To fully exploit the power of DCNN, a large number of training data is
indispensable for obtaining satisfactory performance in human pose estimation.

� : Corresponding Author.

https://orcid.org/0000-0002-4894-5703
https://orcid.org/0000-0001-5736-7434
https://orcid.org/0000-0001-6587-9878
https://orcid.org/0000-0002-8761-5563
https://orcid.org/0000-0002-6685-7950


2 W. Jiang et al.

AP: 84.1

AP: 70.8

AP: 59.8
Fr
eq
ue
nc
y

Pose categories

A
P

90

80

70

60

50

Fig. 1: We cluster the poses in the MS-COCO dataset into 20 categories and
evaluate the AP with a pre-trained HRNet model [43]. The top-1 category has
more than 25000 samples and high precision, while nearly half of the categories
have less than 2000 samples and relatively low precision.

However, existing human pose estimation datasets do not uniformly repre-
sent all possible human poses in real life. We take MS-COCO dataset [31] as
an example to analyze the distribution of the human poses, as shown in Fig. 1.
We normalize the poses and cluster them into 20 categories. We observe that it
follows a long-tailed distribution, with a few common pose categories (e.g stand-
ing and walking) occupying a large portion of the dataset and unusual posture
types (e.g squatting and jumping) possessing a smaller portion. We also find
that although current state-of-the-art data-driven methods achieve good perfor-
mance on common poses, however, they still suffer performance degradation on
some unusual poses, since the long-tailed categories have neither enough training
samples nor enough diversity.

Due to the high cost of collecting and annotating examples with rare poses,
a feasible way to tackle this problem is data augmentation. Previous meth-
ods augment the human pose mainly by global image-level transformations
[37,12,35,45,42] (e.g scaling and rotating) or local object-level transformations
[5,37,18] (e.g copy-paste and occluding). Since these methods fail to increase the
diversity of poses and alleviate the long-tailed distribution, they contribute little
to recognizing diverse rare poses.

In this paper, we propose a simple yet effective data augmentation approach,
termed Pose Transformation (PoseTrans), to tackle the aforementioned chal-
lenges. PoseTrans consists of a Pose Transformation Module (PTM) with a pose
discriminator, and a Pose Clustering Module (PCM). During training, PTM
applies affine transformations to the original pose of the training sample and
generates a pool of diverse new poses. The pre-trained pose discriminator is
adopted to evaluate the plausibility of generated samples and then filter out un-
natural samples. PCM is based on the Gaussian Mixture Model (GMM), which
normalizes and clusters the human poses in the dataset. The rare types of poses
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are represented by the Gaussian components that have small weights. PCM eval-
uates the components’ density for each candidate pose and selects the “rarest”
one (i.e which has the minimal weighted sum of components’ density) as the
final augmented training sample. By transforming the existing poses, PoseTrans
helps generate diverse, plausible poses by PTM and alleviate the long-tail dis-
tribution problem by PCM. We also design a metric that focuses on rare poses
called balanced AP/AR and observe more performance gain on this metric. Our
method is simple to implement and can be easily integrated into the training
pipeline of existing pose estimation models.

We summarize our contributions as follows:

• We present a simple yet effective data augmentation method, termed Pose-
Trans. To tackle the problem of limited diversity of unusual human poses, we
propose a novel Pose Transformation Module (PTM) with a pose discrimi-
nator to generate new training samples with diverse and plausible poses.

• We propose Pose Clustering Module (PCM) to measure the pose rarity and
select rare poses for data augmentation, which helps to balance the long-
tailed distribution of the training set.

• Extensive experiments on various pose estimation datasets show that Pose-
Trans consistently improves the performance of various state-of-the-art pose
estimators, especially on rare poses.

2 Related Works

2.1 2D Human Pose Estimation

In recent years, 2D human pose estimation has shown remarkable performance
advancement. DeepPose [41] first applied deep neural networks to human pose
estimation by directly regressing the 2D coordinates of key points from the
input image. Since then, deep learning-based methods started to dominate this
area. Recent multi-person human pose estimation approaches can be divided into
bottom-up and top-down approaches. Bottom-up approaches [23,7,36,34,25,13,28,24]
first detect all the key points of every person in images and then group them into
individuals. Top-down methods [21,11,45,40] first detect the bounding boxes and
then predict the human body key points in each box.

Recent works mainly focus on designing powerful network architectures to
improve the performance of pose estimation [35,45,40,11,26,46,48]. However, cur-
rent state-of-the-art models often suffer performance drops on rare poses due to
the long-tailed distribution problem in human pose data. In this work, we focus
on tackling this important but ignored problem. Standing on the shoulder of the
well-designed network structure, we propose a novel data augmentation method
to generate diverse rare poses.

2.2 Data Augmentation

Data augmentation has been widely utilized to improve the model generalization
ability. For image classification, popular augmentation methods include informa-
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tion dropping [52,9,16], multi-image information mixing [50,47] and automatic
augmentation [15]. For human pose estimation, data augmentation mainly focus
on global image-level transformations [37,12,35,45,42] (e.g scaling, rotating, and
flipping) and local object-level transformations [5,37] (e.g copy-paste, occluding).
These common data augmentation schemes enhance the global translational in-
variance and robustness in occlusion cases but struggle to improve the immunity
to rare poses. Recently, some augmentation methods [18,19] propose to perform
jitting on instances to increase the generalization of the model, but they do not
change either the instance itself or the distribution of instances. Different from
the existing data augmentation strategies, we propose a novel, simple and effec-
tive PoseTrans augmentation scheme that directly generates diverse rare poses.

2.3 Long-tailed Distribution

In visual recognition, there exists a challenging problem of long-tailed training
set distributions, where a small portion of classes have massive training samples
while classes in the distribution tail have few samples [51]. Over-sampling [8]
and re-weighting [17] are two popular methods to tackle the problem. The over-
sampling method raises the frequency level of the minor classes by repeating
the data samples during training. The re-weighting method assigns higher loss
weights to these minor classes and thus increases their importance. However, such
approaches do not increase the diversity of the data and tend to suffer from over-
fitting which leads to a performance drop. Other approaches also include metric
learning that enforces inter-class margins [22] and meta-learning that learns to
regress many-shot model parameters from few-shot model parameters [44], but
they are only designed for visual recognition. In human pose estimation, we
encounter a similar problem. For many human pose estimation datasets [31,3,29],
e.g the MS-COCO dataset [31], the distribution of human poses is highly biased,
which does not uniformly represent human poses in real life. These dataset biases
lead to poor generalization and degraded detection accuracy of these “long-
tailed” poses. To address the aforementioned issue, we propose a simple yet
effective PoseTrans approach to create the needed diverse poses.

3 Method

3.1 Overview

To increase the diversity of poses and alleviate the long-tailed distribution prob-
lem, we propose the Pose Transformation (PoseTrans) to generate new training
samples with diverse poses, as shown in Fig. 2. PoseTrans consists of a Pose
Transformation Module (PTM) with a pose discriminator D and a Pose Cluster-
ing Module (PCM). Given a training sample (x,y) consisting of a single human
image x and its keypoint annotation y, PTM aims to create a new training sam-
ple (x̃, ỹ) by applying affine transformations on the limbs of the human, where
x, x̃ ∈ RH×W×3, y, ỹ ∈ RJ×2. H, W and J indicate the height, width and the
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Fig. 2: Overview of PoseTrans. Given a single human image x and its keypoint
annotations y, we first segment the human into different parts through hu-
man parsing. PTM applies affine transformations on the limbs of the human
to construct new poses. A pre-trained pose discriminator is used for the plau-
sibility check. The plausible poses form a candidate pose pool {(x̃t, ỹt)}, where
t ∈ {1, 2, 3} as an example. For pose ỹt, PCM predicts wt, which is the proba-
bility of belonging to each category (3 categories as an example). PCM selects
the rarest one with the minimal weighted sum of components’ density as a new
training sample, i.e wA

2 αA + wB
2 αB + wC

2 αC .

number of keypoints respectively. To ensure plausibility, we leverage the pose
discriminator D to filter out implausible samples. PoseTrans applies PTM re-
peatedly until a candidate pose pool with T plausible generated poses is formed.
PCM clusters human poses into N categories and evaluates the probability of
belonging to each cluster for generated poses to select the rarest one among the
pool as a new training sample. After each training epoch, we re-fit the PCM
using the original training set and all the selected augmented samples.

3.2 Pose Transformation Module (PTM) and Pose Discriminator

By clustering the human poses in the existing dataset, it can be observed that
many clusters only have a few examples. The lack of training examples of rare
poses further leads to the lack of diversity of rare poses, which results in the
inferior performance of current data-driven methods on these types of poses.
To tackle this issue, we devise the Pose Transformation Module (PTM) and a
pose discriminator to create plausible new poses based on the existing training
samples. The detail of PTM is shown in Fig. 3.

Modeling the body part movement. The body kinematic skeleton is
constructed by a pose graph, where the human body is partitioned into sev-
eral parts, i.e the head, the torso, the left/right arm, and the left/right leg.
In this work, we mainly focus on the angular movement of the arms and legs.
Angular movements (flexion and extension) take place at the shoulder, hip, el-
bow, knee, and wrist. Flexion decreases the angle between the bones (bending
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Fig. 3: By leveraging the human parsing results, we first erase the limbs from x
and then transform each limb separately with a given probability p = 0.5. Limbs
that do not appear or are obscured will not be transformed. The zoom-in view
in the bottom right corner indicates the affine transformation with scale si and
rotation ri applied on the i-th limb (lower arm).

of the joint), while extension increases the angle and straightens the joint. These
body part movements in the image plane can be modeled by applying the affine
transformation to a rigid body part segment. In our implementation, the affine
transformation is composed of rotation and scaling.

We define the limb as a single rigid body part connecting natural adjacent
joints ysrc and ydst, where ysrc,ydst ∈ R2 are the coordinates of the source and
destination joint respectively. We define K = 8 limbs for each instance, including
the lower arm, the upper arm, the lower leg, and the upper leg of both sides.

Pose transformation.With human parsing results obtained through Dense-
Pose [1] model, PTM first erases the original limbs in x by an efficient inpainting
method [4]. After that, each limb is transformed by its affine transformation ma-
trix separately. To increase the diversity, each limb has a probability of p = 0.5
to decide whether to transform or not. The transformed limbs and the inpainted
image are composed to form the new augmented image x̃. And the pose anno-
tations are also transformed accordingly to get ỹ.

Specifically, the angular movement of the i-th limb can be modeled by the
following affine transformation matrix

Hi =

 si cos ri −si sin ri (1− cos ri)c
x
i + cyi sin ri

si sin ri si cos ri (1− cos ri)c
y
i − cxi sin ri

0 0 1

 , (1)

where si ∈ R+ and ri ∈ R denote the scale and rotation of the i-th limb,
ysrc
i = {cxi , c

y
i } is the coordinates of the rotation center of the i-th limb. For the

lower arm, the upper arm, the lower leg, and the upper leg, the rotation centers
are the elbow, the shoulder, the knee, and the hip respectively. To ensure the
diversity of augmented poses, the scale si and rotation ri parameters in Hi are



PoseTrans 7

randomly sampled from a normal distribution in the neighboring space of identity
transformation (1, 0). The scale and rotation parameters are also restricted to a
certain range in our implementation to ensure that the majority of the randomly
generated poses are plausible. Note that, limbs that do not appear in the image
or are obscured will not be transformed.

According to the kinematic skeleton hierarchy, the movement of the upper
arm/leg will affect that of its lower part. Suppose the j-th limb is the lower
arm/leg and the k-th limb is its corresponding upper part. Considering the
combined effect, the total movement of the j-th limb can be modeled by matrix
multiplication, i.e HkHj .

Pose discriminator for the plausibility check. Purely generating poses
randomly may result in implausible poses that violate the biomechanical struc-
ture of the human body. Some other augmentation methods [30,10] rely on pre-
defined rules for ensuring plausibility, which however limits the diversity of gen-
erated poses. Inspired by [20], we design a pose discriminator D that suits our
task to avoid implausible poses that have unnatural joint angles or unreasonable
positions in the scene. For the augmented sample (x̃t, ỹt), the discriminator D
is trained to predict the plausibility et = D (x̃t, ỹt). We adopt the LS-GAN loss
[33] to train the discriminator before training the pose estimatior:

LD = E
[
(D(x,y)− 1)

2
]
+ E

[
D (x̃, ỹ)

2
]
. (2)

With the pre-trained discriminator D, PoseTrans efficiently filter out the aug-
mented sample whose plausibility is less than a pre-defined threshold E ∈ [0, 1],
and fill the candidate pose pool with samples that are plausible and diverse.

3.3 Pose Clustering Module (PCM)

After gaining the ability to create new human poses by PTM, we propose the
Pose Clustering Module (PCM) to measure the pose rarity and select the needed
poses for data augmentation.

Fitting the PCM. Our PCM is built upon the Gaussian Mixture Model
(GMM) with N Gaussian components. As a soft clustering method, it predicts
the probability of belonging to a certain category. Before pose clustering, human
poses in the training set are first normalized. We crop every human instance
on the image and re-scale the cropped image into the same height and width
(256× 256). The corresponding keypoint coordinates are also normalized at the
same time. We fit the PCM using the normalized human poses in the training
set. After fitting, given the pose y, we model P (y) as:

P (y) =

N∑
n=1

αnN (y;µn, σn) , (3)

where αn is the weight of the n-th Gaussian component, N (y;µn, σn) denotes
the n-th Gaussian distribution with mean µn and covariance σn.
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Fig. 4: The visualization of the clustering results using PCM by t-SNE. Different
colored points indicate different clusters. Representative images and mean skele-
tons for the clusters of standing, squatting, and lateral poses are also visualized.

By predicting the probability of belonging to each Gaussian component, the
human pose is classified as the component with the maximum probability. We
visualize the probability vectors of every example using t-SNE [32], as shown
in Fig. 4. With PCM, we cluster the human poses into N categories, where
Gaussian components that have small weights (i.e few examples,) indicate the
categories of rare poses. We observe the long-tailed problem that frontal standing
accounts for a significant portion while squatting and lateral postures account
for small percentages.

Pose selection from the candidate pose pool. PoseTrans repeats PTM
to build a candidate pose pool {(x̃t, ỹt)} with T samples for the training sample
(x,y), where t ∈ {1, 2, ..., T}. PoseTrans select the rarest one (x̃t∗ , ỹt∗) among
the candidate pose pool by:

t∗ = argmin
t

(
N∑

n=1

αnw
n
t

)
, (4)

where wt = {w1
t , w

2
t , . . . , w

N
t } is the predicted probability of ỹt belonging to N

Gaussian components by the fitted PCM. We consider the transformed sample
(x̃t∗ , ỹt∗) with the minimal weighted sum of components’ density as the rarest
and select it as a new training sample.

4 Experiments

4.1 Datasets and Evaluation

Datasets. To verify the effectiveness of our proposed data augmentation ap-
proach, we conduct extensive experiments on popular datasets. (1) MS-COCO
[31] pose estimation dataset. Our models are trained on the train set only and
evaluated on the val set and the test-dev set. DensePose [1] provides a small
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portion of human parsing annotations for the MS-COCO dataset. To verify the
performance on rare poses, both the traditional evaluation metrics (i.e AP/AR)
and newly designed metrics (balanced AP/AR) are used for evaluation. The base
learning rate of 1e-3, and decay the learning rate to 1e-4 and 1e-5 at the 170-th
and 200-th epochs respectively. (2) PoseTrack’18 [2] dataset. Following common
settings [14], we pre-train the model on the MS-COCO dataset and fine-tune it
on the PoseTrack’18 dataset for 20 epochs. The basic learning rate is 1e-4 and
drops to 1e-5 at 10 epochs then 1e-6 at 15 epochs. We test the model on the
PoseTrack’18 validation set using the ground truth bounding boxes, and evaluate
the AP on the whole body and also on different parts of the human. Due to the
limited space, the results of some experiments are placed in the supplementary
material.

Evaluation metrics. We follow [31] to use Average Precision (AP) and Av-
erage Recall (AR) for evaluation on MS-COCO [31]. They are based on object
keypoint similarity (OKS), which measures the distance between predicted key-
points and ground-truth keypoints normalized by the scale of the object. AP50

(AP at OKS = 0.5), AP75 (AP at OKS = 0.75), APM for medium objects, and
APL for large objects are reported.

Balanced AP/AR. Since existing datasets mostly suffer the long-tailed
distribution problem, simply calculating the AP/AR tends to ignore the minor
pose categories. To solve this problem, we design the balanced AP/AR, which
we term APBAL, ARBAL. We first classify the ground-truth poses into categories
based on the fitted PCM. Then we calculate the standard AP/AR separately
for each category and calculate the average precision/recall among categories
instead of samples. Therefore, APBAL and ARBAL assign the same weights to
all pose categories, which is helpful to analyze the “unbiased” performance.

4.2 Implementation Details

PoseTrans can be integrated into the training pipeline of any existing pose es-
timators together with other common data augmentation strategies. Except for
the small portion of images that have human parsing annotations, we leverage
DensePose [1] model for human parsing which segments humans into 14 seman-
tic parts. In PCM, we have N = 20 and cluster the poses into 20 categories. We
implement PoseTrans with scaling (s ∈ [0.75, 1.25]), rotating (r ∈ [−35◦, 35◦]),
and apply it with the probability p = 0.5 for every limb in the training examples.
We filter out the implausible samples whose plausibility is less than E = 0.7 and
repeat PTM until the candidate pose pool has T = 5 augmented samples.

For bottom-up methods, PoseTrans is applied on every instance in the image
separately. The experimental settings are the same as [13]. We apply image-level
random scaling ([−25%, 25%]), random rotation ([−30◦, 30◦]), random transla-
tion ([−40px, 40px]) and random flipping. The models are trained for 300 epochs
using the Adam optimizer [27]. The base learning rate is 1e-3, and it decreases
to 1e-4 and 1e-5 at the 200-th and 260-th epochs respectively. For top-down ap-
proaches, the experimental settings are the same as [40]. We use the detected
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Table 1: Improvements on MS-COCO val set and test-dev set. PoseTrans
consistently boosts the performance of the state of the arts.

Method Input size
MS-COCO val MS-COCO test-dev

AP AP50 AP75 APM APL AR AP AP50 AP75 APM APL AR

Bottom-up methods w/o multi-scale test

AE[34] + HRNet-W32[40] 512× 512 64.4 86.3 72.0 57.1 75.6 71.0 64.1 86.3 70.4 57.4 73.9 70.4
+ PoseTrans (Ours) 512× 512 66.2 86.4 72.1 59.3 76.5 71.6 65.4 87.6 72.1 58.8 74.7 71.0

HigherHRNet-W32[13] 512× 512 67.1 86.2 73.0 61.5 76.1 72.3 66.4 87.5 72.8 61.2 74.2 71.4
+ PoseTrans (Ours) 512× 512 68.4 87.1 74.8 62.7 77.1 72.9 67.4 88.3 73.9 62.1 75.1 72.2

Bottom-up methods with multi-scale test [×2, ×1, ×0.5]

AE[34] + HRNet-W32[40] 512× 512 68.5 87.1 75.1 64.0 76.8 73.9 68.1 88.3 75.1 63.8 74.9 72.9
+ PoseTrans (Ours) 512× 512 70.5 87.8 76.7 65.1 78.1 75.2 69.4 88.8 76.3 64.4 76.2 74.2

HigherHRNet-W32[13] 512× 512 69.9 87.1 76.0 65.3 77.0 74.7 68.8 88.8 75.7 64.4 75.0 73.5
+ PoseTrans (Ours) 512× 512 71.2 88.2 77.2 66.5 78.0 75.3 69.9 89.3 77.0 65.2 76.2 74.3

Top-down methods

SBL-ResNet-50[45] 256× 192 70.4 88.6 78.3 67.1 75.9 76.3 70.2 90.9 78.3 67.1 75.9 75.8
+ PoseTrans (Ours) 256× 192 72.3 89.9 80.0 68.3 79.2 77.8 71.5 91.8 80.0 68.1 77.3 77.0

SBL-ResNet-101[45] 256× 192 71.4 89.3 79.3 68.1 78.1 77.1 71.1 91.5 79.6 67.7 76.8 76.6
+ PoseTrans (Ours) 256× 192 72.7 90.0 80.7 69.5 78.8 78.3 71.8 91.6 80.3 68.3 77.5 77.3

HRNet-W32[40] 256× 192 74.4 90.5 81.9 70.8 81.0 79.8 73.5 92.2 82.0 70.4 79.0 79.0
+ PoseTrans (Ours) 256× 192 75.5 91.0 82.9 71.8 82.2 80.7 74.2 92.4 82.5 70.8 79.6 79.4

HRNet-W32[40] + Dark[49] 256× 192 75.6 90.5 82.1 71.8 82.8 80.8 74.6 92.4 82.9 71.2 80.3 79.9
+ PoseTrans (Ours) 256× 192 76.0 90.8 83.0 72.1 83.2 81.1 75.0 92.5 82.9 71.5 80.6 80.1

HRNet-W32[40] 384× 288 75.8 90.6 82.7 71.9 82.8 80.1 74.9 92.5 82.8 71.3 80.9 80.1
+ PoseTrans (Ours) 384× 288 76.5 90.9 83.3 72.5 83.3 81.5 75.4 92.5 83.0 71.6 81.1 80.4

HRNet-W48[40] 384× 288 76.3 90.8 82.9 72.3 83.4 81.2 75.5 92.5 83.3 71.9 81.5 80.5
+ PoseTrans (Ours) 384× 288 76.8 91.0 83.1 72.7 83.7 81.6 75.7 92.6 83.4 72.0 81.7 80.6

bounding boxes provided by Xiao et al [45]. The detection boxes are first ex-
tended to a fixed aspect ratio (i.e height:width = 4:3) and then enlarged by a
factor of 1.25 to include some context. We apply random scaling ([−35%, 35%]),
random rotation ([−45◦, 45◦]), random flipping, and half-body crops. The mod-
els are trained on 16 GPUs for 210 epochs. We use Adam optimizer [27] for
training. All networks are pre-trained on the ImageNet dataset [39].

4.3 Improvement of state-of-the-art methods by PoseTrans

Improvement of AP/AR. Table 1 reports the performance improvement of
AP and AR on the MS-COCO val and MS-COCO test-dev set, where Pose-
Trans is applied to recent state-of-the-art pose estimators, i.e SBL [45], HR-
Net [40], and HigherHRNet [13]. Table 2 show the performance improvement on
the PoseTrack dataset. PoseTrans consistently boosts the performance of both
top-down and bottom-up approaches in various datasets.

Improvement of APBAL and ARBAL. The results of APBAL and ARBAL

are reported in Table 3a. To calculate the new metrics, we use the bounding
boxes and keypoint annotations to determine the category of predicted poses.
Thanks to the design of PCM and PTM, PoseTrans increases the diversity of
rare poses and balances the distribution, which enables PoseTrans to bring more
improvements on the newly proposed APBAL/ARBAL than traditional AP/AR.
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Table 2: Improvements on PoseTrack2018 validation set.

Method Input size Head Sho. Elb. Wri. Hip Knee Ank. Total AP

SBL-ResNet-50 [45] 256× 192 86.5 87.5 82.3 75.6 79.9 78.6 74.0 81.0
+ PoseTrans (Ours) 256× 192 87.8 89.3 84.7 77.7 82.3 81.6 75.4 83.0

HRNet-W32 [40] 256× 192 87.4 88.6 84.3 78.5 79.7 81.8 78.8 83.0
+ PoseTrans (Ours) 256× 192 88.6 90.0 86.2 80.3 83.1 84.9 79.8 84.9

HRNet-W32 [40] 384× 288 88.5 89.5 86.0 80.4 81.6 83.4 78.9 84.3
+ PoseTrans (Ours) 384× 288 88.9 90.3 87.4 81.8 83.5 85.5 80.6 85.7

Table 3: (a) Improvements of Balanced AP/AR on MS-COCO val set. (b)
Comparisons of data augmentation techniques on MS-COCO val set. HRNet-
W32 with an input size of 256× 192 is adopted as the baseline. Results marked
with ‘*’ are reported by [38] using CascadeRCNN bounding boxes.

Method Input size
MS-COCO val

AP AR APBAL ARBAL

SBL-ResNet50 [45] 256× 192 70.4 76.3 60.6 66.3
+ PoseTrans (Ours) 256× 192 72.3 77.8 63.8 69.6

HRNet-W32 [40] 256× 192 74.4 79.8 65.4 72.3
+ PoseTrans (Ours) 256× 192 75.5 80.7 67.9 73.8

HRNet-W32 [49] 384× 288 75.8 80.1 67.7 73.8
+ PoseTrans (Ours) 384× 288 76.5 81.5 68.9 74.2

(a)

Method AP AP50 AP75 AR

Baseline [40] 74.4 90.5 81.9 79.8
+ Cutout* [16] 74.5 90.5 81.7 78.8
+ GridMask [9] 74.7 90.6 82.0 80.1
+ Photometric Distortion [6] 74.6 90.3 81.9 80.0
+ AdvMix [42] 74.7 - - -
+ InstaBoost [18] 74.7 90.5 82.0 80.1
+ ASDA [5] 75.2 91.0 82.4 80.4

+ PoseTrans (Ours) 75.5 91.0 82.9 80.7

(b)

4.4 Comparisons with other data augmentation techniques

In Table 3b, we compare PoseTrans with other data augmentation techniques,
including non-learning [16,9,6] and learning/strategy-based methods [42,18].

For non-learning methods, Cutout [16] randomly selects a rectangle region
around the keypoint and fills in random values. GridMask [9] evenly replaces
multiple rectangle regions in an image with all zeros. For Photometric Distor-
tion, we follow [6] to adjust the brightness, contrast, hue, saturation, and noise of
an image. These general data techniques are proven to be effective for image clas-
sification. However, they do not bring significant improvements for human pose
estimation. Similar conclusions have also been reached by previous works [38].
This is probably because such techniques introduce undesirable artifacts and do
not increase the diversity of human poses.

For learning/strategy-based methods, AdvMix [42] applies adversarial train-
ing to learn to mix up augmented samples generated by GridMask [9] and
AutoAugment [15]. InstaBoost [18] is a recently proposed data augmentation
technique which is originally designed for instance segmentation. It conducts
crop-paste augmentation guided by the appearance consistency heatmaps. How-
ever, the improvements of AdvMix and InstaBoost are only marginal. ASDA
[5] also employs human parsing and augments images by pasting the segmented
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body parts. PoseTrans outperforms all these approaches, which validates the
importance of increasing the diversity of the human body poses.

Kindly note that PoseTrans is also complementary to other techniques. Ef-
fectively combining these techniques may further improve the final performance.
As shown in the third row from the bottom in Table 1, combining PoseTrans
with DarkPose [49] can further gain improvements.

4.5 Ablation Studies

Effect of PTM. Without using the PTM, we perform the over-sampling [8]
and re-weighting [17] strategies, which are two popular methods to tackle the
long-tailed problem. The over-sampling method raises the frequency level of
the minor categories by duplicating the long-tailed data samples during model
training. The re-weighting method assigns higher loss weights to rare samples
and thus increases their importance. Based on the clustering results of PCM, we
implement these methods as baselines, as shown in Table 4a. By increasing the
importance of long-tailed training samples, both the over-sampling marginally
improve the APBAL. However, such approaches do not increase the diversity of
the data, which leads to slight performance drops on AP and AR. With the
design of PTM, our proposed PoseTrans creates diverse long-tailed samples,
which significantly outperforms the baseline methods.

Effect of PCM.Without PCM, PoseTrans randomly samples a transformed
pose obtained from PTM as the training sample, instead of picking the “rarest”
pose in the candidate pose pool. Note that, “w/o PCM” is equivalent to the case
of T = 1 in PoseTrans. The studies of w/o PCM and the number of T in PCM
are shown in Table 4b. By providing simple disturbance to training data, w/o
PCM increases the generalization of the model, which leads to some performance
improvements. While with the aid of PCM, our full model learns to alleviate
the long-tailed distribution problem of the training set by selecting transformed
poses, which brings greater performance gains, especially on APBAL/ARBAL.
Also, a larger candidate pose pool (i.e greater T ) leads to better performance.
However, T greater than 5 will not bring more performance boost.

Effect of pose discriminator. Without the pose discriminator (D), some
implausible poses will lead to performance degradation as shown in Table 5a.
Since the scale s and rotation r parameters are sampled from a normal distri-
bution and are restricted to [0.75, 1.25] and [−35◦, 35◦] in the implementation,
a majority of the randomly generated poses are plausible. In this situation, the
PTM without the pose discriminator can still benefit the model.

Comparison with the adversarial learning variant. Inspired by recent
works [42,37,5] on adversarial data augmentation, we also build an adversarial
training variant of PoseTrans, which we refer to as PoseTrans-Adv. PoseTrans-
Adv has an additional generator that predicts the rotation r and scale s for a
given single human image x. During training, the generator is asked to confuse
the pose estimation model by maximizing the loss of the pose estimator. However,
we observe that the generator will soon learn to choose the maximum rotation
and scale for every training sample, which actually decreases the diversity of the
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Table 4: (a) Ablation studies of PTM. The over-sampling and re-weighting meth-
ods are based on the clustering results of PCM. (b) Ablation studies of PCM.
HRNet-W32 with the input size of 256× 192 is adopted for experiments.

Method AP AR APBAL ARBAL

Baseline 74.4 79.8 65.4 72.3
Over-sampling [8] 74.3 79.7 66.0 72.3
Re-weighting [17] 74.2 79.6 65.8 72.2

PoseTrans (Ours) 75.5 80.7 67.9 73.8

(a)

Method AP AR APBAL ARBAL

Baseline [40] 74.4 79.8 65.4 72.3
w/o PCM 74.9 80.1 66.1 72.6
PoseTrans (T = 3) 75.2 80.3 67.2 72.9

PoseTrans (T = 5) 75.5 80.7 67.9 73.8

(b)

Table 5: (a) Ablation studies of Discriminator (D). (b) Comparison with the
variants of PoseTrans.

Method AP AR APBAL ARBAL

PoseTrans w/o D 75.0 80.1 66.5 72.8

PoseTrans 75.5 80.7 67.9 73.8

(a)

Method AP AR APBAL ARBAL

PoseTrans-Adv 72.7 78.4 65.2 71.5

PoseTrans-Par 75.3 80.4 67.3 73.3

PoseTrans 75.5 80.7 67.9 73.8

(b)

training set. This leads to performance degradation in all the evaluation metrics
as shown in the first row of Table 5b.

Comparison with PoseTrans-Par on the MS-COCO dataset. As men-
tioned above, DensePose [1] provides a small portion of human parsing anno-
tations for the MS-COCO dataset. Here, we compare with the PoseTrans-Par
variant that replaces the human annotations with the pseudo-labels obtained
from the parsing model. As shown in the second row of Table 5b, without human
annotations, the performance of PoseTrans-Par is comparable with PoseTrans.

4.6 Analysis

Visualizations of the augmented samples. In Fig. 5, we visualize the origi-
nal image and the augmented sample by PoseTrans. It can be observed that our
proposed method generates diverse and plausible body postures that facilitate
the model training and improve its generalization ability.

Visualizations of pose estimation results. In Fig. 6, we visualize pose
estimation results obtained by HRNet [40]. We observe that vanilla HRNet is
easily confused by infrequent and difficult poses, e.g upside-down postures and
serious occlusions. By generating training samples with diverse rare poses, our
PoseTrans improves the performance in these challenging cases.

Limitations. Our limitations mainly lie in the artifacts produced by the
inpainting method and the accuracy of the human parsing model. We choose a
simple non-data-driven inpainting method in pose transformation for efficiency.
An advanced inpainting and parsing model with higher resolution inputs may
bring more improvements in pose estimation.
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Fig. 5: Visualizations of PoseTrans augmented samples. We observe that our
proposed method generates more diverse body postures which facilitates the
model training and improves its generalization ability.
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Fig. 6: Qualitative comparisons of vanilla HRNet [40] (upper row) and HR-
Net trained with PoseTrans (bottom row). PoseTrans improves the human pose
estimation results, especially for rare poses.

5 Conclusions

In this paper, we study the performance degradation caused by unbalanced data
distribution on human pose estimation. To tackle this issue, we propose Pose-
Trans with PTM, PCM, and a pose discriminator to create diverse and plausible
training samples that have infrequent poses. Comprehensive experiments on pub-
lic benchmarks demonstrate the effectiveness of our method, especially on rare
poses. Our implementation of PoseTrans is simple and efficient, which can be
easily integrated into the training pipeline of existing pose estimators. We hope
our work will draw the community’s attention to the long-tail problem in human
pose estimation and provide inspiration on how to tackle it for other tasks.
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