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In this supplemental document, we try to involve more detailed explanation
about our pipeline. For the purpose, we draw the schematic diagram for the entire
framework in Fig. 1 and detail the overall sequence of the framework including
the rearrange and concatenation method for Fimg and Θinit in Sec. 1. We further
offer more details on our training process in Sec. 2, summarize how to calculate
absolute 3D skeletons P in Sec. 3 and discuss the additional quantitative results
in Sec. 4. Finally, we present additional qualitative examples in Sec. 5.

1 Overall sequence of framework

In this section, we detail the overall sequence of framework.
Feature extraction. We use ResNet architecture [2] to extract image feature
Fimg ∈ R8×8×2048 from the cropped image X ∈ R256×256×3. The cropped image
X goes through CONV, BN, ReLU, MAX Pool, Block 1, Block 2, Block 3, and
Block 4 layers to produce the 8 × 8 × 2, 048-dimensional array. This feature
array is used to further 1) estimate initial skeletons from the initial skeleton
estimation network fP, 2) estimate the twist angle Φ and shape βinit from twist
angle and shape estimator fTS and 3) refine the initial mesh parameters via the
relation-aware refiner fRef.
Initial skeleton estimation network fP. As denoted in Table 1, the obtained
feature Fimg is fed to the 1 × 1 conv1 layer to generate 3D heatmaps whose
dimensions are 8×8×8×K. After that, 3D soft-argmax operation is applied on
the 3D heatmaps to obtain the root-relative 3D skeletons Prel. Similarly, Fimg is
fed to 1×1 conv2 layer to generate 2D heatmaps whose dimensions are 8×8×K.
Then, 2D soft-argmax operation is applied on the 2D heatmaps to generate 2D
skeletons Pimg. Finally, the absolute 3D skeletons P are differentiably calculated
by combining Pimg and Prel with camera intrinsic matrix as in [18].
Global average pooling. To be used for twist angle and shape estimator fTS

and relation-aware refiner fRef, the global average pooling (GAP) is applied on
Fimg to reduce its dimension to 1× 1× 2, 048.
Twist and shape estimation network fTS. The twist and shape estimation
network fTS is composed of multiple fully-connected layers as denoted in Table 2.
It first changes the 1×1×2, 048-dimensional feature array into the 1×1×1, 024-
dimensional array via two fully-connected layers (i.e. FC1 and FC2). Then, it
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Fig. 1: The detailed diagram of our entire framework. From the cropped image
X, feature array Fimg is extracted and it is used for 1) initial skeleton estimation
via fP, for 2) estimating initial mesh parameter Θinit = [θinit;βinit;Cinit] via
fTS and for 3) refining the initial mesh parameter Θinit by Θref = Θinit+∆Θref

where ∆Θref = [∆θref;∆βref;∆Cref] via fRef. Overall sequences are described
in Sec. 1 and detailed architecture for fP, fTS and fRef are shown in Tables 1, 2
and 3, respectively.

maps it to the twist angle vector Φ ∈ RK×2 and shape vector βinit ∈ R1×10 via
respective fully-connected layers (i.e. FC-twist, FC-shape).

Relation-aware refinement network fRef. While both initial skeleton es-
timation and twist and shape estimation have been performed individually for
each person in each image, the relation-aware refinement network fRef needs to
deal with multi-persons contained in the image altogether. For the purpose, we
rearrange and concatenate the intermediate output vectors as follows:

Concatenating responses for N persons. The intermediate feature obtained by
applying GAP on the Fimg is the 1×1×2, 048-dimensional array. We concatenate
it for N sampled persons and reshape it towards the N × 1× 2, 048-dimensional
array. In parallel, the pose parameter θinit, shape parameter βinit and camera
parameter Cinit are concatenated for N persons and reshaped into N ×K × 6-
dimensional array, N × 1× 10 and N × 1× 3-dimensional array, respectively.

Re-arranging vectors for K joints. Afterwards, we need to align the dimension
of the shape βinit, camera parameters Cinit and feature Fimg to that of the
pose parameter θinit obtained for each joint. For the purpose, we apply fully-
connected layers (i.e. FC-shape-rearrange1, FC-cam-rearrange1 and FC-imgF-
rearrange1 layers) to make their second dimensions as K. As a result, we obtain
theN×K×10-dimensional array,N×K×6-dimensional array andN×K×2, 048-
dimensional array. Finally, we obtain the N ×K × 2, 067-dimensional array by
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concatenating resultant shape, camera, pose and image feature arrays. This is
the input to the relation-aware refinement network fRef whose architecture is
denoted in Table 3.

Transformer outputs. From the Transformer, three arrays (i.e. N × K × 6-
dimensional array, N × K × 10-dimensional array and N × K × 3-dimensional
array) are obtained. The first array is the residual pose vector ∆θref ∈ RN×K×6.
The second and third arrays are transformed via FC-shape-rearrange2 and FC-
cam-rearrange2 layers towards N × 1 × 10 and N × 1 × 3-dimensional arrays,
respectively to obtain the shape ∆βref ∈ RN×1×10, and camera ∆Cref ∈ RN×1×3

residual vectors.

Pose and shape discriminators Dθ and Dβ. We used the same architecture
of [8] as pose discriminator Dθ and shape discriminator Dβ .

Table 1: Architecture of initial 3D
skeleton estimation network fP. Input
is Fimg from ResNet.

Layer Operation Kernel Dimensionality

Input: Fimg - 8× 8× 2048

1× 1 conv1 Conv. 1× 1 8× 8× 8×K
3D Soft-argmax 3D Soft-argmax - K × 3

1× 1 conv2 Conv. 1× 1 8× 8×K
2D Soft-argmax 2D Soft-argmax - K × 2

Absolute pose recovery - - K × 3

Table 2: Architecture of twist angle
and shape estimation network fTS. In-
put is global average pooled Fimg from
ResNet.

Layer Operation Kernel Dimensionality

Input: global average pooled Fimg - 2048

FC1 Linear + dropout(0.5) - 1024
FC2 Linear + dropout(0.5) - 1024

FC-twist Linear - K × 2

FC-shape Linear - 10

Table 3: Architecture of relation-aware refiner fRef. In-
put is Θinit concatenated with global average pooled
Fimg from ResNet.

Layer Operation Kernel Dimensionality

Input: Input patches - N ×K × 2067

FC-input Linear - N ×K × 1024

Norm LayerNorm - N ×K × 1024
Multi-Head Attention Attention - N ×K × 1024

Norm LayerNorm - N ×K × 1024

MLP
Linear + GELU - N ×K × 2048

Linear - N ×K × 1024

Norm LayerNorm - N ×K × 1024
Multi-Head Attention Attention - N ×K × 1024

Norm LayerNorm - N ×K × 1024

MLP
Linear + GELU - N ×K × 2048

Linear - N ×K × 1024

MLP-pose Linear - N ×K × 6

MLP-shape
Linear - N ×K × 512
Linear - N ×K × 10

MLP-cam
Linear - N ×K × 512
Linear - N ×K × 3
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Algorithm 1: The summary of our entire training process

Input: Image I
Output: P, βinit, ϕ, Θinit, Θref

for t = 1, . . . , T do
Crop the image to produce X using M bounding boxes.
Obtain initial 3D skeletons (P) of each person from fP.
Obtain SMPL shape parameters (βinit) and twist angles (Φ) from fTS.
Obtain initial SMPL pose parameters (Θinit) by inverse kinematics.
Sample Θinit of N persons.
Feed them to fRef concatenated with image features (Fimg) and refine
them to get Θref.

Feed Θref to discriminators Dθ and Dβ .
Calculate gradient ∇L (Eq. 1) and update fP, fTS, and fRef

end

2 More details on training process

We obtain the initial skeleton estimation network fP, twist angle and shape esti-
mation network fTS and relation-aware refinement network fRef via optimizing
the following loss functions:

L(fP, fTS, fRef) = LP(f
P) + LTS(f

TS) + LRef(f
Ref). (1)

where individual terms are defined in the main paper. The overall training pro-
cedure is summarized in Algorithm 1.

Datasets. For training, we involved multiple datasets to train our framework.
We used the full or partial losses for each datasets according to their ground-
truth types: Human3.6M [4] dataset is used for calculating the full losses (i.e.
LP(f

P), LTS(f
TS), and LRef(f

Ref)), as it provides the SMPL pose and shape
parameters, 3D skeleton, 2D skeleton ground truths. MPI-INF-3DHP [15] is used
for calculating the partial losses LP(f

P) and Lpose(f
Ref), as it provides only 2D

and 3D skeleton ground-truths. LSP [6], MSCOCO [13] and MPII [1] datasets
are used to calculate only the 2D losses in LP(f

P) and Lpose(f
Ref), as they

provide only 2D skeleton ground-truth. Additionally, MuCo-3DHP [16], CMU-
Panoptic [7], SAIL-VOS [3], SURREAL [21], AIST++ [12] are used to calculate
the LP(f

P).

3 Details on calculating P

We followed [18] for calculating the absolute 3D skeletons P. Our aim is ob-
taining absolute 3D skeletons P from root-relative 3D skeletons Prel and 2D
skeletons Pimg. The root-relative 3D skeletons Prel, 2D skeletons Pimg, and ab-
solute 3D skeletons can be expressed as {(Xk,Yk,Zk)}Kk=1, {(xk, yk)}Kk=1, and
{(Xk+Xo,Yk+Yo,Zk+Zo)}Kk=1, respectively, where K is the number of joints
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Table 4: Ablation study on loss
on 3DPW.

Method MPJPE(↓) dOrder(↑)

Ours-Lpose-Ladv 68.8 47.9

Ours-Lmesh 66.3 94.7

Ours-Lpose 67.0 51.2

Ours-Ladv 67.0 95.3

Ours 66.0 96.5

Table 5: The effectiveness of re-
finer fRef on 3DPW.

Method MPJPE(↓)
HybrIK [11] 80.0
HybrIK [11] w/ Ref 78.4
Ours w/o Ref 67.3
Ours 66.0

Table 6: Inference frame rate.

Method FPS

ROMP [11] 22.7
PARE [11] 21.4
SPEC [11] 36.4
METRO [11] 16.6
HybrIK [11] 24.8
Ours 21.5

and (Xo,Yo,Zo) is the offset. We should recover the offset (Xo,Yo,Zo). A nor-
malized image coordinates can be calculated as (x̃k, ỹk)

T = K−1(xk, yk)
T . It can

be expressed as follows:[
x̃k

ỹk

]
=

[
(Xk +Xo)/(Zk + Zo)
(Yk +Yo)/(Zk + Zo)

]
(2)

where x̃k, ỹk, Xk, Yk, and Zk are estimated values. This equation can be ar-
ranged to [

Xo − x̃kZo

Yo − ỹkZo

]
=

[
x̃jZk −Xk

ỹjZk −Yk

]
(3)

There is K joints, thus we can obtain 2K linear equations with the variables
(Xo,Yo,Zo). We used Cholesky decomposition to solve them. After calculating
the offset (Xo,Yo,Zo), the absolute 3D skeletons P whose 2D skeleton lies out-
side the image are calculated as (Xk +Xo,Yk +Yo,Zk + Zo)

T and the others
are calculated as (x̃k, ỹk, 1)

T · (Zk + Zo).

4 More quantitative results

4.1 Ablation study on losses

In this section, We studied the effectiveness of losses Lpose, Lmesh, and Ladv

for training fRef. The results are shown in Table 4. When using only Lmesh,
the f ref is trained on Human3.6M which has SMPL parameters ground-truth.
Its generalization performance is worse than using a variety of dataset. When
we do not involve Lmesh, it is trained on various datasets (MPI-INF-3DHP,
LSP, COCO, etc.). Its performance is better than other methods except ‘Ours’.
When we do not involve Lpose, it is trained on Human3.6M by Lmesh and various
datasets by Ladv. It has better performance compared to ‘Ours-Lpose-Ladv’. Ladv

punishes it for wrong estimated pose and shape parameters. When we do not
involve Ladv, it is trained on a variety of datasets and has better performance
compared to ‘Ours-Lpose-Ladv’. Finally, the method using three losses (ie. Lpose,
Lmesh and Ladv) has the best performance. Further, we extend our framework to
use the original camera parameter and measure the depth-order accuracy similar
to [5, 20, 22] and its result is shown in ‘dOrder’ column of the Table. We could
see that results are gradually increasing as more loss functions are involved.
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4.2 Effectiveness of refiner fRef

We conducted the experiment to find out whether the refiner module fRef is
really improve the final mesh quality. Table 5 shows that mesh obtained from
HybrIK [11] can be improved by our refiner module fRef as well as our coarse
mesh. However, its gain is limited because HybrIK uses less competitive 3D
poses.

4.3 Inference time

We compare the inference frame rate of our method with other state-of-the-
arts. In Table 6, it is confirmed that the inference speed is comparable to other
methods.

Input HybrIK [11] Ours Input HybrIK [11] Ours

Fig. 2: Qualitative comparisons with HybrIK [11]. Red circles highlight wrongly
estimated parts.

5 More qualitative results

Fig. 2 shows our qualitative results compared to HybrIK [11]. In Figs. 3, 4
and 5, we present more qualitative results compared to three state-of-the-art
methods [10, 19, 9] on three multi-person pose estimation benchmark datasets
(i.e. 3DPW [14], AGORA [16] and MuPoTS [17]), respectively. Fig. 6 illustrates
the intermediate outputs (i.e. initial skeletons, initial meshes obtained by inverse
kinematics and refined meshes) obtained from our pipeline. Figs. 7 and 8 show
the top-view and second-view results and failure cases, respectively.
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Input SPEC [10] ROMP [19] PARE [9] Ours

Fig. 3: Qualitative comparisons on 3DPW [14]. Red circles highlight wrongly
estimated parts.
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Input SPEC [10] ROMP [19] PARE [9] Ours

Input SPEC [10] ROMP [19] PARE [9] Ours

Input SPEC [10] ROMP [19] PARE [9] Ours

Fig. 4: Qualitative comparisons on AGORA [17]. Red circles highlight wrongly
estimated parts.
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Input SPEC [10] ROMP [19] PARE [9] Ours

Input

Input SPEC [10] ROMP [19] PARE [9] Ours

Fig. 5: Qualitative comparisons on MuPoTS [16]. Red circles highlight wrongly
estimated parts.
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(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 6: Example outputs from our pipeline: (a) input RGB image, (b) initial
skeleton estimation results obtained from the input image, (c) initial meshes
obtained from the inverse kinematics process, (d) refined meshes obtained from
the refinement Transformer.
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(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 7: Example outputs from our pipeline: (a) input RGB image, (b) refined
meshes overlaid on input RGB image, (c) top view, (d) side view.
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(a) (b) (c) (d)

Fig. 8: Failure cases: (a) input RGB image, (b) initial skeleton estimation results
obtained from the input image, (c) initial meshes obtained from the inverse kine-
matics process, (d) refined meshes obtained from the refinement Transformer.
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