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Abstract. We propose Structural Triangulation, a closed-form solution
for optimal 3D human pose considering multi-view 2D pose estimations,
calibrated camera parameters, and bone lengths. To start with, we focus
on embedding structural constraints of human body in the process of
2D-to-3D inference using triangulation. Assume bone lengths are known
in prior, then the inference process is formulated as a constrained opti-
mization problem. By proper approximation, the closed-form solution to
this problem is achieved. Further, we generalize our method with Step
Constraint Algorithm to help converge when large error occurs in 2D es-
timations. In experiment, public datasets (Human3.6M and Total Cap-
ture) and synthesized data are used for evaluation. Our method achieves
state-of-the-art results on Human3.6M Dataset when bone lengths are
known and competitive results when they are not. The generality and
efficiency of our method are also demonstrated.

Keywords: multi-view 3D human pose estimation, constrained opti-
mization, triangulation

1 Introduction

3D Human Pose Estimation (3D HPE) is a fundamental yet difficult problem
in computer vision. From the perspective of sensor utilization, this problem
could be divided into two categories, namely, monocular [37,34,28,27,9,18,19]
and multi-view [17,26,2,21,6,10] based, both obtaining increasing attention in
recent years. Different from monocular 3D HPE, multi-view systems can acquire
depth information theoretically from multiple measurement instead of merely
training data, which is an inherent advantage. In this paper, we try to improve
multi-view 3D HPE via a novel pathway.

Triangulation is a basic and common module in 3D HPE, which estimates the
3D joint positions by leveraging their 2D counterparts measured in multiple im-
ages to 3D space [14]. The module is usually used in a two-stage procedure: first
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estimating 2D poses in multi-view images, then applying triangulation to obtain
3D human pose [17,33,20]. Remarkable progress has been achieved under this
pipeline. However, conventional triangulation methods are designed for individ-
ual points, and the associations between points are not specially considered. But
human body possesses an innate structure, containing relations between joints,
which can provide strong priors for 3D HPE. To overcome this shortcoming, some
methods, like 3DPSM [4,24] and post-process methods [10,19] are proposed, and
exceed previous methods in precision so the effectiveness of using human priors
is demonstrated. But some aspects are still out of focus of these works. 3DPSM
is usually time-consuming due to the large search space; post-process methods
have limited effects, where priors are not naturally and thoroughly applied.

Ideally, we expect to build a grace and simple expression for the optimal
3D pose considering 2D poses, camera settings, and human priors. Thus, 2D-
to-3D inference can be more efficient and accurate, while keeping the simplicity
of linear triangulation. We start from a simple idea of embedding structural
information in triangulation. The problem is formulated as a process to mini-
mize weighted square re-projection error. Using predefined bone lengths, a con-
strained optimization problem is constructed. The solution to this problem is
made closed-form by proper approximations and linearizations. It directly pro-
duces the optimal pose of a certain tree structure with predefined edge lengths.
We call this novel triangulation method as Structural Triangulation (ST).

To make aforementioned approximations feasible, some conditions should be
satisfied, but they may not always hold in practice, causing ST to diverge. So
we propose the Step Constraint Algorithm (SCA) to promote its adaptivity.
The algorithm split the optimization problem into small steps. and the optimal
pose gets updated when stepping from one point to the next, meanwhile, the
preconditions are satisfied at each step.

We conduct comprehensive experimental evaluation to the proposed method.
First, we use the 2D backbone provided in [17] to capture 2D pose, and then
the 3D pose is estimated using our method. Two public datasets, Human3.6M
[16] and Total Capture [30], are used. We achieve state-of-the-art result with
precise bone lengths, and promising result with bone lengths estimated from
T-pose. Next, we generate multi-view 2D estimations by shifting ground truth
re-projection randomly, and the test result shows that our method can work well
regardless of the choice of 2D backbones. Finally, the efficiency of our method
is validated by comparing the run time with previous methods.

In sum, the contributions of this work are in the following three aspects.

1. We construct a novel constrained 3D HPE problem and derive a closed-form
solution called Structural Triangulation. For the first time, structural priors
(bone lengths) are embedded in triangulation in a simple analytical form.

2. We design the Step Constraint Algorithm, which helps ST converge when
2D pose estimations are not precise enough.

3. We evaluate our method on Human3.6M Dataset, Total Capture Dataset,
and synthesized data. The precision and efficiency of our method are vali-
dated by comparing with other state-of-the-art methods.
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2 Related Work

Recently, many works are proposed to solve the problem pf Multi-view 3D HPE.
We roughly classify them as geometry and optimization based methods.

Geometry-Based Methods. Epipolar geometry is the theory basis of tri-
angulation. A two-stage framework is commonly used in multi-view 3D HPE
[17,26,21]. In the first stage, 2D poses are estimated from the given views sep-
arately. Secondly, 3D pose is inferred from 2D poses by triangulation methods.
This framework is straightforward, practical, and proved effective. Recent works
make difference mainly in 2D estimations or 3D volume introduction. The tri-
angulation itself, however, remain conventional as concluded in [14].

Under the framework of epipolar geometry, feature fusion is another concern
in recent. [25,33,6,26,36]. The method generally connects 2D backbones of differ-
ent views to fuse information from all views before outputting 2D heatmaps. The
effectiveness of this kind of methods in promoting both 2D and 3D estimations
is validated. Further, [26] provides a light-weighted version, and [33] contributes
in generalizing it.

Recently, in some works, information loss in the process of 2D pose estima-
tion, is significantly concerned. So the 2D estimation step is eliminated and 3D
pose is obtained directly from multi-view images, like fusing heatmaps directly
in volumes [17] and 3D pose regression [31]. Although having the benefit of
precision improvement, the computational cost is also increased.

Optimization-Based Methods. Early works of multi-view 3D HPE start from
optimizing human pose given 2D features [12,13]. Although the development of
deep learning offers a better solution for feature extraction, optimization is still
active in recent works. Such methods generally solve the problem by designing
an objective function that fuses all known information.

The most common and effective method under this pipeline, is 3D Pictorial
Structure Model (3DPSM). The original PSM was first proposed in [11] to match
certain structures on images. After PSM achieved promising performance in
2D pose estimation [35], 3DPSM was developed to deal with 3D HPE [2,4].
It succeeds in optimizing posterior probability given observations and human
priors. But global optimization is generally implemented by grid sampling and
therefore is time-consuming. To balance time and precision, recurrent PSM is
proposed in [25] so a faster convergence is realized.

Besides 3DPSM, there are other ways to solve such a problem. In [10], SMPL
model [3] is used to fit 3D pose by optimization so that pose and shape are
reconstructed simultaneously. Shape models can eliminate some unfeasible poses.
However, the increase in pose precision is quite limited because of redundant
shape parameters. In [5], Maximum A Posteriori (MAP) is integrated with trust
region method [8] to optimize 3D pose, but it suffers from initialization.

In conclusion, to achieve better precision, the current models become increas-
ingly complicated with less efficiency. Moreover, current triangulation methods
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Fig. 1: The framework of our method. With the 2D poses and camera projection
matrices, we formulate a quadratic objective function based on re-projection
error, which produces the initial solution b(0). And bone lengths are used as
constraints to relate joints. Then the unknowns are converted from joint positions
to bone vectors and the problem is reformulated. In the lower middle figure,
brown line is the analytical search range given by KKT condition, we linearize
it so that a closed-form solution b̂ is derived, which is close to the analytical one
b∗. It is further used in SCA to update from b(0) to the final solution b(N).

generally treat joints independently, yet the significance of human priors has
been well proved. So in this work, we propose to produce optimal 3D pose based
on a closed-form solution by utilizing human priors in a novel way.

3 Method

The whole framework of the proposed method is shown in Fig. 1. In this section,
we focus on describing the process of formulation, while the detailed inductions
can be found in Sec. 1 in Supplementary.

3.1 Problem Formulation

Given multiple images taken by several calibrated cameras, we are going to
estimate the 3D human pose in scene, where only the case of a single person is
considered. Suppose the 2D poses in each view, along with the lengths of body
bones, could be available, obtained from other existing methods.

First of all, we model the overall human body as a tree structure with joints as
nodes and bones as edges, where in total n+1 joints indexed by i = 0, 1, . . . , n are
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considered, and 0 represents the root joint (usually hip). Bones are represented
in form of (i, j), where i is the parent of j. Mark the bone set as B.

Now we can organize the known and unknown variables. The projection
matrices Pk of all cameras indexed from 1 to c, the bone length Lj of each
bone (i, j), the 2D location x̂i,k of joint i on image from camera k, and the
corresponding weight wi,k (usually the belief given by 2D backbones) are known.
The 3D coordinates of human joints, denoted by x0,x1, . . . ,xn, are unknowns
and need to be determined. Then our goal is to minimize the total weighted
square re-projection error with predefined values of all the bone lengths, i.e.:

min
x0,x1,...,xn

n∑
i=0

c∑
k=1

wi,k

∥∥H−1 (PkH(xi))− x̂i,k

∥∥2, (1)

s.t. ∥xi − xj∥ = Lj ,∀(i, j) ∈ B. (2)

whereH maps a inhomogeneous coordinate to equivalent homogeneous one. Note
that H−1 is the inverse process of H, not the function inverse:

y
H−→

[
y
1

]
;

[
y
w

]
H−1

−→ y

w
(w ̸= 0). (3)

3.2 Closed-Form Solution

Reformulation of the Objective Function. First, we analyze the objective
function Eq. (1). Split the projection matrix by Pk = [P u⊤

k ,pk]
⊤ where P u

k ∈
R2×4,pk ∈ R4. Then the objective function in Eq. (1) equals to

g(x) =

n∑
i=0

c∑
k=1

w′
i,k

∥∥P u
k H(xi)− x̂i,k

(
p⊤
k H(xi)

)∥∥2. (4)

where x = [x⊤
0 ,x

⊤
1 , . . . ,x

⊤
n ]

⊤ represents the full human pose, and the weight

becomes w′
i,k = wi,k/

(
p⊤
k H(xi)

)2
. We can ignore the term p⊤

k H(xi) and directly
treat w′

i,k as the new weight. Thus g(x) becomes a quadratic function, whose
minimization is trivial. Actually, if all weights are set the same, minimizing g(x)
will produce exactly the same result as linear-LS triangulation [14].

To better describe the constraints on bones in Eq. (2), we represent human
pose with bones. Define a bone vector as a vector that points from proximal to
distal joint of the bone. Use bi to represent the bone vector with distal joint i
(i = 1, 2, . . . , n, no b0 because joint 0 is the root). Like x, we concatenate all
bone vectors to a single column vector b = [b⊤1 , b

⊤
2 , . . . , b

⊤
n ]

⊤. Since b implies no
global position, b̃ = [x⊤

0 , b
⊤] is a comprehensive representation of human pose.

As is indicated in Kinematic Chain Space (KCS) [32], the conversion between
joint positions and bone vectors is a linear process, and can be accomplished by
matrix multiplication. Here, the matrix is defined as G = {Gij}, where

Gij =

I3, if i = j or joint j − 1 is the parent of i− 1;
−I3, if joint j − 1 is the child of i− 1;
0, otherwise.

(5)
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Fig. 2: The conversion between joint coordinates and bone vectors. From left to
right, the human skeleton is represented by joint positions x, which is further
converted to b̃ by Eq. (6). Then the root joint coordinate x0 is expressed by
bone vectors and the conversion to b is done. The process is fully invertible.

Note that no bone vector can be linearly represented by the others, so all
row vectors of G are linearly independent and G is non-singular. Then we have

b̃ = Gx; x = G−1b̃. (6)

The conversion by Eq. (6) is not thorough because in b̃, x0 is the root joint
coordinate, not a bone vector. The constraints set no direct limit on x0, so we can
fix b and solve x0 from an unconstrained quadratic optimization problem, which
has a trivial solution. The optimal x0 is obtained via the following equation:

x0 = Qb+ p (7)

where Q ∈ R3×3n,p ∈ R3 are known constants, whose expressions are provided
in Sec. 1.1 Supplementary. We illustrate the full converting process from joint
coordinates to bone vectors, as well as the inverse process, in Fig. 2.

With Eq. (7), Eq. (4) can be formulated as a quadratic function of b. To help
description, we mark the line as li,k, which connects the optic center of camera k
and the 2D estimation of joint i on the image plane. Then we derive a property
of the formulation of Eq. (4) and leave its proof in Sec. 1.2 in Supplementary.

Property 1. The optimization problem in Eq. (1) and (2) is formulated as

min
b

f(b) =
1

2
b⊤Ab− β⊤b+ d (8)

s.t. hi(bi) = ∥bi∥2 = L2
i , i = 1, 2, . . . , n. (9)

where A ∈ R3n×3n is a symmetric positive semi-definite constant matrix, β ∈
R3n and d ∈ R are constants. A is singular if and only if ∃i = 0, 1, . . . , n, there
holds ∀k1, k2 = 1, 2, . . . , c, li,k1//li,k2 .

Actually when A is singular, excluding the factor of 2D estimation errors, all
camera optic centers have to be approximately collinear with one of the joints.
If we set up the cameras properly, such conditions can be easily avoided.
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Approximation and Linearization. In Eq. (8), f(b) is a convex function, but
due to non-affine constraint in Eq. (9), the optimization problem is non-convex.
Generally, we need to consider the necessary condition, i.e., Karush-Kuhn-Tucker
(KKT) condition. The condition produces a nonlinear equation group, but we
show that it is solvalbe under proper approximations.

Define three vectors: h(b) = [h1(b1), h2(b2), . . . , hn(bn)]
⊤ represents the

function that calculates square bone length vector given b, L = [L2
1, L

2
2, . . . , L

2
n]

⊤

is the target square bone length vector, and λ = [λ1, λ2, . . . , λn]
⊤ is the multi-

plier vector. Then the Lagrange multiplier is written as:

l(b,λ) = f(b) + λ⊤ (h(b)−L) . (10)

The KKT condition gives us an equation group purely about λ.

h
(
(A+ 2Λ)−1β

)
= L, (11)

where Λ = diag{λ} ⊗ I3 and “⊗” is the Kronecker product. The unknown λ
is inside a matrix inverse, which is highly non-linear. But we can make linear
approximations about (A+ 2Λ)−1 under certain assumptions. To support this,
we introduce the following lemma (proof see Sec. 1.3 in Supplementary):

Lemma 1. Suppose A,B ∈ Rn×n and A is non-singular. ∥ · ∥ is the spectral
norm of a matrix. If ∥A−1B∥ < 1, then A−B is non-singular and the following
inequality holds:∥∥(A−B)−1 −

(
A−1 +A−1BA−1

)∥∥ ≤
∥∥A−1B

∥∥2 ∥∥A−1
∥∥

1− ∥A−1B∥
. (12)

By substituting −2Λ for B in Lemma 1, we directly conclude that

(A+ 2Λ)−1 ≈ A−1 − 2A−1ΛA−1. (13)

Eq. (13) provides a linear approximation for matrix inverse. After replacing
(A + 2Λ)−1 in Eq. (11), there is still a second-order term of λ. We can aban-
don it with respect to

∥∥2A−1Λ
∥∥ ≪ 1 so that Eq. (11) becomes totally linear.

Define some notations. L(i) =
[
∥b(i)1 ∥2, ∥b(i)2 ∥2, · · · , ∥b(i)n ∥2

]⊤
, b(0) = A−1β is

the minimizer of f(b) with no constraint, which is later referred to as the initial

solution, and D
(3×1)
n ∈ R3n×n represents a block diagonal matrix whose diagon

is filled by n 3-dimensional all-1 column vectors. Then the expression of λ is

λ =
1

4

(
D(3×1)⊤

n diag{b(0)}A−1diag{b(0)}D(3×1)
n

)−1

(L(0) −L). (14)

The bone vector estimation is given by

b̂ = b(0) − 2A−1Λb(0), (15)

With Eq. (15), we can derive root joint coordinate from b̂ by Eq. (7), and
then applying Eq. (6) reversely will produce the optimal pose. This is the theory
of Structural Triangulation. The process is illustrated more clearly in Fig 3a.



8 Z. Chen et al.

 

(a) Linearize process
 

(b) Diverge case
 

(c) SCA update process

Fig. 3: Illustrations of solution finding process. Groups of ellipses represent the
level sets of objective functions. In (a) and (b), blue curve is the bone length
constraint, brown line is the range of (A+Λ)−1β as λ varies, and orange virtual

line is the linearized range by Eq. (13). b∗ is the analytical solution while b̂ is the
approximated one. They are usually close, as (a) shows, but sometimes not, like
(b). For diverge cases, SCA will be helpful. Figure (c) shows the update process,
where we mark variables at adjacent stages with different colors. From step i−1
to i,the solution is updated to b(i) in the way shown in (a) and a new quadratic
objective function is formed with b(i) as the minimizer. Then we target for the
bone lengths constraint, i.e., h(b) = L(i+1) and repeat the process.

3.3 SCA: Step Constraint Algorithm

The above analysis is under the assumption of
∥∥2A−1Λ

∥∥ ≪ 1, but sometimes it
fails to hold. Structural Triangulation may be regarded as a process to correct
a pose so that the squared bone length vector changes from L(0) to the target
L. In Eq. (14), it is obvious that if the initial bone lengths are far from target,
which is possible when 2D estimations are not precise enough, then ∥λ∥ can be
large and the assumption may be contradicted. Consequently, the result may
diverge (as shown in Fig. 3b).

However, this case is still in reach with some modifications. We can interpo-
late some points between L(0) and L and use ST to correct pose from one point
to the next. Adjacent points are near so the assumption is confirmed to hold
each time. This is the basic idea of Step Constraint Algorithm.

First we need to determine a step number N and N − 1 step points between
L(0) and L, which are marked as L(1),L(2), . . . ,L(N−1). Let L(N) = L. A way to
generate them is by constructing a decreasing series {αi}Ni=0 (α0 = 1, αN = 0),
and calculate by linear interpolating, where the series serve as the proportions,
i.e., L(i) = αiL

(0)+(1−αi)L. However, in iteration from i− 1 to i, h(b(i)) does
not exactly equal to the predefined splitting point L(i) due to approximations.
So a better way is to determine these splitting points in-the-run. In other words,

we first calculate the real square bone length vector L
(i−1)
real = h(b(i−1)), then

find L(i) by (L(i) −L)/αi = (L(i−1) −L)/αi−1.

L(i) =
αi

αi−1
L

(i−1)
real +

αi−1 − αi

αi−1
L (16)
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Algorithm 1: Structural Triangulation + Step Constraint Algorithm

Input : A,β,L, N, α0, α1, . . . , αN

Output: b
1 T (0) ←− A−1;

2 b(0) ←− T (0)β;
3 for i← 1 to N do

4 L
(i−1)
real ←− h(b(i−1)); // when i=1, initialize L0.

5 L(i) ←−
(
αiL

(i−1)
real + (αi−1 − αi)L

)
/αi−1;

6 λ←−
(
D

(3×1)⊤
n diag{b(i−1)}T (0)diag{b(i−1)}D(3×1)

n

)−1

(L
(i−1)
real −L(i))/4;

7 Λ←− diag{λ} ⊗ I3;

8 T (i) ←− (In − 2T (i−1)Λ)T (i−1);

9 b(i) ←− T (i)β;

10 end

11 b←− b(N);

In our experiment, we use the in-the-run method and determine {αi}Ni=0

simply by αi = (N − i)/N . In experiment, if not specified, then N is set to 3.
The pseudo-code of ST + SCA is shown in Algorithm 1. Besides b(i) and

L(i), T (i) represents another important variable to update - the approximation
of (A + 2Λ)−1. The update is done in line 8 of Algorithm 1, by the linear
expression provided in Eq. (13). Fig. 3c illustrates the whole process.

4 Experiments

4.1 Experimental Settings

Datasets and Metrics. In the experiments, we use two public datasets: Hu-
man3.6M [16] and Total Capture [30] datasets.

In Human3.6M Dataset, the images are acquired by 4 cameras at 50Hz and
the dataset contains more than 3.6 million images, which are organized by differ-
ent subjects. By convention, S1, S5, S6, S7, and S8 are used for training, while
S9 and S11 are used for testing. Note that Human3.6M provides pose labels in
32-joint form, and we follow the common criterion to use the 17-joint subset.

In Total Capture Dataset, 8 cameras are used to capture images, where we
use cameras 1, 3, 5, and 7. The data are also organized by subjects. The test
set contains “Walking-2”(W2), “Freestyle-3”(FS3), and “Acting-3” (A3) of all 5
subjects. Note that the original labels are arranged in 21-joint form, with which
“Nose” joint in previous 17-joint model fails to make correspondence. So we use a
16-joint subset (details see Sec. 2 in Supplementary) for ST, where “RightArm”
and “Neck”, “LeftArm” and “Neck” are not directly connected in the original
skeletal model and the lengths may vary in a limited range.

For metrics, we use Mean Per Joint Position Error (MPJPE) to measure joint
precision, along with some new metrics on bone lengths. Two types of MPJPEs
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(a) Round
 

(b) Half

Fig. 4: Two patterns to set up virtual cameras, where c is the camera number
and θ is the angle interval between adjacent camera optic axes. O is the global
coordinate origin, which all skeleton root joints are aligned to. All image planes
are orthogonal to the principal optic axes, while these axes all point to O and
distribute uniformly in predefined angle range, i.e., 2π in (a) and π in (b). The
axis of camera 1 is right on z axis.

are used: (1) absolute MPJPE (MPJPE-ab) calculate the position errors directly
without alignment; (2) relative MPJPE (MPJPE-re), usually known as Proto-
col #1 [23], measures position errors after aligning the pelvis. Since labels of
some subsets in S9 is shifted, we follow [17] to present MPJPE-ab after elim-
inating these bad samples. Additionally, we introduce some metrics on bones:
(1) Mean Per Bone Length Error (MPBLE) measures the average over all bone
length errors, the same as MPLLE in [22]. (2) Mean Bone Length Standard de-
viation (MBLS) equals the square root of average variance over all bone lengths.
(3) Percentage of Inlier Bones (PIB) is the rate of bones with reasonable lengths,
to be exact, 0.8˜1.2 times the true bone lengths.

The Choice of 2D Estimation Model. Because 2D HPE is not involved in
our work, a proper 2D backbone is needed to test our method on public datasets.
We choose the algebraic triangulation model by Iskakov et al [17] because it is a
precise and simple framework. The model, which serves as our baseline, consists
of a 2D backbone and a SVD triangulation module. It also provides beliefs for
cameras which we use as weights in Eq. (4). In our experiment, the model is
pretrained on MPII [1] and fine-tuned on Human3.6M dataset. We keep the 2D
backbone and replace the triangulation module with our method.

Virtual Test Settings. We aim to prove that our method outperforms con-
ventional triangulation methods once the bone lengths are known, regardless of
camera settings and 2D backbones. So we synthesize 2D estimations randomly by
modeling the 2D estimations as “ground truth re-projection + Gaussian noise”.
After generating c virtual cameras with projection matrices P1,P2, . . . ,Pc, we
can re-project 3D pose and get the ground truth 2D poses. Concatenate these
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Table 1: Relative MPJPE (mm) on Human3.6M Dataset compared with previous
state-of-the-art methods. We highlight tests in our method in light gray, and “*”
means estimated bone lengths are used.

Method Dire. Disc. Eat Greet Phone Photo Pose Purch.

Tome et al [29] 43.3 49.6 42.0 48.8 51.1 64.3 40.3 43.3
Yihui and Rui et al[15] 28.9 32.5 26.6 28.1 28.3 29.3 28.0 36.8
Remelli et al [26] 27.3 32.1 25.0 26.5 29.3 35.4 28.8 31.6
Qiu et al [25] 23.98 26.71 23.19 24.30 24.77 22.82 24.12 28.62
AT by Iskakov et al [17] 20.42 22.83 19.98 19.48 21.73 20.69 19.11 22.39
VT by Iskakov et al [17] 18.06 19.63 19.45 18.36 19.95 19.36 17.79 20.68
Lagrangian algorithm [7] 19.33 20.85 18.68 18.49 21.77 20.05 17.97 20.89
Ours* 18.67 21.27 17.95 18.90 21.00 19.18 18.48 22.07
Ours (w/o SCA) 17.56 20.03 16.22 17.86 20.49 19.06 17.38 22.08
Ours 17.37 19.70 15.56 17.46 19.61 18.82 16.95 20.24

Method Sit SitD Smoke Wait Walk WalkD WalkT Avg.

Tome et al [29] 66.0 95.2 50.2 52.2 51.1 43.9 45.3 52.8
Yihui and Rui et al [15] 42.0 30.5 35.6 30.0 29.3 30.0 30.5 31.2
Remelli et al [26] 36.4 31.7 31.2 29.9 26.9 33.7 30.4 30.2
Qiu et al [25] 32.12 26.87 30.98 25.56 25.02 28.07 24.37 26.21
AT by Iskakov et al [17] 26.10 31.80 22.85 20.94 20.13 23.50 21.12 22.33
VT by Iskakov et al [17] 23.27 29.43 20.58 19.38 18.66 21.15 19.12 20.35
Lagrangian algorithm [7] 24.99 29.18 21.89 19.94 19.37 22.05 20.28 21.18
Ours* 23.34 28.17 20.73 20.27 20.25 21.87 20.19 20.86
Ours (w/o SCA) 24.07 29.87 20.44 19.83 17.96 20.97 18.91 20.22
Ours 21.92 26.71 19.25 18.90 17.88 20.64 18.69 19.35

coordinates as a column vector x2d ∈ R2(n+1). Then generate a noise vector
ϵ ∈ R2(n+1), each of whose element obeys Gaussian distribution N(0, σ). Finally
the generated 2D estimations are calculated by x̂2d = x2d + ϵ.

In our experiment, all cameras share the same intrinsics, along with two types
of camera extrinsic settings: round and half (Fig. 4). We use ground truth labels
from sampled test set of Human3.6M Dataset - totally 2181 frames - as our base
3D pose to confirm feasibility and variety.

4.2 Experiments on Public Datasets

Quantitative Results and Analysis. The test result of two datasets are
reported in Table 1, 2, and 3.

The acquisition of bone lengths is simple in public datasets since we can
use the ground truth of one frame to calculate. In practice, it is also available
by mature human measurement techniques. However, we need to consider the
errors in bone length measurements. We therefore provide a simple estimation
by averaging all symmetric bone lengths in linear triangulation results of T-pose
frames. We mark experiments using such bone lengths with “*”.

Table 1 and 2 show the experiment result on Human3.6M dataset. Besides
linear triangulation, we also implement an iterative optimization algorithm -
Lagrangian algorithm [7] - to solve the problem described by Eq. (8) and (9)
to serve as a baseline (details see Sec. 3.1 in Supplementary). As is shown, our
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Table 2: Average abso-
lute MPJPE (mm) on Hu-
man3.6M Dataset.

Method MPJPE-ab

Baseline 19.26
Vol. [17] 17.93
Ours* 18.90
Ours (w/o SCA) 17.98
Ours 17.78

Table 3: Relative MPJPE (mm) on Total Capture
Dataset. The bone lengths used in tests of the last
line are the average over all ground truth labels
instead of one frame.

Method W2 FS3 A3 Average

Baseline 69.0 65.8 56.0 63.3
Ours* 73.0 70.2 58.4 66.9
Ours 69.2 60.2 50.2 59.6

(a) An example in S9 (b) An example in S11

Fig. 5: Examples on how Structural Triangulation corrects human pose. The
upper row is the result by SVD triangulation while the lower is by ours. Only
2 representative views are selected from the 4 views for illustration. The circled
point in (a) gets 61.7% reduction in relative joint position error, while in (b) the
reduction is 24.3%.

method exceeds the previous state-of-the-art method (Volumetric Triangulation
[17]) by 4.9% in MPJPE-re. Absolute MPJPE error is also reduced by 0.15mm.
We can also observe that SCA helps lower MPJPE-re by 0.87mm and MPJPE-
ab by 0.20mm. Our method outperforms the iterative baseline, and reaches
satisfying accuracy when imprecise bone lengths are used.

We also study how the step number N in SCA affects precision. Relatie
MPJPE generally decreases with N and gets 19.33mm at N = 9. However,
when N ≥ 10 the estimations in some frames will diverge, causing an abnormal
error increase. So a relatively small number is recommended, like 3 in our tests.

In experiments on Total Capture Dataset, we focus on whether our method
works in case some connection lengths are not actually fixed. We report the
result in Table 3. Though our method does not correct 3D pose successfully
when bone length estimations are imprecise, a 3.7mm decrease in MPJPE-re
error is obtained when bone lengths are known.

Qualitative Analysis. To describe how our method corrects poses, we take two
examples from test subjects in Human3.6M dataset and mark the remarkably
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Table 4: Effects of whether SCA is involved (“SCA”) or whether ground truth
bone lengths are used (“GT”). The unit for MPBLE and MBLS is mm. PIB is
presented in percentage (%). Down arrows mean the smaller the better while up
arrows mean the contrary. “*” means estimated bone lengths are used.

Method SCA GT
S9 S11

MPBLE ↓ MBLS ↓ PIB ↑ MPBLE ↓ MBLS ↓ PIB ↑

Baseline - - 12.2 15.9 97.4 7.62 9.88 97.5

ST* × × 7.93 0.350 99.9 5.48 0.156 100
ST × √ 1.31 4.35 99.8 0.531 1.19 100

ST + SCA* √ × 7.93 0.122 100 5.48 0.0243 100

ST + SCA √ √ 0.129 0.151 100 0.0555 0.0178 100

improved points with circles in Fig. 5. The initial pose possesses shorter right
arms in Fig. 5a and longer right leg in Fig. 5b. We can see how the pose is
corrected while pursuing the correct bone lengths.

Ablation Study. In this section, our major concern is the improvement on bone
lengths of our method, and the affect of whether precise bone lengths are given.
The metrics on bones proposed in section 4.1 are used. We report the result in
Table 4. The use of ground truth bone lengths is treated as a component to help
analyze the effect of imprecise bone length input.

In the first two rows, it is clear that merely ST is enough to decrease MPBLE
by over 35% in S9 and S11 even with estimated bone lengths. It implies the
increase in bone length precision, yet we still need to study MBLS and PIB
to conclude the reason. Actually, smaller MBLS means stabler bone lengths
in estimation, and larger PIB indicates larger proportion of reasonable poses.
Compared to baseline, ST has the effect to stabilize bone lengths, and SCA
makes the effect even stronger. In the last two rows, small MBLS and 100%
PIB indicate that the bone lengths are nearly invariant, which proves that our
method constrains the bone lengths in a strict way.

4.3 Experiments on Synthesized 2D Estimations

We conduct experiments on data generated in the way proposed in Section 4.1,
where noise standard deviation σ varies from 2 px to 20 px, and camera number
c varies from 2 to 10 and all combinations are considered. Some representative
results are plotted in Fig. 6 and the full results are available in Sec. 3.4 in
Supplementary.

Clearly, our method shows better precision than SVD triangulation. In Fig. 6,
we observe boundary effect in the promotion of ST, but ST has certain positive
effect in all experiment settings. We also calculate the proportion of frames
when ST outperforms the baseline under all combinations of σ and c which is
always more than 82% and nearly 100% when there are more than 2 cameras.
In conclusion, the generality of our method is validated.
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(a) MPJPE-σ curve

 

(b) MPJPE-c curve

Fig. 6: Curves on how absolute MPJPE varies with the change of noise standard
deviation σ and camera number c. In (a) we set c = 2, while in (b) we set σ = 10
px. When there are only 2 cameras in round camera setting, they are right on
the opposite directions to each other, which causes singularity in SCA. So in
such experiments we eliminate SCA step and apply pure ST.

Table 5: Per frame inference time of different methods. The numbers of steps is
the values of N used in SCA.

Method SVD RPSM [25] Vol. [17] Ours (3 steps) Ours (9 steps)

Inference time (ms) 1.95 1.82× 103 305.4 6.63 8.96

4.4 Running Time

Now we would like to validate the computational efficiency. We conduct experi-
ments to compare our method with Volumetric Triangulation Model [17], RPSM
[25], and SVD Triangulation method. Since [17] does not generate 2D estima-
tions but require algobraic model to generate a rough estimation, the time is
how much the whole end-to-end process takes. We run different methods on the
same computer with a 16-core 2.10GHz Intel E5-2620 v4 CPU, an Nvidia Titan
Xp GPU, 32GB RAM. The experiment results are reported in Table 5.

As shown in Table 5, our method is much faster than RPSM and Volumetric
Triangulation. Additionally, more steps in SCA is not costing much time. Though
it takes more time than basic SVD triangulation, compared to time cost in 2D
backbones (about 400ms) in our test, the increase is not obvious.

5 Conclusions

In this paper we formulate the problem of 2D-to-3D inference in multi-view 3D
HPE as a constrained optimization problem, and propose a novel closed-form
solution, i.e., Structural Triangulation. To further generalize our method, we
design SCA to make it compatible with the situation when large error occurs in
2D estimations. Experiments on open datasets and synthesized data prove our
method is effective, generally applicable, and efficient.
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