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Abstract. We observe that human poses exhibit strong group-wise
structural correlation and spatial coupling between keypoints due to
the biological constraints of different body parts. This group-wise struc-
tural correlation can be explored to improve the accuracy and robustness
of human pose estimation. In this work, we develop a self-constrained
prediction-verification network to characterize and learn the structural
correlation between keypoints during training. During the inference
stage, the feedback information from the verification network allows us
to perform further optimization of pose prediction, which significantly
improves the performance of human pose estimation. Specifically, we
partition the keypoints into groups according to the biological structure
of human body. Within each group, the keypoints are further partitioned
into two subsets, high-accuracy proximal keypoints and low-accuracy dis-
tal keypoints. We develop a self-constrained prediction-verification net-
work to perform forward and backward predictions between these key-
point subsets. One fundamental challenge in pose estimation, as well as
in generic prediction tasks, is that there is no mechanism for us to ver-
ify if the obtained pose estimation or prediction results are accurate or
not, since the ground truth is not available. Once successfully learned, the
verification network serves as an accuracy verification module for the for-
ward pose prediction. During the inference stage, it can be used to guide
the local optimization of the pose estimation results of low-accuracy key-
points with the self-constrained loss on high-accuracy keypoints as the
objective function. Our extensive experimental results on benchmark MS
COCO and CrowdPose datasets demonstrate that the proposed method
can significantly improve the pose estimation results.

Keywords: Human Pose Estimation, Self-Constrained, Structural In-
ference, Prediction Optimization.

1 Introduction

Human pose estimation aims to correctly detect and localize keypoints, i.e., hu-
man body joints or parts, for all persons in an input image. It is one of the funda-
mental computer vision tasks which plays an important role in a variety of down-
stream applications, such as motion capture [5,24], activity recognition [1,31],
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Fig. 1. Illustration of the proposed idea of self-constrained inference optimization of
structural groups for human pose estimation.

and person tracking [35,30]. Recently, remarkable process has been made in hu-
man pose estimation based on deep neural network methods [2,3,27,10,23,25].
For regular scenes, deep learning-based methods have already achieved remark-
ably accurate estimation of body keypoints and there is little space for further
performance improvement [37,29,11]. However, for complex scenes with person-
person occlusions, large variations of appearance, and cluttered backgrounds,
pose estimation remains very challenging [32,11]. We notice that, in complex
scenes, the performance of pose estimation on different keypoints exhibits large
variations. For example, for those visible keypoints with little interference from
other persons or background, their estimation results are fairly accurate and
reliable. However, for some keypoints, for example the distal keypoints at tip
locations of body parts, it is very challenging to achieve accurate pose estima-
tion. The low accuracy of these challenging keypoints degrades the overall pose
estimation performance. Therefore, the main challenge in pose estimation is how
to improve the estimation accuracy of these challenging keypoints.

As summarized in Fig. 1, this work is motivated by the following two impor-
tant observations: (1) human poses, although exhibiting large variations due to
the free styles and flexible movements of human, are however restricted by the
biological structure of the body. The whole body consists of multiple parts, such
as the upper limbs and lower limbs. Each body part corresponds to a subgroup of
keypoints. We observe that the keypoint correlation across different body parts
remains low since different body parts, such as the left and right arms, can move
with totally different styles and towards different directions. However, within the
same body part or within the same structural group, keypoints are more spa-
tially constrained by each other. This implies that keypoints can be potentially
predictable from each other by exploring this unique structural correlation. Mo-
tivated by this observation, in this work, we propose to partition the body parts
into a set of structural groups and perform group-wise structure learning and
keypoint prediction refinement.

(2) We have also observed that, within each group of keypoints, distal key-
points at tip locations of the body parts, such as ankle and wrist keypoints,
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Fig. 2. Keypoints at the tip locations of body parts suffer from low accuracy scores
obtained from the heatmap during pose estimation.

often suffer from lower estimation accuracy. This is because they have much
larger freedom of motion and are more easily to be occluded by other objects.
Fig. 2 shows the average prediction accuracy (computed based on the distance
between the predicted keypoint position and its ground-truth with normaliza-
tion.) of all keypoints with yellow dots and bars representing the locations and
estimation accuracy for distal keypoints, for example, wrist or ankle keypoints.
We can see that the average estimation accuracy of distal keypoints are much
lower than the rest.

Motivated by the above two observations, we propose to partition the body
keypoints into 6 structural groups according to their biological parts, and each
structural group is further partitioned into two subsets: distal keypoints and prox-
imal keypoints (the rest keypoints). We develop a self-constrained prediction-
verification network to learn the structural correlation between these two sub-
sets within each structural group. Specifically, we learn two tightly coupled net-
works, the prediction network Φ which performs the forward prediction of distal
keypoints from proximal keypoints, and the verification network Γ which per-
forms backward prediction of the proximal keypoints from distal keypoints. This
prediction-verification network aims to characterize the structural correlation
between keypoints within each structural group. They are jointly learned using
a self-constraint loss. Once successfully learned, the verification network Γ is
then used as a performance assessment module to optimize the prediction of
low-accuracy distal keypoints based on local search and refinement within each
structural group. Our extensive experimental results on benchmark MS COCO
datasets demonstrate that the proposed method is able to significantly improve
the pose estimation results.

The rest of the paper is organized as follows. Section 2 reviews related work
on human pose estimation. The proposed self-constrained inference optimization
of structural groups is presented in Section 3. Section 4 presents the experimental
results, performance comparisons, and ablation studies. Section 5 concludes the
paper.
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2 Related Work and Major Contributions

In this section, we review related works on heatmap-based pose estimation,
multi-person pose estimation, pose refinement and error correction, and recip-
rocal learning. We then summarize the major contributions of this work.

(1) Heatmap-based pose estimation. In this paper, we use heatmap-
based pose estimation. The probability for a pixel to be the keypoint can be
measured by its response in the heatmap. Recently, heatmap-based approaches
have achieved the state-of-the-art performance in pose estimation [32,4,34,27].
The coordinates of keypoints are obtained by decoding the heatmaps [25]. [4]
predicted scale-aware high-resolution heatmaps using multi-resolution aggrega-
tion during inference. [34] processed graph-structured features across multi-scale
human skeletal representations and proposed a learning approach for multi-level
feature learning and heatmap estimation.

(2) Multi-person pose estimation. Multi-person pose estimation requires
detecting keypoints of all persons in an image [6]. It is very challenging due to
overlapping between body parts from neighboring persons. Top-down methods
and bottom-up methods have been developed in the literature to address this is-
sue. (a) Top-down approaches [10,28,21,25] first detect all persons in the image
and then estimates keypoints of each person. The performance of this method
depends on the reliability of object detection which generates the bounding box
for each person. When the number of persons is large, accurate detection of each
person becomes very challenging, especially in highly occluded and cluttered
scenes [23]. (b) Bottom-up approaches [8,2,20] directly detect keypoints of all
persons and then group keypoints for each person. These methods usually run
faster than the top-down methods in multi-person pose estimation since they
do not require person detection. [8] activated the pixels in the keypoint regions
and learned disentangled representations for each keypoint to improve the re-
gression result. [20] developed a scale-adaptive heatmap regression method to
handle large variations of body sizes.

(3) Pose refinement and error correction. A number of methods have
been developed in the literature to refine the estimation of body keypoints
[13,21,29]. [7] proposed a pose refinement network which takes the image and
the predicted keypoint locations as input and learns to directly predict refined
keypoint locations. [13] designed two networks where the correction network
guides the refinement to correct the joint locations before generating the final
pose estimation. [21] introduced a model-agnostic pose refinement method using
statistics of error distributions as prior information to generate synthetic poses
for training. [29] introduced a localization sub-net to extract different visual fea-
tures and a graph pose refinement module to explore the relationship between
points sampled from the heatmap regression network.

(4) Cycle consistency and reciprocal learning. This work is related
to cycle consistency and reciprocal learning. [39] translated an image from the
source domain into the target domain by introducing a cycle consistence con-
straint so that the distribution of images from translated domain is indistin-
guishable from the distribution of target domain. [26] developed a pair of jointly-
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learned networks to predict human trajectory forward and backward. [33] devel-
oped a reciprocal cross-task architecture for image segmentation, which improves
the learning efficiency and generation accuracy by exploiting the commonalities
and differences across tasks. [18] developed a Temporal Reciprocal Learning
(TRL) approach to fully explore the discriminative information from the disen-
tangled features. [38] designed a support-query mutual guidance architecture for
few-shot object detection.

(5) Major contributions of this work. Compared to the above related
work, the major contributions of this work are: (a) we propose to partition
the body keypoints into structural groups and explore the structural correla-
tion within each group to improve the pose estimation results. Within each
structural group, we propose to partition the keypoints into high-accuracy and
low-accuracy ones. We develop a prediction-verification network to characterize
structural correlation between them based on a self-constraint loss. (b) We intro-
duce a self-constrained optimization method which uses the learned verification
network as a performance assessment module to optimize the pose estimation of
low-accuracy keypoints during the inference stage. (c) Our extensive experimen-
tal results have demonstrated that our proposed method is able to significantly
improve the performance of pose estimation and outperforms the existing meth-
ods by large margins.

Compared to existing methods on cycle consistency and reciprocal learning,
our method has the following unique novelty. First, it addresses an important
problem in prediction: how do we know if the prediction is accurate or not since
we do not have the ground-truth. It establishes a self-matching constraint on
high-accuracy keypoints and uses the successfully learned verification network
to verify if the refined predictions of low-accuracy keypoints are accurate or not.
Unlike existing prediction methods which can only perform forward inference,
our method is able to perform further optimization of the prediction results dur-
ing the inference stage, which can significantly improve the prediction accuracy
and the generalization capability of the proposed method.

3 Method

In this section, we present our self-constrained inference optimization (SCIO) of
structural groups for human pose estimation.

3.1 Problem Formulation

Human pose estimation, as a keypoint detection task, aims to detect the loca-
tions of body keypoints from the input image. Specifically, let I be the image
of size W × H × 3. Our task is to locate K keypoints X = {X1, X2, ..., XK}
from I precisely. Heatmap-based methods transform this problem to estimate K
heatmaps {H1, H2, ...,HK} of size W ′×H ′. Given a heatmap, the keypoint loca-
tion can be determined using different grouping or peak finding methods [21,25].
For example, the pixel with the highest heatmap value can be designated as the
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Fig. 3. The overall framework of our proposed network. For an input image, heatmaps
of all keypoints predicted by the backbone are partitioned into 6 structural groups.
During training stage, each groupH is divided into two subsets: proximal keypoints and
distal keypoints. A prediction-verification network with self-constraints is developed to
characterize the structural correlation between these two subsets. During testing, the
learned verification network is used to refine the prediction results of the low-accuracy
distal keypoints.

location of the corresponding keypoint. Meanwhile, given a keypoint at location
(px, py), the corresponding heatmap can be generated using the Gaussian kernel

C(x, y) =
1

2πσ2
e−[(x−px)

2+(y−py)
2]/2σ2

. (1)

In this work, the ground-truth heatmaps are denoted by H̄1, H̄2, ..., H̄K .

3.2 Self-Constrained Inference Optimization on Structural Groups

Fig. 3 shows the overall framework of our proposed SCIO method for pose esti-
mation. We first partition the detected human body keypoints into 6 structural
groups, which correspond to different body parts, including lower and upper
limbs, as well as two groups for the head part, as illustrated in Fig. 4. Each
group contains four keypoints. We observe that these structural groups of four
keypoints are the basic units for human pose and body motion. They are con-
strained by the biological structure of the human body. There are significant
freedom and variations between structural groups. For example, the left arm
and the right arm could move and pose in totally different ways. In the mean-
time, within each group, the set of keypoints are constraining each other with
strong structural correlation between them.

As discussed in Section 1, we further partition each of these 6 structural
groups into proximal keypoints and distal keypoints. The proximal keypoints are
near the body torso while the distal keypoints are at the end or tip locations of
the corresponding body part. Fig. 2 shows that the distal keypoints are having
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Fig. 4. Partition of the body keypoints into 6 structural groups corresponding to dif-
ferent body parts. Each group has 4 keypoints.

much lower estimation accuracy scores than those proximal keypoints during
pose estimation. In this work, we denote these 4 keypoints within each group by

G = {XA, XB , XC | XD}, (2)

where XD is the distal keypoint and the rest three {XA, XB , XC} are the
proximal keypoints near the torso. The corresponding heatmap are denoted by
H = {HA, HB , HC | HD}. To characterize the structural correlation within
each structural group H, we propose to develop a self-constrained prediction-
verification network. As illustrated in Fig. 3, the prediction network Φ pre-
dicts the heatmap of the distal keypoint HD from the proximal keypoints
{HA, HB , HC} with feature map f as the visual context:

ĤD = Φ(HA, HB , HC ; f). (3)

We observe that the feature map f provides important visual context for key-
point estimation. The verification network Γ shares the same structure as the
prediction network. It performs the backward prediction of keypoint HA from
the rest three:

ĤA = Γ(HB , HC , HD; f). (4)

Coupling the prediction and verification network together by passing the predic-
tion output ĤD of the prediction network into the verification network as input,
we have the following prediction loop

ĤA = Γ(HB , HC , ĤD; f) (5)

= Γ(HB , HC ,Φ(HA, HB , HC ; f); f). (6)

This leads to the following self-constraint loss

Ls
A = ||H̄A − ĤA||2. (7)

This prediction-verification network with a forward-backward prediction loop
learns the internal structural correlation between the proximal keypoints and
the distal keypoint. The learning process is guided by the self-constraint loss. If
the internal structural correlation is successfully learned, then the self-constraint
loss Ls

A generated by the forward and backward prediction loop should be small.
This step is referred to as self-constrained learning.
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Once successfully learned, the verification network Γ can be used to verify if
the prediction X̂D is accurate or not. In this case, the self-constraint loss is used
as an objective function to optimize the prediction X̂D based on local search,
which can be formulated as

X̂∗
D = argmin

X̂D

||HA − ĤA||2, (8)

= argmin
X̂D

||HA − Γ(HB , HC ,H(X̂D); f)||2,

where H(X̂D) represents the heatmap generated from keypoint X̂D using the
Gaussian kernel. This provides an effective mechanism for us to iteratively re-
fine the prediction result based on the specific statistics of the test sample.
This adaptive prediction and optimization is not available in traditional network
prediction which is purely forward without any feedback or adaptation. This
feedback-based adaptive prediction will result in better generalization capability
on the test sample. This step is referred to as self-constrained optimization. In the
following sections, we present more details about the proposed self-constrained
learning (SCL) and self-constrained optimization (SCO) methods.

3.3 Self-Constrained Learning of Structural Groups

In this section, we explain the self-constrained learning in more details. As illus-
trated in Fig. 3, the input to the prediction and verification networks, namely,
{HA, HB , HC} and {HB , HC , HD}, are all heatmaps generated by the baseline
pose estimation network. In this work, we use the HRNet [27] as our baseline, on
top of which our proposed SCIO method is implemented. We observe that the
visual context surrounding the keypoint location provides important visual cues
for refining the locations of the keypoints. For example, the correct location of
the knee keypoint should be at the center of the knee image region. Motivated
by this, we also pass the feature map f generated by the backbone network to
the prediction and verification network as inputs.

In our proposed scheme of self-constrained learning, the prediction and ver-
ification networks are jointly trained. Specifically, as illustrated in Fig. 3, the
top branch shows the training process of the prediction network. Its input in-
cludes heatmaps {HA, HB , HC} and the visual feature map f . The output of the
prediction network is the predicted heatmap for keypoint XD, denoted by ĤD.
During the training stage, this prediction is compared to its ground-truth H̄D

and form the prediction loss LO
P which is given by

LO
P = ||ĤD − H̄D||2. (9)

The predicted heatmap ĤD, combined with the heatmaps HB and HC and
the visual feature map f , is passed to the verification network Γ as input. The
output of Γ will be the predicted heatmap for keypoint XA, denoted by ĤA. We
then compare it with the ground-truth heatmap H̄A and define the following
self-constraint loss for the prediction network

LS
P = ||ĤA − H̄A||2. (10)
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These two losses are combined as LP = LO
P +LS

P to train the prediction network
Φ.

Similarly, for the verification network, the inputs are heatmaps
{HB , HC , HD} and visual feature map f . It predicts the heatmap ĤA for key-
point XA. It is then, combined with {HB , HC} and f to form the input to the
prediction network Φ which predicts the heatmap ĤD. Therefore, the overall
loss function for the verification network is given by

LV = ||ĤA − H̄A||2 + ||ĤD − H̄D||2. (11)

The prediction and verification network are jointly trained in an iterative man-
ner. Specifically, during the training epochs for the prediction network, the ver-
ification network is fixed and used to compute the self-constraint loss for the
prediction network. Similarly, during the training epochs for the verification
network, the prediction network is fixed and used to compute the self-constraint
loss for the verification network.

3.4 Self-Constrained Inference Optimization of Low-Accuracy
Keypoints

As discussed in Section 1, one of the major challenges in pose estimation is to
improve the accuracy of hard keypoints, for example, those distal keypoints.
In existing approaches for network prediction, the inference process is purely
forward. The knowledge learned from the training set is directly applied to the
test set. There is no effective mechanism to verify if the prediction result is
accurate or not since the ground-truth is not available. This forward inference
process often suffers from generalization problems since there is no feedback
process to adjust the prediction results based on the actual test samples.

The proposed self-constrained inference optimization aims to address the
above issue. The verification network Γ, once successfully learned, can be used
as a feedback module to evaluate the accuracy of the prediction result. This is
achieved by mapping the prediction result ĤD for the low-accuracy keypoint
back to the high-accuracy keypoint ĤA. Using the self-constraint loss as an
objective function, we can perform local search or refinement of the prediction
result X̂D to minimize the objective function, as formulated in (8). Here, the
basic idea is that: if the prediction X̂D becomes accurate during local search,
then, using it as the input, the verification network should be able to accurately
predict the high-accuracy keypoint ĤA, which implies that the self-constraint
loss ||HA − ĤA||2 on the high-accuracy keypoint XA should be small.

Motivated by this, we propose to perform local search and refinement of the
low-accuracy keypoint. Specifically, we add a small perturbation ∆D onto the
predicted result X̂D and search its small neighborhood to minimize the self-
constraint loss:

X̂∗
D = argmin

H̃D

||HA − Γ(HB , HC , H̃D; f)||2
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H̃D = H(X̂D +∆D), ||∆D||2 ≤ δ. (12)

Here, δ controls the search range and direction of the keypoint, and the direction
will be dynamically adjusted with the loss. H(X̂D+∆D) represents the heatmap
generated from the keypoint location X̂D + ∆D using the Gaussian kernel. In
the Supplemental Material section, we provide further discussion on the extra
computational complexity of the proposed SCIO method.

4 Experiments

In this section, we present experimental results, performance comparisons with
state-of-the-art methods, and ablation studies to demonstrate the performance
of our SCIO method.

4.1 Datasets

The comparison and ablation experiments are performed on MS COCO dataset
[17] and CrowdPose [15] dataset, both of which contain very challenging scenes
for pose estimation.

MS COCO Dataset: The COCO dataset contains challenging images with
multi-person poses of various body scales and occlusion patterns in uncon-
strained environments. It contains 64K images and 270K persons labeled with
17 keypoints. We train our models on train2017 with 57K images including 150K
persons and conduct ablation studies on val2017. We test our models on test-dev
for performance comparisons with the state-of-the-art methods. In evaluation,
we use the metric of Object Keypoint Similarity (OKS) score to evaluate the
performance.

CrowdPose Dataset: The CrowdPose dataset contains 20K images and
80K persons labeled with 14 keypoints. Note that, for this dataset, we parti-
tion the keypoints into 4 groups, instead of 6 groups as in the COCO dataset.
CrowdPose has more crowded scenes. For training, we use the train set which
has 10K images and 35.4K persons. For evaluation, we use the validation set
which has 2K images and 8K persons, and the test set which has 8K images and
29K persons.

4.2 Implementation Details

For fair comparisons, we use HRNet and ResNet as our backbone and follow the
same training configuration as [32] and [27] for ResNet and HRNet, respectively.
For the prediction and verification networks, we choose the FCN network [19].
The networks are trained with the Adam optimizer. We choose a batch size of 36
and an initial learning rate of 0.001. The whole model is trained for 210 epochs.
During the search process of inference, we used perturbations with different step
size and chose the best step size of 1.5. The number of search steps is set to be
50. More details are provided in the Supplemental Material.
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4.3 Evaluation Metrics and Methods

Following existing papers [27], we use the standard Object Keypoint Similarity
(OKS) metric which is defined as:

OKS =

∑
i

e−d2
i /2s

2k2
i · δ(vi > 0)∑

i

δ(vi > 0)
. (13)

Here di is the Euclidean distance between the detected keypoint and the cor-
responding ground truth, vi is the visibility flag of the ground truth, s is the
object scale, and ki is a per-keypoint constant that controls falloff. δ(∗) means if
* holds, δ(∗) equals to 1, otherwise, δ(∗) equals to 0. We report standard average
precision and recall scores: AP 50, AP 75, AP , APM , APL, AR, AP easy, APmed,
APhard at various OKS [8,27].

Table 1. Comparison with the state-of-the-arts methods on COCO test-dev.

Method Backbone Size AP AP 50 AP 75 APM APL AR

G-RMI [23] R101 353×257 64.9 85.5 71.3 62.3 70.0 69.7
AE [22] - 512×512 65.5 86.8 72.3 60.6 72.6 70.2
Integral Pose [28] R101 256×256 67.8 88.2 74.8 63.9 74.0 -
RMPE [6] PyraNet 320×256 72.3 89.2 79.1 68.0 78.6 -
CFN [12] - - 72.6 86.1 69.7 78.3 64.1 -
CPN(ensemble) [3] ResNet-Incep. 384×288 73.0 91.7 80.9 69.5 78.1 79.0
CSM+SCARB [25] R152 384×288 74.3 91.8 81.9 70.7 80.2 80.5
CSANet [36] R152 384×288 74.5 91.7 82.1 71.2 80.2 80.7
HRNet [27] HR48 384×288 75.5 92.5 83.3 71.9 81.5 80.5
MSPN [16] MSPN 384×288 76.1 93.4 83.8 72.3 81.5 81.6
DARK [37] HR48 384×288 76.2 92.5 83.6 72.5 82.4 81.1
UDP [11] HR48 384×288 76.5 92.7 84.0 73.0 82.4 81.6
PoseFix [21] HR48+R152 384×288 76.7 92.6 84.1 73.1 82.6 81.5
Graph-PCNN [29] HR48 384×288 76.8 92.6 84.3 73.3 82.7 81.6

SCIO (Ours) HR48 384×288 79.2 93.9 85.8 75.1 84.2 81.6
Performance Gain +2.4 +0.5 +1.5 -3.2 +1.5 +0.0

4.4 Comparison to State of the Art

We compare our SCIO method with other top-performing methods on the COCO
test-dev and CrowdPose datasets. Table 1 shows the performance comparisons
with state-of-the-art methods on the MS COCO dataset. It should be noted
that the best performance is reported here for each method. We can see that
our SCIO method outperforms the current best by a large margin, up to 2.5%,
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Table 2. Comparison with the state-of-the-arts methods on CrowdPose test-dev.

Method Backbone AP APmed

Mask-RCNN [10] ResNet101 60.3 -
OccNet [9] ResNet50 65.5 66.6
JC-SPPE [15] ResNet101 66 66.3
HigherHRNet [4] HR48 67.6 -
MIPNet [14] HR48 70.0 71.1

SCIO (Ours) HR48 71.5 72.2
Performance Gain +1.5 +1.1

Table 3. Comparison with state-of-the-art of three backbones on COCO test-dev.

Method Backbone Size AP AP 50 AP 75 APM APL AR

SimpleBaseline [32] R152 384×288 73.7 91.9 81.1 70.3 80.0 79.0
SimpleBaseline

R152 384×288 77.9 93.1 83.3 74.2 82.3 80.9
+SCIO (Ours)
Performance Gain +4.2 +1.2 +2.2 +3.9 +2.3 +1.9

HRNet [27] HR32 384×288 74.9 92.5 82.8 71.3 80.9 80.1
HRNet+SCIO (Ours) HR32 384×288 78.6 93.5 85.6 74.5 82.9 81.5
Performance Gain +3.7 +1.0 +1.8 +3.2 +2.0 +1.4

HRNet [27] HR48 384×288 75.5 92.5 83.3 71.9 81.5 80.5
HRNet+SCIO (Ours) HR48 384×288 79.2 93.9 85.8 75.1 84.2 81.6
Performance Gain +3.7 +1.4 +2.5 +3.2 +2.7 +1.1

which is quite significant. Table 2 shows the results on challenging CrowdPose.
In the literature, there are only few methods have reported results on this chal-
lenging dataset. Compared to the current best method MIPNet [14], our SCIO
method has improved the pose estimation accuracy by up to 1.5%, which is quite
significantly.

In Table 3, we compare our SCIO with state-of-the-art methods using differ-
ent backbone networks, including R152, HR32, and HR48 backbone networks.
We can see that our SCIO method consistently outperforms existing methods.

4.5 Ablation Studies

To systematically evaluate our method and study the contribution of each algo-
rithm component, we use the HRNet-W48 backbone to perform a number of ab-
lation experiments on the COCO val2017 dataset. Our algorithm has two major
new components, the Self-Constrained Learning (SCL) and the Self-Constrained
optimization (SCO). In the first row of Table 4, we report the baseline (HRNet-
W48) results. The second row shows the results with the SCL. The third row
shows results with the SCL and SCO of the prediction results. We can clearly
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Table 4. Ablations study on COCO val2017.

AP AP 50 AP 75 AR

Baseline 76.3 90.8 82.9 81.2
Baseline + SCL 78.3 92.9 84.9 81.3
Baseline + SCL + SCO 79.5 93.7 86.0 81.6

Table 5. Ablations study of distal keypoints accuracy on COCO val2017.

Left Right Left Right Left Right
Ear Ear Wrist Wrist Ankle Ankle

HRNet 0.6637 0.6652 0.5476 0.5511 0.3843 0.3871

HRNet + SCIO(Ours) 0.7987 0.7949 0.7124 0.7147 0.5526 0.5484
Performance Gain +0.1350 +0.1297 +0.1648 +0.1636 +0.1683 +0.1613

see that each algorithm component is contributing significantly to the overall
performance. In Table 5, We also use normalization and sigmoid functions to
evaluate the loss of distal keypoints, and the results show that the accuracy of
each keypoint from HRNet has been greatly improved after using SCIO.

Fig. 5 shows three examples of how the estimation keypoints have been re-
fined by the self-constrained inference optimization method. The top row shows
the original estimation of the keypoints. The bottom row shows the refined esti-
mation of the keypoints. Besides each result image, we show the enlarged image
of those keypoints whose estimation errors are large in the original method. How-
ever, using our self-constrained optimization method, these errors have been suc-
cessfully corrected. Fig. 6(a) shows how the self-constraint loss decreases and the
corresponding accuracy improves during the search process. We can see that the
loss drops quickly with accuracy increasing at the same time and the keypoints
have been refined to the correct locations. In the Supplemental Materials, we

Fig. 5. Three examples of refinement of predicted keypoints. The top row is the original
estimation. The bottom row is the refined version.
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Fig. 6. (a) shows the decreasing of the self-constraint loss and the corresponding im-
proving of the accuracy during local search and refinement of the predicted keypoint.
(b) shows the correlation between the self-constrained loss and the test accuracy.

provide additional experiments and algorithm details for further understanding
of the proposed SCIO method.

4.6 Strong Correlation between the Self-Constrained Loss and the
Prediction Accuracy

In this work, the proposed self-constrained loss provides an important guidance
for refining the prediction results. In our experiments, we have found a very
strong correlation between the self-constrained loss and the test accuracy. For
example, the following Figure 6(b) shows their strong correlation with a corre-
lation coefficient of -0.85 over 1000 test samples. Thus, this self-constrained loss
can be used to guide the search and refinement of the prediction results based
on feedback from the test samples, resulting in better generalization capability.

5 Conclusion

In this work, we observed that human poses exhibit strong structural correla-
tion within keypoint groups, which can be explored to improve the accuracy
and robustness of their estimation. We developed a self-constrained prediction-
verification network to learn this coherent spatial structure and to perform local
refinement of the pose estimation results during the inference stage. We partition
each keypoint group into two subsets, proximal keypoints and distal keypoints,
and develop a self-constrained prediction-verification network to perform for-
ward and backward predictions between them. This prediction-verification net-
work design is able to capture the local structural correlation between keypoints.
Once successfully learned, we used the verification network as a feedback module
to guide the local optimization of pose estimation results for low-accuracy key-
points with the self-constraint loss on high-accuracy keypoints as the objective
function. Our extensive experimental results on benchmark MS COCO datasets
demonstrated that the proposed SCIO method is able to significantly improve
the pose estimation results.
Acknowledgments. Zeng Li’s research is partially supported by NSFC
(No.12031005 and No.12101292).
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