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Abstract. We present UnrealEgo, i.e., a new large-scale naturalistic
dataset for egocentric 3D human pose estimation. UnrealEgo is based
on an advanced concept of eyeglasses equipped with two fisheye cameras
that can be used in unconstrained environments. We design their virtual
prototype and attach them to 3D human models for stereo view capture.
We next generate a large corpus of human motions. As a consequence,
UnrealEgo is the first dataset to provide in-the-wild stereo images with
the largest variety of motions among existing egocentric datasets. Fur-
thermore, we propose a new benchmark method with a simple but ef-
fective idea of devising a 2D keypoint estimation module for stereo in-
puts to improve 3D human pose estimation. The extensive experiments
show that our approach outperforms the previous state-of-the-art meth-
ods qualitatively and quantitatively. UnrealEgo and our source codes are
available on our project web page3.
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1 Introduction

Egocentric 3D human pose estimation has been actively researched recently
[44,54,27,48,47,56,53,57]. Compared to cumbersome motion capture systems that
require a fixed recording volume, the egocentric setup is more suitable to capture
daily human activities in unconstrained environments. Example applications in-
clude XR technologies [19] and motion analysis for sport and health [40].

Several setup types were proposed for egocentric 3D human pose estimation.
Some methods work on mobile devices such as a cap [54], a helmet [44] or a head-
mounted display [48,47] equipped with a camera to capture egocentric views of a
user’s whole body. Although these methods show promising results, their setups
are still not satisfactory for daily use; the cameras are mounted far from the user’s
body, which is inconvenient and restrictive. The recently introduced EgoGlass
approach [57] tackles this issue by an eyeglasses-based setup with two cameras
attached to the glasses frame. Their setup imposes fewer restrictions on users’

3 https://4dqv.mpi-inf.mpg.de/UnrealEgo/
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Fig. 1: Overview of the proposed UnrealEgo setup.

activities. We envision that with the recent development of smaller cameras [2]
and smart glasses [4,6], the eyeglasses-based setup can be a de facto standard to
capture daily human activities in various situations.

Along with that, there is a lack of datasets that would account for this
new and advanced capture setting and that would allow developing algorithmic
frameworks involving it. Furthermore, existing egocentric datasets are limited
in several ways and cannot be easily re-purposed for 3D human pose estimation
with the compact eyeglasses-based setup. First, the existing datasets do not
contain complex human motions (such as breakdance and backflip) that are seen
in daily human activities [44,54,48,57]. Second, the available egocentric datasets
do not faithfully model the 3D environment [54,48]. Next, the existing stereo-
based datasets [44,57] do not contain in-the-wild images. All in all, we note that
there is no large-scale stereo-based dataset currently available. Consequently, a
lack of a comprehensive and versatile egocentric dataset is a severely limiting
factor in the development of methods for egocentric 3D perception.

To alleviate the issues mentioned above, we present UnrealEgo, i.e., a new
large-scale naturalistic and synthetic dataset for egocentric 3D human pose esti-
mation. UnrealEgo is based on an advanced concept of an eyeglasses-based setup
with two fisheye cameras symmetrically attached to the glasses frame. Fisheye
cameras are getting more and more compact; they can capture a wider range of
views than normal cameras which is beneficial for egocentric human pose esti-
mation [44]. We use Unreal Engine [10] to synthetically design the eyeglasses as
shown in Fig. 1-(a). We then attach the eyeglasses to realistic 3D human models
(RenderPeople) [7] and capture in-the-wild stereo views in various 3D environ-
ments as shown in Fig. 1-(b), (c). Note that we prioritize the motion diversity
in UnrealEgo. Fig. 2 shows examples of 3D human models in diverse poses from
UnrealEgo. In total, UnrealEgo contains 450k in-the-wild stereo views (900k im-
ages in total) with the largest variety of motions among the existing egocentric
datasets. UnrealEgo allows developing new methods that account for temporal
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Fig. 2: Samples of characters and poses from UnrealEgo. We use 17 high-quality
3D RenderPeople models [7]. Also, we utilize Mixamo motions [5] and modify
them to diversify our motion data. Please refer to our video for better visualiza-
tions and our supplementary asset list for characteristics of each human model.

changes of surrounding 3D environments (see Sec. 3) and evaluating the current
state-of-the-art methods in highly challenging scenarios (see Sec. 5).

Furthermore, we propose a new benchmark approach that achieves state-of-
the-art accuracy on UnrealEgo. At the core of our method is a heatmap-based
2D keypoint estimation module. It accepts stereo inputs and passes them to
two weight-sharing encoders that produce feature maps in the latent space. The
obtained feature maps are concatenated along with the channel dimensions and
processed by a decoder that estimates 2D keypoint heatmaps (see Fig. 5). In ex-
tensive experiments, we observe that this simple but effective architecture brings
significant improvements compared with existing methods [48,57] qualitatively
and quantitatively by 13.5% on MPJPE and 14.65% on PA-MPJPE metrics.

In summary, the primary contributions of this work are as follows:

– UnrealEgo, i.e., a new large-scale naturalistic dataset for egocentric 3D hu-
man motion capture.

– A new approach for 3D human pose estimation achieving state-of-the-art
accuracy on the new benchmark dataset.

UnrealEgo is the first to provide 1) naturalistic in-the-wild stereo images with
the largest variety of motions and 2) sequences with realistically and accurately-
modeled changes of the surrounding 3D environments. This allows a more thor-
ough evaluation of existing and upcoming methods for egocentric 3D vision,
including the temporal component and global 3D poses.

2 Related Work

2.1 Datasets for Outside-in 3D Human Pose Estimation

Many datasets were proposed for 3D pose estimation with ground-truth anno-
tations. Some of them are captured with optical markers [46,26,50], while the
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others use marker-less mocap systems [37,36,28,55]. However, these datasets are
mostly captured in the studio and usually lack the diversity of clothing, occlu-
sions, and environments.

In the meantime, synthetic datasets have become popular because no costly
mocap setups are required for annotations. Many such datasets are created by
compositing people on background images [52,42,24,43,36,38]. Because of such
composition, however, their images do not match real-world scenes in terms of the
local pixel intensity statistics and distributions. Butler et al. [15] provide images
rendered using underlying detailed 3D geometry and corresponding optical flows
that can be used for tracking purposes. However, this dataset does not provide
3D joint annotations unlike ours.

The recent works by Zhu et al. [58] and Patel et al. [41] use 3D modeling tools
and game engines [1,9,10] to render realistic images of rigged 3D human models
in 3D environments. Unfortunately, these datasets are designed for outside-in
pose estimation from an external camera viewpoint; they are not suitable and
cannot be easily repurposed for egocentric 3D pose estimation.

2.2 Datasets for Egocentric 3D Human Pose Estimation

There exist several datasets specifically recorded for egocentric 3D human poses.
Mo2Cap2 [54] is the first cap-based setup with a single wide-view fisheye cam-
era attached 8cm away from the user. With this setup, Xu et al. [54] create a
large-scale dataset by compositing SMPL models [33] on randomly-chosen back-
grounds (real images), resulting in 530k images with 15 annotated keypoints
per image. xR-EgoPose [48] approach uses a head-mounted display with a sin-
gle fisheye camera equipped 2cm away from a user’s nose. This work uses the
Mixamo motion dataset [5] to animate 3D human models and renders egocentric
views with HDR backgrounds with the help of the 3D rendering tool V-Ray [3].
Their dataset contains 380k photorealistic synthetic images with 25 body and 40
hand keypoints. However, both datasets contain only monocular images. They
feature only simple (every-day) human motions (due to the restrictions imposed
by their setups) and do not accurately model 3D environments and complex hu-
man trajectories in them. Hence, they do not cover most motions that can arise
in egocentric 3D human pose estimation using a compact eyeglass-based setup.
Ego4D [22] is a new large-scale dataset for egocentric vision. Unfortunately, it
does not contain 3D annotations of human poses.

On the other hand, existing stereo egocentric datasets have several limi-
tations. Rhodin et al. [44] proposed EgoCap, i.e., a headgear with a pair of
fisheye cameras equipped 25cm away from users to capture stereo views. Their
dataset contains only 30k stereo image pairs with a limited variety of motions
in a lab environment. More recently, EgoGlass [57] simplified the stereo setup
with eyeglasses and two cameras equipped on the glasses frames. Although Ego-
Glass captured a relatively large-scale of images, i.e., total 170k stereo pairs, the
dataset is captured only in a studio environment and is not publicly available.

In contrast to existing datasets, UnrealEgo addresses the above shortcomings.
Fig. 3 illustrates the differences among existing datasets and UnrealEgo. Firstly,
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Fig. 3: Comparison of datasets for egocentric 3D human pose estimation.

UnrealEgo provides stereo images in indoor and outdoor scenes. Secondly, it
offers the largest number of images, e.g., 15 times larger than EgoCap [44] and 2.5
times larger than EgoGlass [57]. Next, it contains naturalistic image sequences
with accurately modeled geometry changes in the surrounding 3D environments.
Also, it offers the largest number of body and hand keypoints. Furthermore, it
is the most challenging egocentric dataset in terms of motion variety.

2.3 Methods for Egocentric 3D Human Pose Estimation

Existing methods for egocentric 3D human pose estimation can be divided into
two groups in terms of egocentric settings. The first group aims at estimating 3D
keypoints from monocular views. Mo2Cap2 [54] is the first CNN-based system to
predict 3D poses. Tome et al. [48,47] follow a two-step approach using a multi-
branch autoencoder to capture uncertainty in their predicted 2D heatmaps and
to leverage rotation constraints [47]. Jiang et al. [27] predict 3D poses by utilizing
the information of surrounding environments and extremities of the user’s body.
Zhang et al. [56] estimate 3D poses with fisheye distortions using an automatic
calibration module. More recently, Wang et al. [53] proposed an optimization-
based approach with a motion prior learned from an additional dataset for global
3D human motion capture. Even with their competitive results, these monocular
methods often fail on complex motions (e.g., due to the depth ambiguity).

The second group follows multi-view settings, including our work. EgoCap [44]
is an optimization-based approach using a body-part detector and personalized
3D skeleton models. Cha et al. [17] developed a headset equipped with eight
cameras; they introduced a CNN-based method to reconstruct a human body
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Table 1: Comparison of human motion capture datasets.

Dataset Subjects Motions Minutes Dataset Subjects Motions Minutes

ACCAD [11] 20 252 26.74 KIT [35] 55 4232 661.84
BMLhandball [31] 10 649 101.98 MPI HDM05 [39] 4 215 144.54
BMLmovi [21] 89 1864 174.39 MPI Limits [12] 3 35 20.82
BMLrub [49] 111 3061 522.69 MPI MoSh [32] 19 77 16.53
CMU [16] 96 1983 543.49 MPI-INF-3DHP [36] 8 - -
D-FAUST [14] 10 129 5.73 SFU [51] 7 44 15.23
DanceDB [13] 20 151 203.38 SSM [34] 3 30 1.87
EKUT [35] 4 349 30.74 TCD Hands [25] 1 62 8.05
Eyes Japan [20] 12 750 363.64 TotalCapture [50] 5 37 41.1
Human3D [26] 11 - - Transitions [34] 1 110 15.1
Human4D [18] 8 148 72.60 AMASS [34] 344 11265 2420.86
HumanEva [46] 3 28 8.48 Ours 17 45520 3174.63

and an environment in 3D. EgoGlass [57] builds upon xR-EgoPose [48] and is one
of the most accurate methods; its architecture contains two separate UNets for
the stereo inputs in the 2D joint estimation module. In contrast to the reviewed
works, this paper proposes a simple yet effective idea of devising a new 2D joint
estimation module that accepts stereo inputs to significantly improve 3D pose
estimation compared with the existing best-performing methods.

3 UnrealEgo Dataset

This section provides details of the UnrealEgo dataset, focusing on our setup,
motions, and rendered egocentric data. Please also see our supplementary video
for dynamic visualizations and our supplementary asset list.

3.1 Setup

We use Unreal Engine [10] to synthetically design the eyeglasses with two fisheye
cameras equipped on the glasses frame as shown in Fig. 1-(a). The distance
between the cameras is 12cm. The cameras’ field of view amounts to 170◦. We
attach the glasses to 3D human models (RenderPeople) that perform different
motions in various 3D environments. Fig. 1-(b) and (c) show an example of the
human models in a Kyoto-inspired environment in Japan, and fisheye views.

Characters. We use 17 realistic RenderPeople 3D human models (commercially
available) [7], nine female and eight male. These models are rigged and skinned
based on the default 3D human skeleton of Unreal Engine [10]. Their skin color
tones include pale white, white, light brown, moderate brown, dark brown, and
black. Their clothing types include athletic pants, jeans, shorts, tights, dress
pants, skirts, jackets, t-shirts, and long sleeves with diffident colors. Please see
Fig. 2 for an overview of the 3D human models we use. Also, please see our
supplement for detailed characteristics of each human model.
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Table 2: Motion categories in our dataset.
Motion types Motions Minutes Motion types Motions Minutes

1: jumping 1343 36.35 16: standing - whole body 3791 307.95
2: falling down 714 35.27 17: standing - upper body 5820 708.74
3: exercising 1225 82.07 18: standing - turning 1785 82.73
4: pulling 272 28.31 19: standing - to crouching 680 38.21
5: singing 1054 149.21 20: standing - forward 3417 93.68
6: rolling 136 4.69 21: standing - backward 1207 21.69
7: crawling 612 22.47 22: standing - sideways 1496 30.42
8: laying 612 30.92 23: dancing 5728 800.13
9: sitting on the ground 68 10.88 24: boxing 4012 160.53

10: crouching - normal 1802 127.90 25: wrestling 2958 119.63
11: crouching - turning 612 12.74 26: soccer 1892 69.63
12: crouching - to standing 850 29.46 27: baseball 476 27.31
13: crouching - forward 1020 29.50 28: basketball 272 7.54
14: crouching - backward 493 8.82 29: american football 85 6.07
15: crouching - sideways 646 11.69 30: golf 442 80.07

Motions. It is our top priority to include a wider variety of motions that can
represent as many daily human activities as possible. Therefore, we first cre-
ate a new large corpus of motions. Specifically, we utilize Mixamo motions [5]
and modify them using Unreal Engine [10] to enhance their plausibility and
diversify the motion data. We first manually fix some motions that involve self-
penetration and then modify the motions in various ways, including the speed of
motions, arm movements, foot stances, and head rotations. For further details,
please refer to our supplement. In total, we created 45,520 natural motions for
the 17 human models, i.e., ≈2700 motions per model. We provide the details
of our dataset in Tables 1 and 2. Table 1 compares existing mocap datasets
and our motion data. Note that AMASS [34] is a collection of several existing
motion capture datasets [11,31,49,21,16,14,13,35,20,18,46,35,39,12,32,51,25,50].
Our dataset contains the largest number of motions with the longest consecu-
tive 3D human motions. Table 2 summarises the included motion categories.

3D Environments. We use 14 realistic 3D environments. They include a va-
riety of indoor and outdoor scenes (e.g., parks, roads, bridges, offices, gardens,
playrooms, laboratories, cafeterias, trains, tennis courts, baseball fields, football
fields, factories, European boulevards, North-American houses, Chinese rooms,
Kyoto towns, and Japanese restaurants, at different times of day and night).
Please see our supplementary asset list for further details.

Spawning Human Characters. It is important to create populated scenes to
simulate real-world situations. To this end, we develop an algorithm to randomly
place human models in 3D environments in Unreal Engine. As a preliminary
step, we manually place K rectangles B= {B1, ..., BK} where several human
models can be spawned on even grounds. Here, let S= {S1, ..., SK} be the areas
of rectangles and C= {C1, ..., CK} be their center positions in the world frame
in Cartesian coordinate, respectively. As a first step, we choose i-th area Bi ∈ B
using area weighted probability Si/

∑K
i=1 Si. Secondly, we select T surrounding
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Fig. 4: Distributions of head and left foot locations in xR-EgoPose [48] (blue)
and UnrealEgo (orange). The pelvis-relative 3D coordinates are on cm-scale.

rectangles Bt ∈ B, t = {1, . . . , T} with their center positions Ct ∈ C being
within 10m from Ci. Next, from all of the selected rectangles, we randomly
sample world positions to place human models. The sampled positions are at
least 1m far from each other. Lastly, we place human models by adjusting the
heights of the lowest vertices of the human models to those of the sampled
positions. About five models are spawned on average at once, and we render
egocentric views from them. After that, we go back to the first step. This way,
we randomly place the human models closer to each other in the 3D environment,
and some rendered views can capture multiple models.

Rendering. We use a fisheye plugin [8] to render images until motions are com-
pleted, or a collision is detected. Here, we use the physics engine of Unreal Engine
to detect collisions based on the pre-defined collision proxies (volumes) of the hu-
man models and the 3D environments. Around 100 stereo views per motion are
rendered on average. The environments contain multiple light sources, including
sky, points, and directional lights. Ray-tracing is enabled if the environments
support it; rasterization rendering is used otherwise. Also, the rendering process
of Unreal Engine includes deferred shading, global illumination, lit translucency,
post-processing, and GPU particle simulation utilizing vector fields. Please re-
fer to our supplement for more details on the asset rendering. All images are
rendered on NVIDIA RTX 3090. The rendering speed is two frames per second.

3.2 Egocentric Dataset

We capture stereo fisheye images and depth maps with a resolution of 1024×1024
pixels each with 25 frames per second. Metadata is provided for each frame,
including 3D joint positions, camera positions, and 2D coordinates of reprojected
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Fig. 5: Overview of the proposed method. Our network consists of a 2D module
to predict 2D heatmaps of joint positions from stereo inputs (Sec. 4.1) and a 3D
module to estimate 3D joint positions from the heatmaps (Sec. 4.2).

joint positions in the fisheye views. We randomly choose 10% of our motion data
over all motion types, and capture 450k in-the-wild stereo views (900k images)
in total. See Fig. 3 for the comparison with existing egocentric datasets.

As mentioned in Sec. 2.2, the motion variety is our top priority. UnrealEgo
contains many complex motions in daily activities, some of which are difficult to
capture with corresponding egocentric views in real-world settings. Example mo-
tions include breakdance and backflip in the dancing category shown in Table 2.
To highlight the diversity of motions in UnrealEgo, we visualize the distributions
of the keypoints in our UnrealEgo and xR-EgoPose [48] datasets in Fig. 4. Here,
we use pelvis-relative 3D coordinates for head and left foot positions. Overall, the
keypoints of UnrealEgo are more widespread with a larger variance of distances
from the pelvis (origin) than those of xR-EgoPose. For example, in the left 3D
plot of Fig. 4, the head is moving through a larger 3D space in UnrealEgo, even
to areas below the pelvis, whereas head locations of xR-EgoPose are predomi-
nantly fixed above the pelvis. This shows that the UnrealEgo motions have a
higher diversity of head positions.

4 Egocentric 3D Human Pose Estimation

In this section, we describe our egocentric 3D human pose estimation method.
We firstly adopt a 2D module to predict 2D heatmaps of joint positions from
stereo inputs and, next, a 3D module to generate 3D joint positions from the
2D heatmaps. Fig. 5 shows the overview of our network architecture. The main
contribution of our method lies in the 2D module specifically designed for stereo
inputs. This differs from the previous work [57], which uses two separate 2D
modules for stereo views. In the following, we explain each module in detail.
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Table 3: Comparisons on UnrealEgo with and w/o ImageNet pre-training.
Methods Settings MPJPE (σ) PA-MPJPE (σ)

xR-EgoPose Monocular 112.86 (1.16) / 123.15 (2.05) 88.71 (0.98) / 96.56 (1.27)

EgoGlass Stereo 91.44 (0.84) / 107.70 (1.88) 70.21 (0.90) / 84.22 (0.99)
Ours Stereo 79.06 (0.25) / 87.31 (0.57) 59.95 (0.74) / 64.65 (0.93)

4.1 2D Module

Our 2D module consists of two weight-sharing encoders and one decoder with
unified skip connections [45] for stereo features as shown in Fig. 5. Here, we fol-
low Zhao et al. [57] to use ResNet18 [23] as our encoder backbone. The 2D module
takes stereo RGB images {ILeft, IRight} ∈ R256×256×3 as inputs, and infers 2D
joint locations represented as a set of heatmaps {HLeft,HRight} ∈ R64×64×15.
Here, we predict 15 joints in the neck, upper arms, lower arms, hands, thighs,
calves, feet and balls of the feet. From each layer of the two weight-sharing
encoders, we extract the features and concatenate them along the channel di-
mension. These features are then forwarded to corresponding decoder layers via
skip connections. Unlike the 2D module of the previous work [57], our 2D module
utilizes stereo information for heatmap estimation and, thus, boosts the perfor-
mance of the 3D pose estimation task. For the training of the 2D module, we
apply the mean squared error (mse) between the ground-truth heatmaps HLeft

and HRight and the estimated 2D heatmaps ĤLeft and ĤRight:

L2D = mse(HLeft, ĤLeft) + mse(HRight, ĤRight). (1)

4.2 3D Module

Following previous work [57], we adopt the same multi-branch autoencoder for

our 3D module. Given the heatmaps ĤLeft and ĤRight predicted by the 2D
module as inputs, the 3D module firstly encodes them to get embedding features.
These features are used in two decoder branches. The first branch is a 3D pose
branch, which outputs the final 3D pose P̂ ∈ R16×3. Here, the number of output
3D joints is 16 as the head position is included. The second branch is a heatmap
branch, which tries to reconstruct the predicted 2D heatmaps H̃Left and H̃Right

so that the network can capture the uncertainty of the heatmaps.
Similar to [57], the overall loss function for the 3D module is as follows:

L3D = λpose(mpjpe(P, P̂) + λcoscos(P, P̂)) +

λhm(mse(ĤLeft, H̃Left) + mse(ĤRight, H̃Right)), (2)

where P is a ground-truth 3D pose, mpjpe(·) is the mean per joint position error
and cos(·) is a negative cosine similarity, i.e.,
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Table 4: Quantitative evaluation on the general motions of UnrealEgo (MPJPE).
Methods jumping falling down exercising pulling, singing rolling crawling laying

xR-EgoPose 106.30 167.18 133.19 119.49 99.62 166.14 223.51 146.67

EgoGlass 88.55 135.25 105.11 89.96 75.54 143.64 199.27 114.85
Ours 76.81 125.22 90.54 80.61 65.53 94.97 179.98 97.56

Methods
sitting on
the ground

crouching
- normal

crouching
- turning

crouching
- to standing

crouching
- forward

crouching
- backward

crouching
- sideways

standing
- whole body

xR-EgoPose 274.99 172.25 173.77 108.96 119.95 136.52 145.81 94.34

EgoGlass 216.52 129.72 151.71 93.71 90.76 100.39 122.23 78.57
Ours 195.28 120.65 131.82 81.28 76.04 81.31 88.54 67.67

Methods
standing

- upper body
standing
- turning

standing
- to crouching

standing
- forward

standing
- backward

standing
- sideways

all

xR-EgoPose 93.36 103.28 101.60 99.72 105.86 114.28 112.61

EgoGlass 76.83 84.12 82.03 82.96 85.15 93.61 91.27
Ours 65.92 74.55 73.21 70.86 70.40 79.06 79.57

Table 5: Quantitative evaluation on the sports motions of UnrealEgo (MPJPE).
Methods dancing boxing wrestling soccer baseball basketball american football golf all

xR-EgoPose 116.75 97.33 116.65 104.65 103.75 98.65 149.76 117.50 113.28

EgoGlass 95.37 77.66 96.63 88.30 93.60 74.31 118.34 79.35 91.71
Ours 79.86 69.34 84.02 76.54 74.27 62.09 103.79 72.06 78.19

mpjpe(P, P̂) =
1

BJ

B∑
i=1

J∑
j=1

||Pj
i − P̂j

i ||2, (3)

cos(P, P̂) = − 1

B

B∑
i=1

L∑
l=1

Pl
i · P̂l

i

||Pl
i|| ||P̂l

i||
, (4)

where B is the batch size, J is the number of joints, L is the number of limbs,
and Pl

i ∈ R3 is the l-th bone of the human skeleton.

5 Experiments

5.1 Implementation Details

We randomly split UnrealEgo into 3,821 motions (357,317 stereo views) for train-
ing, 494 motions (46,207 stereo views) for validation, and 526 motions (48,080
stereo views) for testing. The input images and ground-truth 2D heatmaps are
resized to 256×256 and 64×64, respectively. The 2D module and the 3D module
are trained separately on a Quadro RTX 8000 with a batch size of 16. We set the
hyper-parameters as λpose = 0.1, λcos = 0.01, and λhm = 0.001. The modules
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Stereo inputs EgoGlass [57] Ours Stereo inputs EgoGlass [57] Ours

Fig. 6: Qualitative results on UnrealEgo (blue: ground truth; red: prediction).

are trained with Adam optimizer [30] for ten epochs, starting with a learning
rate of 10−3 for the first half epochs and applying a linearly decaying rate for
the next half. We perform the experiments three times and report average scores
and standard deviations (denoted by σ).

5.2 Comparisons

As our comparison methods, we adopt state-of-the-art methods for egocentric
3D human pose estimation, i.e., EgoGlass [57] and xR-EgoPose [48]. Since their
source codes are not available, we re-implement and tailor them for UnrealEgo.
We train xR-EgoPose on the left views of UnrealEgo. For the sake of evaluation
under the same conditions, we remove a body part branch with segmentation
supervision in EgoGlass as xR-EgoPose does not use it. We follow the previous
works and report the Mean Per Joint Position Error (MPJPE) and the Mean
Per Joint Position Error with Procrustes alignment [29] (PA-MPJPE). Here,
Procrustes alignment finds optimal rigid transformation and scale between the
predicted and ground-truth 3D poses.

5.3 Results

We present results on the UnrealEgo test sequence. Table 3 quantitatively eval-
uates our approach and competing methods with and without ImageNet pre-
training for the encoder. Overall, our method outperforms the previous best-
performing method [57], across all metrics for both experiments with and without
ImageNet. Specifically, our method with the pre-trained encoder shows signifi-
cant improvement by 13.5% on MPJPE and 14.65% on PA-MPJPE compared
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Stereo inputs EgoGlass [57] Ours

Fig. 7: Qualitative results for failure
cases on UnrealEgo.

Right view End-to-end Separate GT

Fig. 8: Heatmap estimation results with
two different training strategies.

Table 6: Ablation study for the back-
bone of the 2D heatmap module.

Backbones MPJPE (σ) PA-MPJPE (σ)

ResNet18 79.06 (0.25) 59.95 (0.74)
ResNet34 80.50 (0.78) 60.04 (0.60)
ResNet50 80.07 (0.45) 60.08 (0.63)
ResNet101 80.15 (0.06) 60.57 (0.79)

Table 7: Ablation study for the weight
sharing in the 2D heatmap module.

Backbones MPJPE (σ) PA-MPJPE (σ)

weight sharing 79.06 (0.25) 59.95 (0.74)
no weight sharing 83.54 (1.30) 62.29 (0.45)

to EgoGlass [57]. All methods, including ours, benefit from the ImageNet pre-
training; the performance of our approach is boosted by 9.4% on MPJPE and
7.2% on PA-MPJPE.

We also break down the test sequence into 30 motion types as shown in
Table 4 for general motions and Table 5 for sports motions. Both tables indicate
that our method achieves significant superiority for all motion types. See Fig. 6
for the qualitative results. Even with the occlusions and complex poses in various
environments, our method estimates the 3D poses much better than EgoGlass.

It is also worth analyzing failure cases. According to Table 4, bending motions
(such as sitting on the ground or crouching) are reconstructed with comparably
low accuracy. This is because the lower body parts are occluded by the upper
body, especially when people crouch down as shown in Fig. 7. Even with the
stereo inputs, these methods still can not perform well on some motions that are
occasionally seen in daily human activities.

5.4 Ablation Study

We first ablate different encoder backbone architectures for our 2D module in
Table 6. All variants generate the heatmap with the same resolution and the 3D
module shares the same architecture. The experiment suggests that all of the
models yield similar results but at a higher computational cost for a larger back-
bone. For example, the difference between ResNet18 and Resnet50 is only 0.2%
on PA-MPJPE. This result is also observed in the previous work [47], showing
that a larger backbone does not necessarily lead to performance improvements.
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Table 8: Ablation study on the training strategy.
Backbones MPJPE (σ) PA-MPJPE (σ)

Separate training 79.06 (0.25) 59.95 (0.74)
End-to-end training 80.67 (0.58) 61.72 (0.55)

Next, we show the effect of weight sharing in the encoder backbone of our 2D
keypoint estimation module in Table 7. The weight-sharing backbone performs
better than the encoder without weight sharing by 5.4% on MPJPE and 3.8% on
PA-MPJPE. One possible reason for this result is that the weight-sharing back-
bone can see more views during training, leading to a better feature extractor.
Therefore, we use the weight-sharing strategy for all experiments.

Lastly, we conduct the experiment with different training strategies, i.e.,
separate training and end-to-end training for our 2D keypoint estimation and
3D estimation module, as shown in Table 8. The result indicates that the separate
training yields slightly better performance than the end-to-end training by 2.0%
on MPJPE and 2.9% on PA-MPJPE. We also visualize the heatmaps predicted
by our network with the different training strategies in Fig. 8. It is interesting to
note that separate training leads to relatively accurate heatmap estimation while
the network trained in an end-to-end manner tries to capture the whole body.
Although this visual result can change depending on the hyper-parameters, we
follow the same hyper-parameter setting in the previous work [57] and choose
the separate training strategy for all experiments.

6 Conclusions

We presented UnrealEgo, i.e., a new large-scale naturalistic dataset for egocen-
tric 3D human pose estimation. It allows a comprehensive evaluation of existing
and upcoming methods for egocentric 3D vision, including the temporal com-
ponent and global 3D poses. Our simple yet effective architecture for egocentric
3D human pose estimation brings significant improvement compared to previ-
ous best-performing methods qualitatively and quantitatively. In addition, our
extensive ablation studies validate our architectural design choices for the stereo
inputs and the training strategy. Although our method achieved state-of-the-art
results, there are still failure cases due to occlusions and complex motions. In
future work, we are interested in incorporating explicit 3D geometry obtained
from our stereo fisheye setup for further performance improvements.
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