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Abstract. Graph convolutional network based methods that model the
body-joints’ relations, have recently shown great promise in 3D skeleton-
based human motion prediction. However, these methods have two criti-
cal issues: first, deep graph convolutions filter features within only limited
graph spectrums, losing sufficient information in the full band; second,
using a single graph to model the whole body underestimates the di-
verse patterns on various body-parts. To address the first issue, we pro-
pose adaptive graph scattering, which leverages multiple trainable band-
pass graph filters to decompose pose features into richer graph spectrum
bands. To address the second issue, body-parts are modeled separately to
learn diverse dynamics, which enables finer feature extraction along the
spatial dimensions. Integrating the above two designs, we propose a novel
skeleton-parted graph scattering network (SPGSN). The cores of the
model are cascaded multi-part graph scattering blocks (MPGSBs), build-
ing adaptive graph scattering on diverse body-parts, as well as fusing the
decomposed features based on the inferred spectrum importance and
body-part interactions. Extensive experiments have shown that SPGSN
outperforms state-of-the-art methods by remarkable margins of 13.8%,
9.3% and 2.7% in terms of 3D mean per joint position error (MPJPE)
on Human3.6M, CMU Mocap and 3DPW datasets, respectively El

Keywords: Human motion prediction, adaptive graph scattering, spa-
tial separation, bipartite cross-part fusion.

1 Introduction

3D skeleton-based human motion prediction has attracted increasing attention
and shown broad applications, such as human-computer interaction |17] and
autonomous driving [6]. Human motion prediction aims to generate the future
human poses, in form of the 3D coordinates of a few key body joints, given

! The codes are available at https://github.com/MediaBrain-SJTU/SPGSN.
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Fig. 1. Feature decomposition along the spatial and spectrum domains. For example,
we separate the body into the upper and lower bodies, each of which uses a three-
branch graph scattering tree with band-pass filtering to exploit rich graph spectrums.

the historical motions. Early attempts develop state models [31}48,[55./56] to
capture the shallow dynamics. In the deep learning era, more implicit patterns
are learned. For example, some recurrent-network-based methods [12,/16,43,/58]
aggregate the states and predict poses frame-by-frame; some feed-forward mod-
els [18,32] directly output the predictions without state accumulation.

Recently, numerous graph-convolution-based models |7}(91/351/361/381/401/411/53]
have achieved remarkable success in motion prediction by explicitly modeling the
inherent body relations and extracting spatio-temporal features [271/49//59]. How-
ever, further development of graph-based methods encounters two critical issues.
First, as long as the graph structure is given, standard graph convolution just fil-
ters the features within limited graph spectrum but cannot significantly preserve
much richer bands (e.g., smoothness and difference on the graphs) at the same
time. However, the pattern learning of human motions needs not only to capture
the similarity or consistency of body-joints under the spatial constraints (low-
frequency), but also to enhance the difference for diverse representation learning
(high-frequency). For example, when the graph edge weights are purely positive
or negative, deep graph convolution tends to average the distinct body-joints
to be similar but ignores their specific characteristics. Second, existing methods
usually use a single graph to model the whole body [40,/41], which underesti-
mates diverse movement patterns in different body-parts [18]. For example, the
upper and lower bodies have distinct motions, calling for using different graphs
to represent them separately.

To address the first issue, we propose the adaptive graph scattering tech-
nique, which leverages multiple trainable band-pass graph filters arranged in a
tree structure to decompose input features into various graph bands. With the
mathematically designed band-specific filters, adaptive filter coefficients and fea-
ture transform layers, it preserves information from large graph spectrum. To
address the second issue, we decompose a body into multiple body-parts, where
comprehensive dynamics could be extracted. Therefore, our method achieves
finer feature extraction along both graph spectrum and spatial dimensions. Fig.[T]
sketches both the spatial and spectrum decomposition. As an example, we show
three body-parts: the upper body, the lower body and the entire body. To un-
derstand the graph scattering, we show the output graph spectrums on different
bands after the corresponding filtering processes.
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Fig. 2. Architecture of the SPGSN. The SPGSN first applies discrete cosine transform
(DCT) to convert the body-joint positions along time to the frequency domain. Then,
cascaded multi-part graph scattering blocks (MPGSBs) are built for deep feature ex-
traction. Finally, we build a skip-connection between input and output features and
use inverse DCT (IDCT) to recover the temporal information.

Integrating the above two designs, we propose a novel skeleton-parted graph
scattering network (SPGSN). The core of SPGSN is the multi-part graph scat-
tering block (MPGSB), consisting of two key modules: the single-part adap-
tive graph scattering, which uses multi-layer graph scatterings to extract spec-
trum features for each body-part, and bipartite cross-part fusion, which fuses
body-part features based on part interactions. The SPGSN consists of multiple
MPGSBEs in a sequence; see Fig. 2] Taking the 3D motions as inputs, SPGSN
first converts the feature along temporal dimension by discrete cosine transform
(DCT) to obtain a more compact representation, which removes the complexity
of temporal modeling [40,41]. Followed by the network pipeline, an inverse DCT
recovers the responses to the temporal domain. A cross-model skip-connection
is built to learn the residual DCT coefficients for stable prediction.

Extensive experiments are conducted for both short-term and long-term mo-
tion prediction on large-scale datasets, i.e., Human3.6M [24], CMU Mocapﬂ and
3DPW [42]. Our SPGSN significantly outperforms state-of-the-art methods in
terms of mean per joint position error (MPJPE). The main contributions of our
work are summarized here:

e We propose the skeleton-parted graph scattering networks (SPGSN) to pro-
mote finer feature extraction along both graph spectrum and spatial dimensions,
resulting in more comprehensive feature extraction in large graph spectrum and
spatially diverse dynamics learning to improve prediction.

e In SPGSN, we develop the multi-part graph scattering block (MPGSB),
which contains single-part adaptive graph scattering and cross-part bipartite
fusion to learn rich spectral representation and aggregate diverse part-based
features for effective dynamics learning.

e We conduct experiments to verify that our SPGSN significantly outper-
forms existing works by 13.8%, 9.3% and 2.7% in terms of MPJPE for motion
prediction on Human3.6M, CMU Mocap and 3DPW datasets, respectively.

® http://mocap.cs.cmu.edu/
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2 Related Works

2.1 Human Motion Prediction

For human motion prediction, early methods are developed based on state mod-
els [31},/48,/55,/56]. Recently, some recurrent-network-based models consider the
sequential motion states. ERD [12] and Pose-VAE [58] build encoder-decoder in
recurrent forms. Structural-RNN [25] transfers information between body-parts
recurrently. Res-sup [43], AGED [16] and TPRNN [35] model the pose displace-
ments in RNN models. Besides, some feed-forward networks use spatial convolu-
tions to directly predict the whole sequences without state accumulation [1832].
Furthermore, considering an articulated pose, some methods exploit the correla-
tions between body-components [4}[7,/40,411/53]. DMGNN [35] and MSR-GCN [9]
build multiscale body graphs to capture local-global features. TrajCues [38] ex-
pands motion measurements to improve feature learning. Compared to previous
models, our method leverages rich band-pass filters to preserve both smoothness
and diversity of body joints and achieve more precise prediction.

2.2 Graph Representation Learning

Graphs explicitly depict the structural format [50,/62] of numerous data, such as
social networks [341[54], human poses and behaviors [5[111/20}30L[391/49,/51}/59L(60L
62-64], and dynamic systems [21122,[27[29//33//61]. As effective methods of graph
learning, some studies of the graph neural networks (GNNs) are developed to
perform signal filtering based on the graph Laplacian eigen-decomposition [3}/10,
28.65] or to aggregate vertex information [8/19,/37,46L(57]. Recently, graph scat-
tering transform (GST) and related models are developed, promoting to capture
rich graph spectrum with large bandwidth [15}[23}|44L/47]. GSTs generalize the
image-based scattering transforms [1}2,[14,/52], combining various graph signal
filters with theoretically justified designs in terms of spectrum properties. [13}66)
develop diffusion wavelets. [44]/45] integrate designed scattering filters and pa-
rameterized feature learners. [47] expands GSTs on the spatio-temporal domain.
In this work, we employ mathematical prior to initialize an adaptive graph scat-
tering with trainable band-pass filters, filter coefficients and feature mapping.

3 Skeleton-Parted Graph Scattering Network

3.1 Problem Formulation

Skeleton-based motion prediction aims to generate the future poses given the
historical ones. Mathematically, let X*) e RM*3 be a pose carrying the 3D
coordinates of M body joints at time ¢, X = [X(1) .../ X(T)] € RT*M*3 he a
three-mode tensor that concatenates moving poses within 7" timestamps. In mo-
tion prediction, let X~ = [XT+D X (O)])c RT*M*3 pepresent T historical
poses, Xt = [X(1) ... X(AT)]g RAT*MX3 yepresent AT future poses. We aim
to propose a predictor Fpred(+) to predict the future motions X+ = Fored(X7)
to approximate the ground-truth XT.
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3.2 Model Architecture

Here we propose the model architecture and the operation pipeline of the Skeleton-
Parted Graph Scattering Network (SPGSN), which is sketched in Fig.

Taking the historical motion tensor X~ = [X(1) .../ X(T)] as the input, we
first apply the discrete cosine transform (DCT) along the time axis to convert the
temporal dynamics of motions into the frequency domain, leading to a compact
representation that eliminates the complexity of extra temporal embedding to
promote easy learning [40,41]. Mathematically, we reshape X~ into X~ € RT*3M
to consider all the joint coordinates at each timestamp independently as the
basic units in the spatial domain; then we encode X~ = DCT(X~) € RM'*C
where M’ = 3M, and C denotes the number of DCT coefficients, also the feature
dimension. In this way, although we triple the spatial scale, we compress the long
sequence into a compact coefficient representation, resulting in a feature vector,
and we do not need the additional sequential feature modeling. Compared to
other frequency transformations, DCT fully preserves the temporal smoothness.
The Fourier transform and wavelet transform usually introduce complex and
multiscale responses, making the downstream modeling more complicated.

In the SPGSN, we develop a deep feed-forward architecture to learn the dy-
namics from the DCT-formed motion features X~. The network is constructed
with cascaded multi-part graph scattering blocks (MPGSBs) as the core com-
ponents. All MPGSBs do not share parameters, and the input of the following
MPGSB is the output of the last one. In each MPGSB, the input motion is first
decomposed into different body-parts. For example, Fig. [2] sketches the entire
body, the upper and lower bodies, but different body separation strategies could
be employed. There are trainable graphs on these body-parts. On each body-
part, MPGSB takes a single-part adaptive graph scattering to preserve large-
band spectrums of motion representation (see Sec. . On multiple body-parts,
an bipartite cross-part fusion automatically performs body-part fusion based on
the learned cross-part interaction for more coordinated motion estimation (see
Sec. . Moreover, we build skip connections across all the MPGSBs, thus we
force the SPGSN to capture the feature displacements for stable prediction. At
the output end, we apply inverse DCT to recover the temporal information.

4 Multi-Part Graph Scattering Block

Here we present the Multi-Part Graph Scattering Blocks (MPGSBs). Each MPGSB
contains two key modules, 1) single-part adaptive graph scattering and 2)
bipartite cross-part fusion, to extract large graph spectrum from distinct
body-parts and fuse body-parts into hybrid representation, respectively.

4.1 Single-Part Adaptive Graph Scattering

Given the determined graph topology, the information-aggregation-based graph
filtering only captures features in limited spectrums, losing the rich frequency
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bands of the inputs. To address this problem, the single-part adaptive graph scat-
tering learns sufficient large-band information on each body-part. The single-part
adaptive graph scattering contains two main operations: 1) adaptive graph scat-
tering decomposition and 2) adaptive graph spectrum aggregation, which parses
graph spectrum and aggregates the important bands, respectively.

Adaptive graph scattering decomposition. The adaptive graph scat-
tering decomposition forms a tree-structure network with L layers and expo-
nentially increasing tree nodes. These tree nodes perform graph filtering on the
motion corresponding to various graph spectral bands.

We consider the first layer for example, and we could expand the design to
any layers. Let the DCT-formed pose feature be X € RM IXC, and the adaptive
pose graph have adjacency matrix A € RM' XM We utilize a series of band-
pass graph filters: {h)(A)lk =0,1,..., K}, which are derived based the graph
structure. Note that we have the normalized A = 1/2(I+ A/||A||%) to handles
the amplitudes of the trainable elements. Given the filter bank, {h(k)(g)}szo,

we obtain features {Hy) € IRM/XCl},If:O through

Hey = o(he) (A)XW ), (1)
where W ;) is the trainable weights corresponding to the kth filter, and the
nonlinear o(-) (e.g. Tanh) disperses the graph frequency representation [23].
Note that A is also a parameterized matrix automatically tuned during training
to adapt to the implicit interaction in motion data.

To ensure that various filters work on specific graph spectrums, we initialize
{ha (A) K_, by leveraging the mathematical priors to constrain their filtering

bands. Furthermore, we apply trainable coefficients in {h(k)(;&)}ffzo to adap-
tively tune spectrum responses based on the predefined guidance; that is,

hiky(A) = a@nA, k=0;
hiy(A) = aaol+aqnA, k=1, (2)

~ k ~ i1
hiry(A) = Zj:1 ap A k=2, K,

where ay ;) is the trainable coefficient. For k = 0, we initialize g9y = 1; for
k >0, we set aqg,x—1) = 1, axr) = —1 and any other «(; ;) = 0. Notably, for
k > 0, we could approximately obtain a series of graph wavelets to emphasize
different frequencies. For example, we initialize h3(A) = 0A + A% — A% to depict
the joint difference under the 2-order relations at the beginning. The power 277!
are utilized based on diffusion wavelets, theoretically promoting optimal local-
ization [13]. Besides, the intuition of this design is sketched in Fig. [3| Suppose
all the edge weights are positive, ho(fA) only preserves the low-frequency to en-
hance smoothness; the other filters obtain the band-pass features and promote
joints’ varieties. The real feature responses of the graph scattering during model
inference is visualized in Appendix to analyze this module.

Plugging Eq. (2) to Eq. (1), we output the spectrum channels {H ) }. At the
next layer of the graph scattering, we repeat Eq. on each H,. Thus, each
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Fig. 3. Sketch of the graph filtering with graph filters. Note that we just show the
initialized filters, and we apply trainable coefficients to achieve more flexible filtering.

non-leaf feature has K + 1 new branches; eventually, the output has (K + 1)¢
channels corresponding to different spectrums.

Adaptive graph spectrum aggregation. To abstract the key information
from the (K + 1)L graph scattering responses and provide information to the
downstream MPGSB, we propose the adaptive graph spectrum aggregation to
fuse the spectral channels based on the inferred spectrum scores, which measure
the importance of each channel over the whole spectrum. Given the output
channels {H )}, the spectrum aggregation is formulated as

KJrl)L ’ ’
—Z wkH (k) ERM XC, (3)

where wy, is the inferred spectrum importance score of the kth feature H,,
which is computed through

exp (fg (taﬂh (fl ([Hsva( ]))))
Z(K“ exp (f2 (tanh (f1 (Hsp, Hej]))))

where f1(-) and f5() are MLPs, and [, -] is concatenation along feature dimen-
sions. Hp, € RM'*C" carries the whole graph spectrum, which is

1
H,, = ReLU <(K Y Z H(k)wsp> , (5)

where Wy, denotes trainable weights and ReLU(+) is the ReLU activation. Hg,
employs the embedded spectrum to benefit the representation understanding.

: (4)

W =

(K+1)*

For clearer understanding, Fig. [] sketches an examplar architecture of the
single-part adaptive graph scattering (L = 2 and K = 2), where we briefly note
various filtering with different subscripts. For multiple body-parts, we leverage
shared parameters but different pose graphs on them to reduce the model com-
plexity, since different body-parts carry the same feature modality but different
graph views. In this way, we can capture the diverse features that reflects rich
structural information.
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Fig. 4. A sketch of single-part adaptive graph scattering.

4.2 Bipartite Cross-Part Fusion

To combine the diverse and hybrid features learned from different body-parts,
we propose a bipartite cross-part fusion module based on body-part interactions,
which allow the isolated single-part features to adapt to each other, leading to
more coordinated and reasonable patterns on the whole body.

In this paper, we mainly consider to separate the body into two parts besides
the entire body, because according to the experiences, the separation of the two
parts (e.g. separating as upper and lower bodies or left and right bodies) can
distinguish the different global movement patterns and explore their interactions
to reflect the movement coordination. Meanwhile, the two-part separation needs
only one interaction-based fusion, which reduces the model complexity. As an
example, we consider the upper-lower-separation. We first model their cross-part
influence, to reflect the implicit upper-lower interactions. Two directed bipartite
graphs are adaptively constructed to propagate influence from the upper to the
lower bodies and vice versa. Here we present the ‘upper-to-lower’ graph as an
example. Let the joint features on the upper body and lower body be H; €
RMtxC" and H; € RM X" respectively, where My and M, are the numbers of
nodes in these two parts; we calculate the upper-to-lower affinity matrix through

Aoy = softmax(f(Hy) fi(Hy) ") € [0, 1] M (6)

where softmax(-) is the softmax function across rows to normalize the affinity
effects and enhance the strong correlations; f4+(-) and f|(-) are two embedding
networks. Each column of A4 reflects the influence levels of all the upper-body-
joints to the corresponding lower-body-joint.

Given the A9, we update the lower body via

H| =H, + A, Hy, (7)
where the new lower body aggregates the information from the upper body by

emphasizing the influence across body-parts. In the similar manner, we also
update the upper body based on the bipartite lower-to-upper graph.
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Finally, given the updated upper and lower body, H/T and Hi, we fuse them
on the whole body and obtain the hybrid feature H € RM *C" 1y

H' = MLP(H + (H} & H})), 8)

where @ : RMixC" 5 RMixC" _y RM'*C" places joints from different body-parts
to align with the original body. MLP(+) further embeds the fused body. In this
way, the output features carry the comprehensive graph spectrum and multi-part
representation to promote motion prediction.

4.3 Loss Function

To train the proposed SPGSN, we define the loss function. Suppose that we take
N samples in a mini-batch as inputs, and let the nth ground-truth and predicted
motion sample be X and X;}. The loss function £ is defined as the average >
distance between the targets and predictions:

1 N ~
— + +12
L= I -KiR (9)

All the trainable parameters in our SPGSN are tuned end-to-end, including the
body graph structures, adaptive filter coefficients and the network weights.

5 Experiments

5.1 Datasets

Dataset 1: Human 3.6M (H3.6M). There are 7 subjects performing 15
classes of actions in H3.6M [24], and each subject has 22 body joints. All se-
quences are downsampled by two along time. Following previous paradigms [9],
the models are trained on the segmented clips in the 6 subjects and tested on
the clips in the 5th subject.

Dataset 2: CMU Mocap. CMU Mocap consists of 5 general classes of actions.
On each pose, we use 25 joints in the 3D space. Following [9,41], we use 8 actions:
‘basketball’, ‘basketball signal’, ‘directing traffic’, ‘jumping’, ‘running’, ‘soccer’,
‘walking’ and ‘washing window’.

Dataset 3: 3D Pose in the Wild (3DPW). 3DPW [42] contains more than
51k frames with 3D poses for indoor and outdoor activities. We adopt the train-
ing, test and validation separation suggested by the official setting. Each subject
has 23 joints. The frame rate of the motions is 30Hz.

5.2 Model and Experimental Settings

Implementation details. We implement SPGSN with PyTorch 1.4 on one
NVIDIA Tesla V100 GPU. We set 10 MPGSBs to form the entire model. In
each MPGSB, the single-part adaptive graph scattering has L = 2 layers of graph
scattering decomposition, and the filter order K = 2. The hidden dimension in
a MPGSB is 256. We use Adam optimizer [26] to train the SPGSN with batch
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Table 1. Prediction MPJPEs of various models for short-term motion prediction on 5
representative actions in H3.6M. We also introduce an SPGSN variant called SPGSN
(1body), which only considers the entire non-separated bodies. Since the original STS-
GCN uses a different protocol from all the other methods, we update its code for
a fair comparison; see results in STSGCN*.

Motion ‘Walking Bating Smoking Discussion Directions
millisecond 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
Res-sup |43 29.36 50.82 76.03 81.52(16.84 30.60 56.92 68.65|22.96 42.64 70.24 83.68|32.94 61.18 90.92 96.19(35.36 57.27 76.30 87.67

CSM 21.70 43.56 66.29 75.48|14.50 26.13 47.47 55.63(19.42 37.70 62.49 68.55|26.35 53.41 79.12 83.01|27.07 44.72 63.94 75.37
SkelNet, 20.49 34.36 59.64 68.76 |11.80 22.38 39.88 48.11|11.33 23.71 45.30 52.85|21.79 40.24 65.93 77.91|16.06 27.12 62.97 72.75
DMGNN 17.32 30.67 54.56 65.20 [10.96 21.39 36.18 43.88|8.97 17.62 32.05 40.30 |17.33 34.78 61.03 69.80|13.14 24.62 64.68 81.86
Traj-GCN 12.29 23.03 39.77 46.12|8.36 16.90 33.19 40.70|7.94 16.24 31.90 38.90|12.50 27.40 58.51 71.68|8.97 19.87 43.35 53.74

10.53 19.96 34.88 42.05|7.39 15.53 31.26 38.58 |7.17 14.54 28.83 35.67|10.89 25.19 56.15 69.30|7.77 18.23 41.34 51.61
MSR-GCN 12.16 22.65 38.64 45.24|8.39 17.05 33.03 40.43|8.02 16.27 31.32 38.15|11.98 26.76 57.08 69.74|8.61 19.65 43.28 53.82
STSGCN* 53] | 16.26 24.63 40.06 45.94[14.32 22.14 37.91 45.0313.10 20.20 37.71 44.65|14.33 24.28 52.62 68.53 |14.24 24.27 44.24 53.21
SPGSN (1body)[10.13 19.51 35.52 44.67|7.13 15.02 31.87 41.18|6.83 13.94 28.77 36.78[10.42 23.90 54.13 69.99|7.38 17.48 40.54 53.09

SPGSN 10.14 19.39 34.80 41.47|7.07 14.85 30.48 37.91|6.72 13.79 27.97 34.61|10.37 23.79 53.61 67.12|7.35 17.15 39.80 50.25

Table 2. MPJPEs for short-term motion prediction on other 9 actions in H3.6M.

Motion Greeting Phoning Posing Purchases Sitting
millisecond | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
Res-sup [43] 3446 63.36 124.60 142.50{37.96 69.32 115.00 126.73|36.10 69.12 130.46 157.08| 36.33 60.30 86.53 95.92|42.55 81.40 134.70 151.78
DMGNN [35] |23.30 50.32 107.30 132.10{12.47 25.77 48.08 58.29 |15.27 29.27 7154 96.65 |21.35 38.71 75.67 92.74|11.92 25.11 4459 50.20

Traj-GCN 7 18.65 38.68 77.74 93.39 |10.24 21.02 42.54 52.30 |13.66 29.89 66.62 84.05|15.60 32.78 65.72 79.25|10.62 21.90 46.2
MSR-GCN 16.48 36.95 77.32 93.38 |10.10 20.74 41.51 51.26 |12.79 29.38 66.95 85.01|14.75 32.39 66.13 79.64|10.53 21.99 46.26
STSGCN* 53] |15.02 30.70 67.11 87.63 |14.88 21.40 46.55 52.03 |15.01 25.69 58.38 73.08|15.26 26.26 63.45 74.25|15.19 22.95 46.82 58.34

SPGSN (1body)| 15.16 33.61 71.89 88.74 | 8.78 18.50 39.85 51.53 |10.02 25.46 G1.38 78.87|12.78 28.86 62.50 77.01| 9.25 10.58 43.47 56.32
SPGSN  |14.64 32.50 70.64 86.44|8.67 18.32 38.73 48.46[10.73 25.31 59.91 76.46 |12.75 28.58 61.01 74.38| 9.28 19.40 42.25 53.56
Motion Sitting Down Taking Photo Waiting Walking Together Average

160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400

millisecond

Res-sup |43] 85.95 145.75 168.86(26.10 47.61 81.40 94.73 [30.62 57.82 106.22 121.45]26.79 50.07 80.16 92.23[34.66 61.97 101.08 115.49
DMGNN ﬁg 4.95 32.88 77.06 93.00 [13.61 28.95 45.99 58.76 |12.20 24.17 59.62 77.54|14.34 26.67 50.08 63.22|16.95 62 65.90 79.65
Traj-GCN Eﬂ 31.12 61.47 75.46|9.88 20.89 44.95 56.58 |11.43 23.99 50.06 61.48 10.47 21.04 38.47 45.19|12.68 26.06 52.27 63.51

MSR-GCN (9] [16.10 31.63 62.45 76.84|9.89 21.01 44.56 56.30 |10.68 23.06 48.25 59.23|10.56 20.92 37.40 43.85|12.11 25.56 51.64 62.93
STSGCON* [53] |16.70 28.05 56.15 72.03 |16.61 24.84 45.98 61.79|16.30 24.33 48.12 59.79 |11.38 22.39 39.90 47.48|15.34 25.52 50.64 60.61
SPGSN (1body)|14.34 28.10 58.23 74.44|8.72 18.95 42.62 55.22| 9.24 20.02 43.80 56.80|8.91 18.46 34.88 42.98|10.55 22.63 48.21 60.96

SPGSN 14.18 27.72 56.75 70.74|8.79 18.90 41.49 52.66| 9.21 19.79 43.10 54.14| 8.94 18.19 33.84 40.88|10.44 22.33 47.07 58.26

size 32. The learning rate is 0.001 with a 0.96 decay for every two epochs. To
obtain more generalized evaluation with lower test bias, we utilize all the clips in
the 5th subject of H3.6M and the test folder of CMU Mocap, instead of testing

on a few samples picked from the test sequences like in [16}[32}[35}[41][43].

Baselines. We compare our model to many state-of-the-art methods, including
the RNN-based Res-sup , feed-fordward-based CSM , SkelNet , and
graph-based Traj-GCN [41], DMGNN [35], HisRep [40], STSGCN and MSR-
GCN @ We test these methods under the same protocol.

Evaluation Metrics. We use the Mean Per Joint Position Error (MPJPE),
where we record the average /> distance between predicted joints and target
ones in 3D Euclidean space at each prediction timestamp. Compared to previous
mean angle error (MAE) , the MPJPE relfects larger degrees of freedom
of human poses and covers larger ranges of errors for clearer comparison.

5.3 Comparison to State-of-the-Art Methods

To validate SPGSN, we show the quantitative results for both short-term and
long-term motion prediction on H3.6M, CMU Mocap and 3DPW. We also illus-
trate the predicted samples for qualitative evaluation.



Skeleton-Parted Graph Scattering Networks (SPGSN) 11

Table 3. Prediction MPJPEs of methods for long-term prediction on 8 actions in
H3.6M and the average MPJPEs across all the actions.

Motion Walking Bating Smoking Directions Phoning Sitting TakingPhoto Waiting Average
millisecond | 560 1k | 560 1k | 560 1k | 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k
Res-sup. [43] [81.73 100.68]79.87 100.20|94.83 137.44[110.05 152.48[143.92 186.79 [166.20 185.16 [107.03 162.38 [126.70 153.14 |129.19 164.96

Traj-GCN |41})54.05 59.75(53.39 77.75 |50.74 72.62 | 71.01 101.79 | 69.55 104.19 | 77.63 118.36|78.73 120.06 | 79.08 107.32|81.07 113.01
DMGNN [35] | 71.36 95.82 |58.11 86.66 |50.85 72.15|102.06 135.75|71.33 108.37|75.51 115.44|78.38 123.65|85.54 113.68|93.57 127.62
MSR-GCN [9]|52.72 63.05 |52.54 77.11|49.45 T71.64|71.18 100.59 | 68.28 104.36 | 78.19 120.02 | 77.94 121.87|76.33 106.25|81.13 114.18
STSGCN* [53]50.64 64.74 |56.46 75.08 [55.55 74.13|75.61 109.89|79.19 109.88 | 82.32 119.83 | 87.70 119.79|78.41 108.04|80.66 113.33

SPGSN 46.89 53.59(49.76 73.39|46.68 68.62]70.05 100.52(66.70 102.52|75.00 116.24|75.58 118.22|73.50 103.62|77.40 109.64

Table 4. Prediction MPJPEs of methods on CMU Mocap for both short-term and
long-term prediction, as well as the average prediction results across all the actions.

Motion Basketball Basketball Signal Directing Traffic Jumping
millisecond | 80 160 320 400 1000 | 80 160 320 400 1000 | 80 160 320 400 1000 | 80 160 320 400 1000
Res-sup. 43] [15.45 26.88 43.51 49.23 88.73(20.17 32.98 42.75 44.65 60.57 [20.52 40.58 75.38 90.36 153.12[26.85 48.07 93.50 108.90 162.84
DMGNN [35] | 15.57 28.72 59.01 73.05 138.62|5.03 9.28 20.21 26.23 52.04 [10.21 20.90 41.55 52.28 111.23|31.97 54.32 96.66 119.92 224.63
Traj-GCN |41]/11.68 21.26 40.99 50.78 97.99|3.33 6.25 13.58 17.98 54.00|6.92 13.69 30.30 39.97 114.16 |17.18 32.37 60.12 72.55 127.41
MST-GCN 9/]10.28 18.94 37.68 47.03 86.96| 3.03 5.68 12.35 16.26 47.91 |5.92 12.09 28.36 38.04 111.04|14.99 28.66 55.86 69.05 124.79

STSGCN [53]]12.56 23.04 41.92 50.33 94.17 |4.72 6.69 14.53 17.88 49.52|6.41 12.38 29.05 38.86 109.42|17.52 31.48 58.74 72.06 127.40
SPGSN 10.24 18.54 38.22 48.68 89.58 |2.91 5.25 11.31 15.01 47.31|5.52 11.16 25.48 37.06 108.14(14.93 28.16 56.72 71.16 125.20
Motion Soccer Walking ‘Washing Window Average

millisecond 80 160 320 400 1000 | 80 160 320 400 1000 | 80 160 320 400 1000 | 80 160 320 400 1000
Res-sup. [43] [17.75 31.30 52.55 61.40 107.37[44.35 76.66 126.83 151.43 194.33|22.84 44.71 86.78 104.68 202.73[24.21 43.75 76.19 88.93 139.00
DMGNN [35] | 14.86 25.29 52.21 65.42 111.90| 9.57 15.53 26.03 30.37 67.01 | 7.93 14.68 33.34 44.24 82.84 |14.07 24.44 45.90 55.45 104.33
Traj-GCN [41]]13.33 24.00 43.77 53.20 108.26| 6.62 10.74 17.40 20.35 34.41|5.96 11.62 24.77 31.63 66.85 | 9.94 18.02 33.55 40.95 81.85
MSR-GCN [91]10.92 19.50 37.05 46.38 99.32|6.31 10.30 17.64 21.12 39.70 | 549 11.07 25.05 32.51 71.30 | 8.72 15.83 30.57 38.10 79.01
STSGCN [53]]13.49 25.24 39.87 51.58 109.63| 7.18 10.99 17.84 22.61 44.12|6.79 12.10 24.92 36.66 69.48 |10.80 18.19 31.18 41.05 81.76

SPGSN 10.86 18.99 35.05 45.16 99.51 [ 6.32 10.21 16.34 20.19 34.83[4.86 9.44 21.50 28.37 65.08 | 8.30 14.80 28.64 36.96 77.82

Short-term prediction. Short-term motion prediction aims to predict the
poses within 400 milliseconds. First, on H3.6M, Table 1| presents the MPJPEs
of SPGSN and many previous methods on 5 representative actions at multiple
prediction timestamps. We see that, SPGSN obtains superior performance at
most timestamps; also, learning the diverse patterns from separated body-parts,
SPGSN outperforms the variant SPGSN (1body) that only uses the entire human
body. Besides, Table[2] presents the MPJPEs on other 9 actions in H3.6M and the
average MPJPEs over the dataset. Compared to the baselines, SPGSN achieves
much lower MPJPEs by 9.3% in average. Notably, the original STSGCN [53]
uses a different protocol from all the other methods, we update its code for a
fair comparison; see STSGCN* and more details are in Appendix.

Long-term prediction. Long-term motion prediction aims to predict the
poses over 400 milliseconds, which is challenging due to the pose variation and
elusive human intention. Table [3| presents the prediction MPJPEs of various
methods at the 560 ms and 1000 ms on 8 actions in H3.6M. We see that, SPGSN
achieves more effective prediction on most actions and has lower MPJPEs by
3.6% in average. The results on the other actions are shown in Appendix.

We also test the SPGSN for both short-term and long-term prediction on
CMU Mocap. Table [4f shows the MPJPEs on 7 actions within the future 1000
ms. We see that, SPGSN outperforms the baselines on most actions, and the
average prediction MPJPE is much lower by 9.3% than previous methods.

Furthermore, we test the SPGSN on 3DPW dataset for both short-term and
long-term motion prediction. We present the average MPJPEs across all the test
samples at different prediction steps in Table[5| Compared to the state-of-the-art
methods, SPGSN reduces the MPJPE by 2.7% in average.
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Table 5. The average prediction MPJPEs across the test set of 3DPW at various
prediction time steps.

Average MAE
millisecond | 100 200 400 500 600 800 900 1000
Res-sup. [43] [102.28 113.24 173.94 185.35 191.47 201.39 205.12 210.58
CSM |32] 57.83 71.53 124.01 142.47 155.16 174.87 183.40 187.06
Traj-GCN ]41]| 16.28 35.62 67.46 80.19 90.36 106.79 113.93 117.84
DMGNN [35]|17.80 37.11 70.38 83.02 94.12 109.67 117.25 123.93
HisRep |40] |15.88 35.14 66.82 78.49 93.55 107.63 114.59 114.75
MSR-GCN [9]| 15.70 33.48 65.02 77.59 93.81 108.15 114.88 116.31
STSGCN [53|| 18.32 37.79 67.51 77.34 92.75 106.65 113.14 112.22
SPGSN 15.39 32.91 64.54 76.23 91.62 103.98 109.41 111.05

Traj-GCN ’f‘v

STSGCN ‘ b |:| e e B
\ | | | | \ \ \ \ \ \
SPGSN I h AN AN I I

\

GT. :Ef‘ | ‘I‘Y‘ AN 0 ‘ M ‘

Time (ms) 40 200 360 520 680 840 1000

Fig. 5. Prediction samples of different methods on action ‘Walking’ of H3.6M for long-
term prediction. The predictions of Traj-GCN collapse to static ‘mean poses’ after the
600th ms (orange box); STSGCN starts to suffer from large errors at the 280th ms (red
box); SPGSN completes the action more accurately.

Prediction Visualization. To qualitatively evaluate the prediction, we
compare the synthesized samples of SPGSN to those of Traj-GCN and STS-
GCN on H3.6M. Figure. 5] illustrates the future poses of ‘Walking’ in 1000 ms
with the frame interval of 80 ms. Compared to the baselines, SPGSN completes
the action more accurately. The predictions of Traj-GCN collapse to static ‘mean
poses’ after the 600th ms (orange box). STSGCN starts to suffer from large errors
at the 280th ms (red box). See more results in Appendix.

5.4 Model Analysis

Numbers of MPGSBs and graph scattering layers. We test the SPGSN
frameworks with various numbers of MPGSBs (8-11) and layers of adaptive
graph scattering (1-3) on H3.6M for both short-term and long-term prediction.
Table [] presents the average MPJPEs of different architectures. The SPGSN
with 10 MPGSBs and 2 layers of adaptive graph scattering obtains the lowest
MPJPEs. The models have stable prediction for 9-11 MSGCBs, and 2 or 3 graph
scattering layers usually show better results than only using one layer.
Numbers of spectral channels. We investigate the numbers of graph
scattering decomposition channels, K, in each MPGSB. We test the model that
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Table 6. Performance analysis of SPGSNs with different numbers of graph scattering
blocks and graph scattering layers.

Scatter-layers Average MPJPE
MPGSB number| 1 2 3 80 160 320 400 | 560 1000
v 11.34 23.86 49.66 61.22]80.32 114.26
8 v 11.05 23.27 48.58 59.97|78.81 112.29
v 10.88 23.12 48.43 59.76|79.32 112.86
v 10.91 23.22 48.39 59.63|79.31 113.09
10.58 22.56 47.49 58.73|78.49 112.06
v 10.40 22.33 47.29 58.58 |77.79 110.55
v 10.48 22.41 47.53 58.78|78.81 111.29
10 v 10.44 22.33 47.07 58.26(77.40 109.64
v/ 1046 22.46 47.25 58.48|77.86 110.64
v 10.51 22.39 47.24 58.42|77.91 110.35
11 v 10.57 22.53 47.15 58.49(79.06 112.05
v 10.66 22.69 47.43 58.66|79.18 112.83

Table 7. SPGSNs with different numbers of graph scattering channels on each non-leaf
scattering feature.

Average MAE
channel numbers (K+1)| 80 160 320 400 | 560 1000

1

12.03 25.87 51.40 61.98
10.50 22.39 47.40 58.44
10.44 22.33 47.07 58.26

80.52 113.15
77.53 110.35
77.40 109.64

10.47 22.41 47.23 58.32|77.37 109.89
10.57 22.46 47.38 58.46|77.66 110.52

T W N

applies 1 to 5 channels on H3.6M; see the average MPJPEs in Table [/ We
see that 3 channels lead to the lowest prediction errors. The model with only
1 channel cannot capture the sufficiently large spectrums and rich information.
Five channels cause much heavy model and over-fitting.

Bipartite cross-part interaction. To investigate the proposed body-part
separation and cross-part interaction, we compare the SPGSN with two model
variants. First, SPGSN that directly aligns the independent part features on the
entire body; second, SPGSN separates the body into left and right parts. We test
these variants on H3.6M; see Table |8 The SPGSN with upper-lower interaction
and fusion consistently outperforms the baselines. For SPGSN (no CrossPart),
due to the lack of mutual influence, it is hard to ensure higher coordination
and rationality. As for SPGSN (left-right), given the interaction of body-parts,
the prediction error is reduced, while the upper-lower separation promotes more
special dynamics than the left-right separation due to the movement diversity.

To verify the inferred interactions between the upper and lower bodies, we
visualize the learned bipartite graphs on different actions. We show the upper-
to-lower and lower-to-upper graphs on ‘walking’ and ‘posing’, where we plot the
edges whose weights are larger than 0.25; see Fig. [6] Different actions reflect
different bipartite graphs: walking connects the contralateral hands and feet on
both upper-to-lower and lower-to-upper graphs; posing connects the ipsilateral
joints on the two body-parts, which delivers near-torso features to the body.
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Table 8. Comparison between SPGSN and its variants, including the model without
cross-part fusion, i.e., SPGSN (no CrossPart), and the model separating the body into

left and right parts, i.e., SPGSN (left-right).

prediction time 80 160 320 400 | 560 1000
SPGSN (no CrossPart) 10.55 22.63 48.21 60.96|78.02 111.74
SPGSN (left-right) 10.47 22.51 47.48 58.85|77.79 110.16
SPGSN (ours, upper-lower)|10.44 22.33 47.07 58.26|77.40 109.64

(a) Up2Low on Walking

(b) Low2Up on Walking

(c) Up2Low on Posing

(d) Low2Up on Posing

Fig. 6. Inferred directed bipartite cross-part graphs on posing and walking. We denote
the upper-to-lower and the lower-to-upper graphs as ‘Up2Low’ and ‘Low2Up’.

Table 9. Comparison of running time, model sizes and MPJPE

DMGNN [35] Traj-GCN [41] MSR-GCN [9] STSGCN [53] HisRep |40][SPGSN (Ours)
RunTime (ms)|  33.13 26.35 42.36 17.6 31.57 30.07
ParaSize (M) 4.82 2.56 6.30 0.04 3.18 5.66
FLOPs (M) 2.82 0.49 3.89 1.35 3.08 177
MPJPE 49.03 38.63 38.06 38.03 36.41 34.53

Efficiency Analysis. To verify the applicability of SPGSN, we compare
SPGSN to existing methods in terms of the running times, parameter numbers,
FLOPs and prediction results in short-term prediction on H3.6M (Table [9).
SPGSN has the lowest MPJPE and efficient running based on the parallel com-
putation. SPGSN also has the acceptable model size.

6 Conclusion

We propose a novel skeleton graph scattering network for human motion predic-
tion, which contains cascaded multi-part graph scattering blocks (MPGSBs) to
capture fine representation along both spatial and spectrum dimensions. Each
MPGSB builds adaptive graph scattering on separated body-parts. In this way,
the model carries large graph spectrum and considers the distinct part-based dy-
namics for precise motion prediction. Experiments reveal the effectiveness of our
model for motion prediction on Human3.6M, CMU Mocap and 3DPW datasets.
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Science Foundation of China under Grant (62171276), 111 plan (BP0719010),
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