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1 Social impact

Accurate tracking is a necessary pre-requisite for the next generation of commu-
nication and entertainment through virtual and augment reality. Learned opti-
mizers represent a promising avenue to realize this potential. However, it can
also be used for surveillance and tracking of private activities of an individual,
if the corresponding sensor is compromised.

2 Errors per iteration

Figure 2 shows the metric values per iteration, averaged across the test set,
for our fitter on the task of fitting SMPL+H to HMD head and hand signals.
Different to the main paper, this figure corresponds to the full visibility scenario,
i.e. the hands are always visible. The learned fitter aggressively optimizes the
target data term and quickly converges to the minimum.

3 Update rule

In addition to the update rule described in Eq. 1 of the main paper, we inves-
tigated two other alternatives, based on the convex combination of the network
update and gradient descent. The first is a simple re-formulation of Eq. 1, with
λ ∈ [0, 1], selecting either the network update or the gradient descent direction.
In the second, we first compute a convex combination between the normalized
network update and gradient descent, i.e. selecting a direction, and then scale
the computed direction according to γ.
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†Work performed at Microsoft. * Now at Meta Reality Labs Research.
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Fig. 1: Top: the general fitting process described in Alg. 1. Bottom: A schematic
representation of our update rule, described in Eq. 1, 2 of the main paper.

Here, σ() is the sigmoid function: σ(x) = 1
1+exp (−x) . The learning rate of the

gradient descent term is the same as the main text:

γ = fγ(R(Θn),R(Θn +∆Θn)),γ ∈ R
|Θ| (2)

We empirically found that the performance of these two variants is inferior
to the proposed update rule, but we nevertheless list them for completeness.

4 Additional ablation

Table 1 contains an additional ablation experiment, where we compare different
options for the type of variable for λ, γ, namely whether to use a scalar or a
vector variable, and and whether to use a common network predictor for λ, γ.
We use the problem of fitting SMPL to 2D keypoint predictions, evaluating our
results using the 3DPW test set.

5 Qualitative comparisons

We present a qualitative comparison of the proposed learned optimizer with
a classic optimization-based method in Fig. 3. Without explicit hand-crafted
constraints, the classic approach cannot resolve problems such as ground-floor
penetration. Formulating a term to represent this constraint is not a trivial pro-
cess. Furthermore, tuning the relative weight of this term to avoid under-fitting
the data term is not a trivial process. Our proposed method on the other hand
can learn to handle these constraints directly from data, without any heuristics.
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Fig. 2: Errors per iteration when fitting SMPL+H to HMD data, assuming that
the hands are always visible. From left to right: 1) Full body vertex and joint
errors, 2) head, left and right hand V2V errors and 3) vertex and joint ground
distance, computed on the set of points below ground.

Table 1: Predicting vector values for λ,γ is always better than scalars. This is expected,
since each variable to be optimized has different scale and the learned fitter must
adapt its predicted updates accordingly. Having a shared network for λ,γ improves
performance and lowers the number of parameters of the learned fitter.

Vector λ Vector γ Shared network for λ,γ PA-MPJPE (mm)

6 : : 52.8

: 6 : 52.7

6 6 : 52.3

6 6 6 52.2

6 Training details

6.1 GRU formulation

All our recurrent networks are implemented with Gated Recurrent Units (GRU)
[3], with layer normalization [1]:

zn = σg (LN(Wzx) + LN(Uzhn−1))

rn = σg (LN(Wrx) + LN(Urhn−1))

ĥn = φh (LN(Whx) + LN(Uh (rn » hn−1)))

hn = (1− zn)» hn−1 + zn » ĥn, h0 = Φh (D)

(3)

We also tried replacing the GRUs with LSTMs [6], but did not observe sig-
nificant performance benefit. Hence we chose the computationally lighter GRUs.
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6.2 Training losses

We apply a loss on the output of every step of our network:

L({Θn}
N
n=0, {Θ̂n}

N
n=0;D) =

�N

i=0
Li(Θi, Θ̂i;D) (4)

The loss Li contains the following terms:

Li = λMLM
i + λEL

E
i + λTL

T
i + λθL

θ

i (5)

LM
i = ∥M̂ −M∥1 (6)

LE
i =

�

(i,j)∈E
∥(M̂i − M̂j)− (Mi −Mj)∥1 (7)

LT
i =

�J

j=1
∥T̂j − Tj∥1 (8)

Lθ

i = ∥R̂θ −Rθ∥1 + ∥t̂− t∥1 (9)

M represents the mesh vertices deformed by parameters Θ. E is the set of
vertex indices of the mesh edges. T denotes the transformations in world coor-
dinate while Rθ denotes the rotation matrices (in the parent-relative coordinate
frame) computed from the pose values θ. t is the root translation vector. We use
the following values for the weights of the training losses: λM = 1000, λE = 1000,
λT = 100, λθ = 1, λt = 100.

6.3 Datasets

For body fitting from HMD signals, we use a subset of AMASS [8] to train and
test our method. Specifically, we use CMU [2], KIT [9] and MPI HDM05 [11],
adopting the same pre-processing and training, test splits as [4]. An important
difference is that we fit the neutral SMPL+H to the gendered SMPL+H data
found in AMASS, to preserve correct contact with the ground and avoid the use
of heuristics [13]. We attach random hand poses from the MANO [14] training set
to simulate hand articulation. In all our experiments that involve SMPL+H, we
use the ground-truth shape parameters β. Future work could include estimating
a subset of the shape parameters corresponding to height from the position of the
headset. For the learned fitter that estimates body parameters from 2D joints,
we use the data, augmentation and evaluation protocol of Song et al. [15]. To
be more precise, we use AMASS [8] to train the fitter and evaluate the resulting
model on 3DPW [10], which contains sequences of subjects in complex poses in
outdoor scenes, along with SMPL parameters captured using RGB cameras and
IMUs.
For face fitting from 2D landmarks, we use the face model proposed in [16] to
generate a synthetic face dataset by sampling 50000 sets of parameters from the
model space. For each sample, we vary pose, identity and expression. We use
a perspective camera with focal length (512, 512) and principal point (256, 256)
(in pixels) to project the 3D landmarks onto the image for 2D landmarks. Af-
terwards, we randomly split this by 80/20 into training and testing sets.
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6.4 Training schedule

We implement our model in [12] and train it with a batch size of 512 on 4 GPUs
using Adam [7]. We anneal the learning rate by a factor of 0.1 after 400 epochs.
We apply dropout with a probability of p = 0.5 on the hidden states of the
GRUs. We initialize the weights of the output linear layer of Eq. 3 with a gain
equal to 0.01 [5].

6.5 Edge loss

We empirically observed that the loss between the 3D edges of the predicted and
ground-truth meshes helps training converge faster.

6.6 Runtimes

We measure time on the 2D keypoint fitting problem on a Quadro P5000 GPU
and with a batch size of 512 data points. Our extra networks and update rule
add 6 (ms) per iteration to LGD’s [15] runtime. Using a common network for γ
and λ reduces this to 4 (ms).

6.7 Number of iterations

Similar to LGD [15], we observe limited gains beyond 5 iterations. Training
with more iterations, e.g. 10 or 20, leads to similar performance, at the cost of
increased training time. Picking a random number of iterations during training,
e.g. 5 to 20, does not affect the final result.
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Fig. 3: Comparison of our learned fitter with a Levenberg-Marquardt based op-
timization method. Left to right: 1) Input HMD data and Ground-Truth mesh
(blue), 2) LM solution (orange) overlayed on the GT, 3) our solution (yellow)
overlayed on the GT. While the classic LM optimization successfully fits the in-
put data, it still needs hand-crafted priors to prevent ground floor penetration.
In contrast, our proposed fitter learns from the data to avoid such penetrations.
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Fig. 4: Average norm for (left to right) 1) ∥gn∥2, 2) ∥γ∥2, 3) ∥λ∥2 and 4) ∥∆Θn∥2,
computed across the test set, for the root rotation and translation. The learned
optimizer slows down as it approaches a minimum of the target data term.
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