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Abstract. Fitting parametric models of human bodies, hands or faces
to sparse input signals in an accurate, robust, and fast manner has the
promise of signi�cantly improving immersion in AR and VR scenari os. A
common �rst step in systems that tackle these problems is to regre ss the
parameters of the parametric model directly from the input data. Thi s
approach is fast, robust, and is a good starting point for an iterati ve min-
imization algorithm. The latter searches for the minimum of an e nergy
function, typically composed of a data term and priors that encod e our
knowledge about the problem's structure. While this is undoubt edly a
very successful recipe, priors are often hand de�ned heuristics and �nding
the right balance between the di�erent terms to achieve high qua lity re-
sults is a non-trivial task. Furthermore, converting and optimiz ing these
systems to run in a performant way requires custom implementations
that demand signi�cant time investments from both engineers an d do-
main experts. In this work, we build upon recent advances in learn ed
optimization and propose an update rule inspired by the classic Leven-
berg{Marquardt algorithm. We show the e�ectiveness of the propos ed
neural optimizer on three problems, 3D body estimation from a head -
mounted device, 3D body estimation from sparse 2D keypoints and face
surface estimation from dense 2D landmarks. Our method can easily be
applied to new model �tting problems and o�ers a competitive al terna-
tive to well-tuned 'traditional' model �tting pipelines, bo th in terms of
accuracy and speed.

1 Introduction

Fitting parametric models [3, 19, 31, 51, 54, 71] to noisy input data is one of
the most common tasks in computer vision. Notable examples include �tting 3D
body [8, 13, 21, 36, 38, 51, 68], face [19], and hands [4, 9, 25, 59].

Direct regression using neural networks is the de facto default toolto esti-
mate model parameters from observations. While the obtained predictions are
robust and accurate to a large extent, they often fail to tightly �t the ob serva-
tions [78] and require large quantities of annotated data. Classic optimization
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Fig. 1: Top: Head and hand tracking signals from AR/VR devices (left) and
the corresponding body model �t obtained from regression followed byiterative
mathematical optimization. Bottom: Body model �t obtained from our learne d
optimizer (left), overlaid with the ground-truth (right). Learned optimizers are
fast, able to tightly �t the input data and require signi�cantly less manual labor
to achieve this result. All results are estimated independentlyper-frame.

methods, e.g. the Levenberg{Marquardt (LM) algorithm [40, 46], can tightly �t
the parametric model to the data by iteratively minimizing a hand- crafted en-
ergy function, but are prone to local minimas and require good starting points
for fast convergence. Hence, practitioners combine these two approaches to ben-
e�t from their complementary strengths, initializing the model p arameters from
a regressor, followed by energy minimization using a classic optimizer.

If we look one level deeper, optimization-based model �tting methods have
another disadvantage of often requiring hand-crafted energy functions that are
di�cult to de�ne and non-trivial to tune. Besides the data terms, each �tting
problem e�ectively requires the de�nition of their own prior ter ms and regular-
ization terms. Besides the work required to formulate these termsand train the
priors, domain experts needs to spend signi�cant amounts of time to balance
the e�ect of each term. Since these priors are often hand-de�ned or assumed to
follow distributions that are tractable / easy to optimize, the resul ting �tting
energy usually contains biases that can limit the accuracy of the resulting �ts.

To get the best of both regression using deep learning and classical numerical
optimization, we turn to the �eld of machine learning based continuousoptimiza-
tion [2, 14, 56, 57, 60, 77]. Here, instead of updating the model parameters using
a �rst or second order model �tter, a network learns to iteratively u pdate the
parameters that minimize the target loss, with the added bene�t of optimized
ML back-ends for fast inference. End-to-end network training removes the need
for hand-crafted priors, since the model learns them directly fromdata.

Inspired by the properties of the popular Levenberg{Marquardt and Adam
[34] algorithms, our main contribution extends the system presented in [60] with
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an iterative machine learning solver which (i) keeps information from previ-
ous iterations, (ii) controls the learning rate of each variable independently and
(iii) combines updates from gradient descent and from a network that iscapable
of swiftly reducing the �tting energy, for robustness and convergence speed. We
evaluate our approach on di�erent challenging scenarios: full-body tracking from
head and hand inputs only, e.g. given by a device like the HoloLens 2, body esti-
mation from 2D keypoints and face tracking from 2D landmarks, demonstrating
both high quality results and versatility of the proposed framework.

2 Related Work

Learning to optimize [2, 56, 57] is a �eld that, casts optimization as a learning
problem. The goal is to create models that learn to exploit the problem struc-
ture, producing faster and more e�ective energy minimizers. In this way, we can
remove the need for hand-designed parameter update rules and priors,since we
can learn them directly from the data. This approach has been used for image
denoising and depth-from-stereo estimation [66], rigid motion estimation [43],
view synthesis [22], joint estimation of motion and scene geometry [14], non-
linear tomographic inversion problem with simulated data [1], face alignment
[70] and object reconstruction from a single image [37].
Parametric human model �tting: The seminal work of Blanz and Vetter
[7] introduced a parametric model of human faces and a user-assisted method
to �t the model to images. Since then, the �eld has evolved and produced bet-
ter face models and faster, more accurate and more robust estimation methods
[19]. With the introduction of SMPL [42], the �eld of 3D body pose and shape
estimation has been rapidly progressing. The community has created largemo-
tion databases [44] from motion capture data, as well as datasets, both real and
synthetic, with images and corresponding 3D body ground-truth [24, 45, 50].
Thanks to these, we can now train neural network regressors that can reliably
predict SMPL parameters from images [30, 32, 38, 39, 41, 78] and videos [12, 35].
With the introduction of expressive models [31, 51, 71], the latest regression ap-
proaches [13, 21, 55] can now predict the 3D body, face and hands. However,
one common issue, present in all regression scenarios, is the misalignment of the
predictions and the input data [58, 78]. Thus, they often serve as the initial point
for an optimization-based method [8, 51, 68], which re�nes the estimated param-
eters until some convergence criterion is met. This combination produces system
that are e�ective, robust and able to work in real-time and under challenging
conditions [47, 59, 62]. These hybrid regression-optimization systems arealso
e�ective pseudo annotators for in-the-wild images [38], where standardcapture
technologies are not applicable. However, formulating the correct energy terms
and �nding the right balance between them is a challenging and time-consuming
task. Furthermore, adapting the optimizer to run in real-time is a non-trivial op-
eration, even when using popular algorithms such as the Levenberg{Marquardt
algorithm [28, 40, 46] which has a cubic complexity. Thus, explicitly computing
the Jacobian [14, 43] is often prohibitive in practice, either in terms ofmemory
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or runtime. The most common and practical way to speedup the optimization is
to utilize the sparsity of the problem or make certain assumptions to simplify it
[20]. Learned optimizers promise to overcome these issues, by learning the para-
metric model priors directly from the data and taking more aggressive steps,
thus converging in fewer iterations. The e�ectiveness of these approaches has
been demonstrated in di�erent scenarios, such as �tting a body model [42, 71]
to images [60, 77] and videos [75], to sparse sensor data from electromagnetic
sensors [33] and multi-body estimation from multi-view images [17].

We propose a new update rule, computed as a weighted combination of the
gradient descent step and the network update [60], where their relative weights
are a function of the residuals. Many popular optimizers have an internal mem-
ory, such as Adam's [34] running averages, Clark et al.'s [14] and Neural Descent's
[77] RNN. We adopt this insight, using an RNN to predict the network update
and the combination weights. The network can choose to follow either the gradi-
ent or the network direction more, using both current and past residual values.
Estimating 3D human pose from a head-mounted device is a di�cult
problem, due to self-occlusions caused by the position of the headset and the
sparsity of the input signals [72]. Yuan and Kitani [73, 74] cast this as a control
problem, where a model learns to produce target joint angles for a Proportional-
Derivative (PD) controller. Other methods [64, 65] tackle this as a learning
problem, where a neural network learns to predict the 3D pose from thecameras
mounted on the HMD. Guzov et al. [23] use sensor data from IMUs placed
on the subject's body and combine them with camera self-localization. They
formulate an optimization problem with scene constraints, enabling the capture
of long-term motions that respect scene constraints, such as foot contactwith
the ground. Finally, Dittadi et al. [16] propose a likelihood model that maps
head and hand signals to full body poses. In our work, we focus on this scenario
and empirically show that the proposed optimizer rule is competitive, both with
a classic optimization baseline and a state-of-the-art likelihood model [16].

3 Method

3.1 Neural Fitter

Levenberg{Marquardt (LM) [28, 40, 46] and Powell's dog leg method (PDL) [52]
are examples of popular iterative optimization algorithms used in applications
that �t either faces or full human body models to observations. Thesetechniques
employ the Gauss-Newton algorithm for both its convergence rate approaching
the quadratic regime and its computational e�ciency, enabling real-ti me model
�tting applications, e.g. generative face [63, 81] and hand [59, 62] tracking. For
robustness, LM and PDL both combine the Gauss-Newton algorithm and gradi-
ent descent, leading to implicit and explicit trust region being used when calcu-
lating updates, respectively. In LM, the relative contribution of t he approximate
Hessian and the identity matrix is weighted by a single scalar that is changing
over iterations with its value carried over from one iteration to the next. Given
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an optimization problem over a set of parameters� , LM computes the param-
eter update � � as the solution of the system (J T J + � diag(J T J )) � � = J T R,
where J is the Jacobian andR are the current residual values. It is interesting
to note that several popular optimizers, including ADAGRAD [18] and Adam
[34], also carry over information about previous iteration(s), in this case to help
control the learning rate for each parameter.

Inspired by the success of these algorithms, we aim at constructing anovel
neural optimizer that (a) is easily applicable to di�erent �tting pr oblems, (b) can
run at interactive rates without requiring signi�cant e�orts, (c) d oes not require
hand crafted priors. (d) carries over information about previous iterations of
the solve, (e) controls the learning rate of each parameter independently, (f) for
robustness and convergence speed, combines updates from gradient descent and
from a method capable of very quickly reducing the �tting energy. Note that the
Learned Gradient Descent (LGD) proposed in [60] achieves (a), (b), and (c), but
does not consider (d), (e), and (f). As demonstrated experimentallyin Section 4,
each of these additional properties leads to improved results compared to [60],
and the best results are achieved when combined together.

Algorithm 1 Neural �tting
Require: Input data D

� 0 = � (D )
h0 = � h (D )
while not converged do

� � n ; hn  f ([gn � 1 ; � n � 1 ]; D; h n � 1)
� n  � n � 1 + u (� � n ; gn � 1 ; � n � 1)

end while

Our proposed neural �tter esti-
mates the values of the parameters�
by iteratively updating an initial esti-
mate � 0, see Algorithm 1. While the
initial estimate � 0 obtained from a
deep neural network� might be su�-
ciently accurate for some applications,
we will show that a careful construc-

tion of the update rule (u(:) in Alg. 1) leads to signi�cant improvements after
only a few iterations. It is important to note that we do not focus on buil ding
the best possible initializer � for the �tting tasks at hand, which is the focus of
e.g. VIBE [35] and SPIN [38]. That being said, note that these regressors could
be leveraged to provide� 0 from Alg. 1. h0 and hn are the hidden states of the
optimization process. At the n-th iteration in the loop of Alg. 1, we use a neural
network f to predict � � n , and then apply the following update rule:

u(� � n ; gn � 1; � n � 1) = � � � n + ( � 
g n � 1) (1)

� ; 
 = f � ;
 (R(� n � 1); R(� n � 1 + � � n )) ; � ; 
 2 Rj � j (2)

Note that LGD [60] is a special case of Eq. 1, with� = 1 ; 
 = 0, and with no
knowledge preserved across �tting iterations. gn is the gradient of the target
data term w.r.t. to the problem parameters: gn = rL D .

The proposed neural �tter satis�es the requirements (a), (b) and (c) in a
similar fashion to LGD [60]. In the following, we describe how the properties
(d), (e), and (f) outlined earlier in this section are satis�ed.
(d): keeping track of past iterations. The functions f; f � ;
 are implemented
with a Gated Recurrent Unit (GRU) [11]. Unlike previous work, where the
learned optimizer only stores past parameter values and the total loss [77],lever-
aging GRUs allows to learn an abstract representation of the knowledge thatis
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important to use and forget about the previous iteration(s), and of the knowledge
about the current iteration that should be preserved.
(e): independent learning rate. When �tting face or body models to data,
the variables being optimized over are of di�erent nature. For instance, rotations
might be expressed in Euler angles while translation in meters. Since each of these
parameter has a di�erent scale and / or unit, it is useful to have per-parameter
step size values. Here, we propose to predict vectors� and 
 independently to
scale the relative contribution of � � n and gn to the update applied to each entry
of � n . It is interesting to note that f � having knowledge about the current value
of residuals at � n and the residual at � n + � � n , e�ectively makes use of an
estimate of the step direction before setting a step size which isanalogous to
how line-search operates. Motivated by this observation we tried a few learned
versions of line search which yielded similar or inferior results to what we propose
here. The alternatives we tried are described in theSup. Mat. .
(f ): combining gradient descent and network updates. LM interpolates
between Gradient Descent (GD) and Gauss-Newton (GN) using an iteration
dependent scalar. LM combines the bene�ts of both approaches, namely fast
convergence near the minimum like GN and large descent steps away from the
minimum like GD. In this work, we replace the GN direction, which is often
prohibitive to compute, with a network-predicted update, described in Eq. (1).
The neural optimizer should learn the optimal descent direction and the relative
weights to minimize the data term in as few steps as possible. In theSup. Mat.
we provide alternative combinations, e.g. via convex combination, which yielded
inferior results in our experiments.

3.2 Human Body Model and Fitting Tasks

Fig. 2: Left to right: 1) In-
put 6-DoF transformations
TH; TL; TR and �ngertip posi-
tions PL

i =1 ;::: 5; PR
i =1 ;::: 5, given

by the head-mounted device,
2) ground-truth mesh, 3) half-
space visibility, everything be-
hind the headset is not visible.

We represent the human body using SMPL
[42]/SMPL+H [54], a di�erentiable function
that computes mesh verticesM (� ; � ) 2 RV� 3,
V = 6890, from pose � and shape � , using
standard linear blend skinning (LBS). The 3D
joints, J (� ), of a kinematic skeleton are com-
puted from the shape parameters. The pose
parameters � 2 RJ� D+3 contain the parent-
relative rotations of each joint and the root
translation, where D is the dimension of the
rotation representation and J is the number
of skeleton joints. We represent rotations us-
ing the 6D rotation parameterization of Zhou
et al. [80], thus � 2 RJ� 6+3 . The world trans-
formation Tj (� ) 2 SE(3) of each joint j is com-
puted by following the transformations of its
parents in the kinematic tree: Tj (� ) = Tp( j ) (� ) �

T (� j ; J j (� )), where p(j ) is the index of the parent of joint j and T (� j ; J j (� ))
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is the rigid transformation of joint j relative to its parent. Variables with a hat
denote observed quantities.

We focus on two 3D human body estimation problems: 1) �tting a body
model [42] to 2D keypoints and 2) inferring the body, including hand articu-
lation [54], from head and hand signals returned by AR/VR devices, shown in
Fig. 2. The �rst is by now a standard problem in the Computer Vision commu-
nity. The second, which uses only head and hand signals in the AR/VR scenario,
is a signi�cantly harder task which requires strong priors, in particular to pro-
duce plausible results for the lower body and hands. The design of such priors
is not trivial, requires expert knowledge and a signi�cant investment of time.
2D keypoint �tting: We follow the setup of Song et al. [60], computing the
projection of the 3D SMPL joints J with a weak-perspective camera� with
scales 2 R, translation t 2 R2: j = � o(J (� ; � ); s; t ). Our goal is to estimate
SMPL and camera parameters� B = f � ; � g, KB = f s; t g, such that the pro-
jected joints j match the detected keypoints D B = f ĵ g, e.g. from OpenPose
[10]. Fitting SMPL+H to AR/VR device signals: We make the follow-
ing assumptions: 1. the device head tracking system provides a 6-DoFtrans-
formation T̂H, that contains the position and orientation of the headset in the
world coordinate frame. 2. the device hand tracking system gives us the orien-
tation and position of the left and right wrist, T̂L; T̂R 2 SE(3), and the posi-
tions of the �ngertips P̂L

1;:::; 5; P̂R
1;:::; 5 2 R3 in the world coordinate frame, if and

when they are in the �eld of view (FOV) of the HMD. In order to estimate
the SMPL+H parameters that best �t the above observations, we compute the
estimated headset position and orientation from the SMPL+H world transfor-
mations as TH(� ) = THMD Tj H(� ), where j H is the index of the head joint of
SMPL+H. THMD is a �xed transform from the SMPL+H head joint to the
headset, obtained from an o�ine calibration phase.
Visibility is represented by vL; vR 2 f 0; 1g for the left and right hand respectively.
We examine two scenarios: 1. full visibility, where the hands are always visible,
2. half-space visibility, where only the area in front of the HMD is visible. Specif-
ically, we transform the points into the coordinate frame of the headset, using
TH. All points with z � 0 are behind the headset and thus invisible. Fig. 2 right
visualizes the plane that de�nes what is visible or not.
To sum up, the sensor data are:D HMD = f T̂H; T̂L; T̂R; P̂L

i =1 ;:::; 5; P̂R
i =1 ;:::; 5; vL; vRg.

The goal is to estimate the parameters� HMD = f � g 2 R315, that best �t D HMD .
Note that we assume we are given body shape� for the HMD �tting scenario.

3.3 Human Face Model and Fitting Task

We represent the human face using the parametric face model proposedby Wood
et al. [67]. It is a blendshape model [19], withV= 7667 vertices, 4 skeleton joints
(head, neck and two eyes), with their rotations and translations denoted with
� , identity � 2 R256 and expression 2 R233 blendshapes. The deformed face
mesh is obtained with standard linear blend skinning.
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Fig. 3: Blue: The face model
template of Wood et al. [67].
White: 669 dense landmarks.

For face �tting, we select a set of mesh ver-
tices as the face landmarksP(� ;  ; � ) 2 RP� 3,
P = 669 (see Fig. 3 right). The input data are
the corresponding 2D face landmarks ^p 2 RP� 2,
detected using the landmark neural network
proposed by Wood et al. [67].

For this task, our goal is to estimate trans-
lation, joint rotations, expression and identity
coe�cients � F = f � ;  ; � g 2 R516 that best �t
the 2D landmarks D F = p̂. We assume we are
dealing with calibrated cameras and thus have
access to the camera intrinsics K.� p(P; K) is
the perspective camera projection function used

to project the 3D landmarks P onto the image plane.

3.4 Data Terms

The data term is a function L D (� ; D ) that measures the discrepancy between
the observed inputs D and the parametric model evaluated at the estimated
parameters � .

At the n-th iteration of the �tting process, we compute both 1) the array
R(� n ) that contains all the corresponding residuals of the data termL D for the
current set of parameters� n , and 2) the gradient gn = rL D (� n ).

Let JKby any metric appropriate for SE(3) [16] and kk a robust norm [5].
To compute residuals, we use the Frobenius norm forJKand kk Note that any
other norm choice can be made compatible with LM [76].
Body �tting to 2D keypoints: We employ the re-projection error between
the detected joints and those estimated from the model as the data term:

L D (� B ; D B ) = kĵ � � p
�
J (� B ); KB �

k (3)

Here J (� B ) denotes the \posed" joints.
Body �tting to HMD signals: We measure the discrepancy between the
observed dataD HMD and the estimated model parameters� HMD with the fol-
lowing data term:

L D (� HMD ; D HMD ) = JT̂H; TH(� HMD )K+
X

w2 L;R
vw

�
JT̂w ; Tw (� HMD )K+

X 5

i =1
kP̂w

i � Pw
i (� HMD )k 

� (4)

Face �tting to 2D landmarks: The data term is the landmark re-projection
error:

L D (� F ; D F ) = kp̂ � � p
�
P(� F ); K F �

k (5)
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3.5 Training Details

Training losses: We train our learned �tter using a combination of model pa-
rameter and mesh losses. Their precise formulation can be found in theSup. Mat.

Model structure: Unless otherwise speci�ed,f; f � ;
 (in Alg. 1, (2)) use a stack
of two GRUs with 1024 units each. The initialization �; � h in Alg. 1 are MLPs
with two layers of 256 units, ReLU [48] and Batch Normalization [29].
Datasets: For the body �tting tasks, we use AMASS [44] to train and test
our �tters. When �tting SMPL to 2D keypoints, we use 3DPW's [45] test set to
evaluate the learned �tter's accuracy, using the detected OpenPose [10] keypoints
as the target. The face �tter is trained and evaluated on synthetic data. Please
see theSup. Mat. for more details on the datasets.

4 Experiments

4.1 Metrics

Metrics with a PA pre�x are computed after undoing rotation, scale and trans-
lation, i.e. Procrustes alignment. Variables with a tilde are ground-truth values.
Vertex-to-Vertex (V2V): As we know the correspondence between ground-
truth ~M and estimated verticesM , we are able to compute the mean per-vertex
error: V2V( ~M; M ) = 1

V

P V
i =1 k ~M i � M i k2. For SMPL+H, in addition to the full

mesh error (FB), we report error values for the head (H) and hands (L, R). A
visualization of the selected parts is included in theSup. Mat. The 3D per-
joint error (JntErr) is equal to: JntErr( ~J ; J ) = 1

J

P J
i =1 k ~J i � J i k2.

Ground penetration (GrPe.): We report the average distance to the ground
plane for all vertices below ground [75]: GrPe.(M ) = 1

jSj

P
n 2 Sjdgnd (M i )j, where

dgnd (M i ) = M i � ngnd and S= f i j dgnd (M i ) < 0g.
Face landmark error (LdmkErr): We report the mean distance between
estimated and ground-truth 3D landmarks LdmkErr( ~P; P) = 1

P

P P
i =1 k ~Pi �P i k2.

4.2 Quantitative Evaluation

Fitting the body to 2D keypoints: We compare our proposed update rule
with existing regressors, classic and learned optimization methodson 3DPW [45].
For a fairer comparison with Song et al. [60], we train two versions of our pro-
posed �tter, one where we change the update rule of LGD with Eq. 1, and our
full system which also has network architecture changes. Table 1 shows that just
by changing the update rule (Ours, LGD + Eq. 1), we outperform all baselines.
Fitting the body to HMD data: In Tab. 2 we compare our proposed learned
optimizer with a standard optimization pipeline, a variant of SMPLify [ 8, 51]
adapted to the HMD �tting task (�rst 3 rows), and two neural network re gres-
sors (a VAE predictor [16] in the 4th row and our initializer � of Alg. 1 in the
5th row), on the task of �tting SMPL+H to sparse HMD signals, see Sec. 3.2.
The optimization baseline minimizes the energy with data term (L D in Eq. (4)),
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Table 1: Using 3DPW [45] to compare di�erent approaches that esti mate SMPL from
images, 2D keypoints and part segmentation masks. ReplacingLGD's [60] update rule
with ours leads to a 2 mm PA-MPJPE improvement. Our full system, t hat uses GRUs,
leads to a further 1.6 mm improvement. \O/R" denotes Optimizati on/Regression.

Method Type Image 2D keypoints Part segmentation PA-MPJPE

SMPLify [8] O 7 3 7 106.1

SCOPE [20] O 7 3 7 68.0

SPIN [38] R 3 7 7 59.6

VIBE [35] R 3 7 7 55.9

Neural Descent [77] R+O 3 3 3 57.5

LGD [60] R+O 7 3 7 55.9

Ours, LGD + Eq. 1 R+O 7 3 7 53.9

Ours (full) R+O 7 3 7 52.2

gravity term L G, prior term L �
prior , without/with temporal term L T (�rst/second

row of Tab. 2) to estimate the parameters� 1;:::; T of a sequence of length T:

L O (� HMD ) = L D (� HMD ; D HMD ) + L G + L �
prior + L T

L G(� HMD ) = 1 �
Tpelvis (1; : 3) � u

kTpelvis (1; : 3)k2kuk2
; u = (0 ; 1; 0)

L T (� HMD ) =
X T � 1

t =1
JTt +1 (� HMD

t +1 ) � Tt (� HMD
t )K

(6)

Table 2: Fitting SMPL+H to simulated sequences of HMD data. O ur proposed �tter
outperforms the classical optimization baselines (L-BFGS pre� x) on the full body and
ground penetration metrics, with similar or better performance on the part metrics,
and the regressor baselines (the VAE predictor [16] and the regressor � ), on all metrics.
\F/H" denotes full / half-plane visibility.

Vertex-to-vertex (mm) # JntErr GrPe.
Method Full body Head L / R hand (mm) # (mm) #

F H F H F H F H F H

L-BFGS, GMM 73.1 116.2 2.9 3.4 3.2 / 3.0 5.6 / 5.3 49.7 137.26 70.8 74.0
L-BFGS, GMM, Tempo. 72.6 113.3 2.9 3.4 3.3 / 3.1 6.8 / 6.5 49.4 132.1 70.7 73.5
L-BFGS, VAE Enc. 76.1 119.3 3.9 4.1 5.3 / 4.7 8.7 / 7.6 52.6 140.5 63.6 66.7
Dittadi et al. [16] n/a n/a n/a 43.3 n/a n/a
Ours �; (N = 0) 44.2 69.7 19.1 22.7 27.8 / 25.9 32.1 / 29.9 38.9 84.9 16.1 20.1
Ours ( N = 5) 26.1 49.9 2.2 3.2 3.0 / 3.3 3.1 / 3.7 18.1 62.1 12.5 15.5
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Fig. 4: Errors per iteration when �tting SMPL+H to HMD data for the half-
space visibility scenario, seeSup. Mat. for full visibility. Left to right: 1) full
body vertex and joint errors, 2) head, left and right hand V2V errors and 3)
vertex and joint ground distance, computed on the set of points below ground.

We use two di�erent pose priors, a GMM [8] and a VAE encoderE(� ) [51]:

L �
GMM = � min

j
log (wj N (� ; � � ;j ; � � ;j )) (7)

L �
VAE = Neg. Log-Likelihood(N (E(� ); I )) (8)

We minimize the loss above using L-BFGS [49, Ch. 7.2] for 120 iterations
on the test split of the MoCap data. We choose L-BFGS instead of Levenberg-
Marquardt, since PyTorch currently lacks the feature to e�cientl y compute ja-
cobians, without having to resort to multiple backward passes for derivative
computations. We report the results for both full and half-space visibility in
Tab. 2 using the metrics of Section 4.1. Our method outperforms the baselines
in terms of full-body and penetration metrics, and shows competitive perfor-
mance w.r.t. to the part metrics. Regression-only methods [16] cannottightly �t
the data, due to the lack of a feedback mechanism.
Runtime: Our method (PyTorch) runs at 150 ms per frame on a P100 GPU,
while the baseline L-BFGS method (PyTorch) above requires520 ms, on the
same hardware. We are aware that a highly optimized real-time version of the
latter exists and runs at 0.8 ms per frame, performing at most 3 LM iterations,
but it requires investing signi�cant e�ort into a problem speci� c C++ codebase.

Fig. 4 contains the metrics per iteration of our method, averaged across the
entire test dataset. It shows that our learned �tter is able to aggressively optimize
the target data term and converge quickly.
Ablation study: We perform our ablations on the problem of �tting SMPL+H
to HMD signals, using the half-space visibility setting. Unless otherwise stated,
we report the performance of regression and 5 iterations of the learned �tter.

We �rst compare two variants of the �tter, one with shared and the other
with separate network weights per optimization step. Table 3 shows that the
latter can help reduce the errors, at the cost of an N-fold increase in memory.



12 Choutas et al.

Table 3: Using per-step network weights
reduces head and ground penetration er-
rors, albeit at an N-folder parameter in-
crease.
Weights V2V (mm) # JntErr GrPe.

FB H L / R (mm) # (mm) #

Shared 52.3 3.5 3.6 / 3.7 64.1 18.2

Per-step 49.9 3.2 3.1 / 3.7 62.1 15.5

Table 4: GRU vs a residual feed-forward
network [26, 61]. GRU's memory makes it
more e�ective. Multiple layers bring fur-
ther bene�ts, but increase runtime.
Network V2V (mm) # JntErr GrPe.

Structure FB H L / R (mm) # (mm) #

ResNet 65.3 6.8 7.3 / 7.6 73.1 16.2

GRU (1024) 53.6 3.7 3.4 / 4.0 66.1 15.1

GRU (1024, 1024) 49.9 3.2 3.1 / 3.7 62.1 15.5

Table 5: Comparison of our update rule
(Eq. 1) with the pure network update
�� n . Our proposed combination im-
proves the results for all metrics.
Update V2V (mm) # JntErr GrPe.

Rule FB H L / R (mm) # (mm) #

+ �� n 53.8 14.7 7.8 / 7.9 66.3 15.8

+Eq. 1 49.9 3.2 3.1 / 3.7 62.1 15.5

Table 6: Learning to predict 
 is better
than a constant, with performance de-
grading gracefully, providing an option for
a lower computational cost.
Learning V2V (mm) # JntErr GrPe.

rate 
 FB H L / R (mm) # (mm) #

1e-4 51.9 3.5 3.8 / 4.6 64.2 15.5

Learned 49.9 3.2 3.1 / 3.7 62.1 15.5

Secondly, we investigate the e�ect of the type and structure of the net-
work, replacing the GRU with a feed-forward network with skip connections,
i.e., ResNet [26, 61]. We also train a version of our �tter with a single GRU
with 1024 units. Table 4 shows that the GRU is better suited to this type of
problem, thanks to its internal memory. This is very much in line with many
popular continuous optimizer work [77].

Thirdly, we compare the update rule of Eq. 1 with a learned �tter that only
uses the network update, i.e.
 = 0 ; � = 1 in Eq. 1. This is an instantiation
of LGD [60], albeit with a di�erent network and task. Table 5 shows that th e
proposed weighted combination is better than the pure network update.

Fourthly, we investigate whether we need to learn the step size
 or if a
constant value is enough. Table 6 shows that performance gracefully degrades
when using a constant learning value. Therefore, it is an option for decreasing
the computational cost, without a signi�cant performance drop.

Finally, we present some qualitative results in Fig. 6. Notice how thelearned
�tter corrects the head pose and hand articulation of the initial predic tions.

Table 7: Face �tting to 2D land-
marks.

V2V (mm) # LdmkErr
Face Head (mm) #

Method - PA - PA - PA

LM 34.4 3.7 33.8 5.333.8 3.4
Ours 7.9 3.5 8.5 4.1 8.0 3.7

Face �tting to 2D landmarks: We com-
pare our proposed learned optimizer with a
C++ production grade solution that uses LM
to solve the face �tting problem described in
Sec. 3.3. Given the per-image 2D landmarks
as input, the optimization baseline minimizes
the energy with data term (L D in Eq. 5)
and a simple regularization term to estimate
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� F = f � ;  ; � g:

L O (� F ) = L D (� F ; D F ) + w � k � F k2 (9)

w contains the di�erent regularization weights for � ;  ; � , which are tuned man-
ually for the best baseline result.

a) b) c) d)

Fig. 5: Face model [67] �tting
to to dense 2D landmarks a)
target 2D landmarks, b) LM
�tter, c) ours, d) ground-truth.

The quantitative comparison in Tab. 7
shows that our proposed �tter outperforms the
LM baseline on almost all metrics. The large
value in absolute errors (\-" columns) is due to
the wrong estimation of the depth of the mesh.
After alignment ( PA columns), the gap is much
smaller. See Fig. 5 for a qualitative comparison.
Runtime: Here, the baseline optimization is in
C++ and thus for a fair comparison, we only
compare the time it takes to compute the pa-
rameter update given the residuals and jaco-
bians (per-iteration). Computing the values of
the learned parameter update (ours, using Py-
Torch) takes 12 ms on a P100 GPU, while com-
puting the LM update (baseline, C++) requires
34.7 ms (504 free variables). Note that the LM
update only requires 0.8 ms on a laptop CPU

when optimizing over 100 free variables. The di�erence is due to the cubic com-
plexity of LM w.r.t. the number of free variables of the problem.

4.3 Discussion

If we apply the proposed method to a sequence of data, we will get plausible
per-frame results, but the overall motion will be implausible. Since the model
is trained on a per-frame basis and lacks temporal context, it cannot learnthe
proper dynamics present in temporal data. Thus, limbs in successive frames will
move unnaturally, with large jumps or jitter. Future extensions of t his work
should therefore explore how to best use past frames and inputs. This could be
coupled with a physics based approach, either as part of a controller [75] orusing
explicit physical losses [53, 69, 79] inL D . Another interesting direction is the use
of more e�ective parameterizations for the per-step weights [15, 27]. While all the
problems we tackle here are under-constrained and could thus have multiple so-
lutions, the current system returns only one. Therefore, combining the proposed
system with multi-modal regressors [6, 39] is another possible extension.

5 Conclusion

In this work, we propose a learned parameter update rule inspired fromclas-
sic optimization algorithms that outperforms the pure network update and is
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1) Initial � output 2) Iteration N = 5 3) Ground-truth

Fig. 6: Estimates in yellow, ground-truth in blue, best viewed in color. Our
learned optimizer successfully �ts the target data and produces plausible poses
for the full 3D body. Points that are greyed out are outside of the �eld of view,
e.g. the hands in the second row, and thus not perfectly �tted.

competitive with standard optimization baselines. We demonstrate the utility
of our algorithm on three di�erent problem sets, estimating the 3D body from
2D keypoints, from sparse HMD signals and �tting the face to dense 2D land-
marks. Learned optimizers combine the advantages of classic optimization and
regression approaches. They greatly simplify the development process for new
problems, since the parameter priors are directly learned from the data, with-
out manual speci�cation and tuning, and they run at interactive speeds, thanks
to the development of specialized software for neural network inference. Thus,
we believe that our proposed optimizer will be useful for any applications that
involve generative model �tting.
Acknowledgement: We thank Pashmina Cameron, Sadegh Aliakbarian, Tom Cash-
man, Darren Cosker and Andrew Fitzgibbon for valuable discussion s and proof read-
ing.



Learning to Fit Morphable Models 15

References

1. Adler, J., •Oktem, O.: Solving ill-posed inverse problems using iterative deep neural
networks. Inverse Problems 33(12), 124007 (2017)

2. Andrychowicz, M., Denil, M., G�omez, S., Ho�man, M.W., Pfau, D., Schaul,
T., Shillingford, B., de Freitas, N.: Learning to learn by gradient descent
by gradient descent. In: NeurIPS. vol. 29. Curran Associates, In c. (2016),
https://proceedings.neurips.cc/paper/2016/�le/fb8758282 5f9d28a8d42c5e5e5e8b23d-
Paper.pdf

3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J. , Davis, J.:
SCAPE: Shape Completion and Animation of People. ACM Transac tions on
Graphics 24(3), 408{416 (July 2005). https://doi.org/10.1145/107320 4.1073207,
https://doi.org/10.1145/1073204.1073207

4. Baek, S., Kim, K.I., Kim, T.K.: Pushing the envelope for RGB -based dense 3D
hand pose estimation via neural rendering. In: Computer Vision and Pattern
Recognition (CVPR). pp. 1067{1076 (June 2019)

5. Barron, J.T.: A general and adaptive robust loss function. Comp uter Vision and
Pattern Recognition (CVPR) pp. 4326{4334 (June 2019)

6. Biggs, B., Novotny, D., Ehrhardt, S., Joo, H., Graham, B., Ved aldi, A.: 3D
Multi-bodies: Fitting Sets of Plausible 3D Human Models to A mbiguous Image
Data. In: NeurIPS. vol. 33, pp. 20496{20507. Curran Associates, Inc. (2020),
https://proceedings.neurips.cc/paper/2020/�le/ebf99bb5d f6533b6dd9180a59034698d-
Paper.pdf

7. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3 D faces. In: ACM
Transactions on Graphics (Proceedings of SIGGRAPH). pp. 187{1 94 (1999)

8. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it
SMPL: Automatic estimation of 3D human pose and shape from a sin gle image. In:
European Conference on Computer Vision (ECCV). pp. 561{578. Le cture Notes
in Computer Science, Springer International Publishing (Oct ober 2016)

9. Boukhayma, A., Bem, R.d., Torr, P.H.: 3D hand shape and pose fro m images in
the wild. In: Computer Vision and Pattern Recognition (CVPR) . pp. 10843{10852
(June 2019)

10. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Op enPose: Realtime Multi-
Person 2D Pose Estimation using Part A�nity Fields. Transactio ns on Pattern
Analysis and Machine Intelligence (TPAMI) 43(1), 172{186 (2021)

11. Cho, K., van Merri•enboer, B., Gulcehre, C., Bahdanau, D., Bou gares, F.,
Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder{
decoder for statistical machine translation. In: Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMN LP). pp.
1724{1734. Association for Computational Linguistics, Doha , Qatar (Oct 2014).
https://doi.org/10.3115/v1/D14-1179, https://aclanthol ogy.org/D14-1179

12. Choi, H., Moon, G., Lee, K.M.: Beyond Static Features for Te mporally Consis-
tent 3D Human Pose and Shape from a Video. In: Computer Vision an d Pattern
Recognition (CVPR). pp. 1964{1973 (June 2021)

13. Choutas, V., Pavlakos, G., Bolkart, T., Tzionas, D., Black , M.J.: Monocular Ex-
pressive Body Regression through Body-Driven Attention. In: Euro pean Confer-
ence on Computer Vision (ECCV). pp. 20{40 (August 2020)

14. Clark, R., Bloesch, M., Czarnowski, J., Leutenegger, S., Davison, A.J.: Learning
to Solve Nonlinear Least Squares for Monocular Stereo. In: European Conference
on Computer Vision (ECCV). pp. 291{306 (September 2018)



16 Choutas et al.

15. Dehesa, J., Vidler, A., Padget, J., Lutteroth, C.: Grid-Func tioned Neural Networks.
In: ICML. Proceedings of Machine Learning Research, vol. 139, pp. 2559{2567.
PMLR (July 2021), https://proceedings.mlr.press/v139/dehe sa21a.html

16. Dittadi, A., Dziadzio, S., Cosker, D., Lundell, B., Cashman , T.J., Shotton, J.: Full-
Body Motion From a Single Head-Mounted Device: Generating SMPL Poses From
Partial Observations. In: International Conference on Computer Vision (ICCV).
pp. 11687{11697 (October 2021)

17. Dong, Z., Song, J., Chen, X., Guo, C., Hilliges, O.: Shape-aware Multi-Person Pose
Estimation from Multi-View Images. In: International Conferenc e on Computer
Vision (ICCV). pp. 11158{11168 (October 2021)

18. Duchi, J., Hazan, E., Singer, Y.: Adaptive Subgradient Meth ods for Online Learn-
ing and Stochastic Optimization. Journal of Machine Learning Research 12(7),
2121|-2159 (2011)

19. Egger, B., Smith, W.A.P., Tewari, A., Wuhrer, S., Zollhoefer, M ., Beeler, T.,
Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theoba lt, C., Blanz, V.,
Vetter, T.: 3D Morphable Face Models - Past, Present and Future. A CM Transac-
tions on Graphics 39(5) (August 2020). https://doi.org/10.1145/3395208

20. Fan, T., Alwala, K.V., Xiang, D., Xu, W., Murphey, T., Mukad am, M.: Revitalizing
Optimization for 3D Human Pose and Shape Estimation: A Sparse C onstrained
Formulation. In: International Conference on Computer Vision ( ICCV). pp. 11457{
11466 (October 2021)

21. Feng, Y., Choutas, V., Bolkart, T., Tzionas, D., Black, M.J .: Collaborative regres-
sion of expressive bodies using moderation. In: International Conference on 3D
Vision (3DV). pp. 792{804 (2021)

22. Flynn, J., Broxton, M., Debevec, P., DuVall, M., Fy�e, G., Ov erbeck, R., Snavely,
N., Tucker, R.: DeepView View Synthesis with Learned Gradient Des cent. In: Com-
puter Vision and Pattern Recognition (CVPR). pp. 2367{2376 ( June 2019)

23. Guzov, V., Mir, A., Sattler, T., Pons-Moll, G.: Human POSEi tioning System
(HPS): 3D Human Pose Estimation and Self-Localization in Larg e Scenes From
Body-Mounted Sensors. In: Computer Vision and Pattern Recogn ition (CVPR).
pp. 4318{4329 (June 2021)

24. Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolv ing 3D human pose
ambiguities with 3D scene constraints. In: International Con ference on Computer
Vision (ICCV). pp. 2282{2292 (October 2019), https://prox. is.tue.mpg.de

25. Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black , M.J., Laptev, I., Schmid,
C.: Learning Joint Reconstruction of Hands and Manipulated Ob jects. In: Com-
puter Vision and Pattern Recognition (CVPR). pp. 11807{1181 6 (June 2019)

26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Computer Vision and Pattern Recognition (CVPR). pp. 770{ 778 (June 2016)

27. Holden, D., Komura, T., Saito, J.: Phase-Functioned Neural Net-
works for Character Control. ACM Transactions on Graph-
ics 36(4) (July 2017). https://doi.org/10.1145/3072959.307366 3,
https://doi.org/10.1145/3072959.3073663

28. Igel, C., Toussaint, M., Weishui, W.: Rprop using the natu ral gradient. In: Trends
and Applications in Constructive Approximation. pp. 259{272 . Birkh•auser Basel,
Basel (2005)

29. Io�e, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICLR. pp. 448{456. PMLR ( 2015)

30. Joo, H., Neverova, N., Vedaldi, A.: Exemplar Fine-Tuning for 3D Human Pose
Fitting Towards In-the-Wild 3D Human Pose Estimation. In: In ternational Con-
ference on 3D Vision (3DV). pp. 42{52 (2021)



Learning to Fit Morphable Models 17

31. Joo, H., Simon, T., Sheikh, Y.: Total capture: A 3D deformati on model for tracking
faces, hands, and bodies. In: Computer Vision and Pattern Recognition (CVPR).
pp. 8320{8329 (June 2018)

32. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-t o-end recovery of human
shape and pose. In: Computer Vision and Pattern Recognition ( CVPR). pp. 7122{
7131 (June 2018)

33. Kaufmann, M., Zhao, Y., Tang, C., Tao, L., Twigg, C., Song , J., Wang, R., Hilliges,
O.: EM-POSE: 3D Human Pose Estimation From Sparse Electromagn etic Track-
ers. In: International Conference on Computer Vision (ICCV). pp . 11510{11520
(October 2021)

34. Kingma, D.P., Ba, J.: Adam: A method for stochastic optim ization. In: ICLR
(2015), http://arxiv.org/abs/1412.6980

35. Kocabas, M., Athanasiou, N., Black, M.J.: VIBE: Video in ference for human body
pose and shape estimation. In: Computer Vision and Pattern Re cognition (CVPR).
pp. 5252{5262 (June 2020)

36. Kocabas, M., Huang, C.H.P., Hilliges, O., Black, M.J.: P ARE: Part attention re-
gressor for 3D human body estimation. In: International Conferen ce on Computer
Vision (ICCV). pp. 11127{11137 (October 2021)

37. Kokkinos, F., Kokkinos, I.: To The Point: Correspondence-
driven monocular 3D category reconstruction. In: NeurIPS (2021) ,
https://openreview.net/forum?id=AWMU04iXQ08

38. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K. : Learning to reconstruct
3D human pose and shape via Model-Fitting in the loop. In: Int ernational Confer-
ence on Computer Vision (ICCV). pp. 2252{2261 (October 2019 )

39. Kolotouros, N., Pavlakos, G., Jayaraman, D., Daniilidis, K. : Probabilistic model-
ing for human mesh recovery. In: International Conference on Computer Vision
(ICCV). pp. 11585{11594 (October 2021)

40. Levenberg, K.: A method for the solution of certain non-line ar problems in least
squares. Quarterly of applied mathematics 2(2), 164{168 (1944)

41. Li, J., Xu, C., Chen, Z., Bian, S., Yang, L., Lu, C.: HybrIK: A Hybrid Analytical-
Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation. In:
Computer Vision and Pattern Recognition (CVPR). pp. 3383{33 93 (June 2021)

42. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M .J.: SMPL: A
Skinned Multi-Person Linear Model. ACM Transactions on Graphi cs (Proceed-
ings of SIGGRAPH Asia) 34(6), 248:1{248:16 (October 2015)

43. Lv, Z., Dellaert, F., Rehg, J.M., Geiger, A.: Taking a deeper look at the inverse
compositional algorithm. In: Computer Vision and Pattern Rec ognition (CVPR).
pp. 4581{4590 (June 2019)

44. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Blac k, M.J.: AMASS:
Archive of motion capture as surface shapes. In: International Co nference on Com-
puter Vision (ICCV). pp. 5442{5451 (October 2019)

45. von Marcard, T., Henschel, R., Black, M., Rosenhahn, B., Po ns-Moll, G.: Recov-
ering Accurate 3D Human Pose in The Wild Using IMUs and a Moving C amera.
In: European Conference on Computer Vision (ECCV). pp. 614{631 (September
2018)

46. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parame-
ters. Journal of the society for Industrial and Applied Mathemat ics 11(2), 431{441
(1963)

47. Mueller, F., Davis, M., Bernard, F., Sotnychenko, O., Verscho or, M., Otaduy,
M.A., Casas, D., Theobalt, C.: Real-time pose and shape reconstruction



18 Choutas et al.

of two interacting hands with a single depth camera. ACM Transac -
tions on Graphics 38(4) (July 2019). https://doi.org/10.1145/3306346.332295 8,
https://doi.org/10.1145/3306346.3322958

48. Nair, V., Hinton, G.E.: Recti�ed linear units improve restri cted boltzmann ma-
chines. In: ICML (2010)

49. Nocedal, J., Wright, S.J.: Numerical Optimization. Spring er, New York, NY, USA,
second edn. (2006)

50. Patel, P., Huang, C.H.P., Tesch, J., Ho�mann, D.T., Tripat hi, S., Black, M.J.:
AGORA: Avatars in geography optimized for regression analysis. I n: Computer
Vision and Pattern Recognition (CVPR). pp. 13463{13473 (Jun e 2021)

51. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osma n, A.A.A., Tzionas,
D., Black, M.J.: Expressive body capture: 3D hands, face, and body from a single
image. In: Computer Vision and Pattern Recognition (CVPR). p p. 10975{10985
(June 2019)

52. Powell, M.J.D.: A hybrid method for nonlinear equations. In : Numerical Methods
for Nonlinear Algebraic Equations. Gordon and Breach (1970)

53. Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., Gu ibas, L.J.: HuMoR:
3D Human Motion Model for Robust Pose Estimation. In: Internat ional Conference
on Computer Vision (ICCV). pp. 11468{11479 (October 2021)

54. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: Mode ling and capturing
hands and bodies together. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH Asia) 36(6) (November 2017)

55. Rong, Y., Shiratori, T., Joo, H.: FrankMocap: A Monocular 3D Whole-Body Pose
Estimation System via Regression and Integration. In: Interna tional Conference
on Computer Vision Workshops (ICCVw) (October 2021)

56. Schmidhuber, J.: Learning to control fast-weight memories: A n alternative to dy-
namic recurrent networks. Neural Computation 4(1), 131{139 (1992)

57. Schmidhuber, J.: A neural network that embeds its own meta-l evels. In: IEEE
International Conference on Neural Networks. pp. 407{412. IEEE ( 1993)

58. Seeber, M., Poranne, R., Polleyfeyes, M., Oswald, M.: RealisticHands: A Hybrid
Model for 3D Hand Reconstruction. In: International Conference o n 3D Vision
(3DV). pp. 22{31 (December 2021)

59. Shen, J., Cashman, T.J., Ye, Q., Hutton, T., Sharp, T., Bog o, F., Fitzgibbon,
A.W., Shotton, J.: The Phong Surface: E�cient 3D Model Fitting using Lifted
Optimization. In: European Conference on Computer Vision (ECC V). pp. 687{
703. Springer (August 2020)

60. Song, J., Chen, X., Hilliges, O.: Human Body Model Fittin g by Learned Gradi-
ent Descent. In: European Conference on Computer Vision (ECCV). pp. 744{760
(August 2020)

61. Srivastava, R.K., Gre�, K., Schmidhuber, J.: Training very de ep
networks. In: NeurIPS. vol. 28. Curran Associates, Inc. (2015),
https://proceedings.neurips.cc/paper/2015/�le/215a71a1 2769b056c3c32e7299f1c5ed-
Paper.pdf

62. Taylor, J., Bordeaux, L., Cashman, T., Corish, B., Keskin, C ., Sharp,
T., Soto, E., Sweeney, D., Valentin, J., Lu�, B., Topalian, A. , Wood,
E., Khamis, S., Kohli, P., Izadi, S., Banks, R., Fitzgibbon, A., Shot-
ton, J.: E�cient and precise interactive hand tracking through jo int,
continuous optimization of pose and correspondences. ACM Transactions
on Graphics 35(4) (July 2016). https://doi.org/10.1145/2897824.292596 5,
https://doi.org/10.1145/2897824.2925965



Learning to Fit Morphable Models 19

63. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nie �ner, M.: Face2Face:
Real-time Face Capture and Reenactment of RGB Videos. In: Com puter Vision
and Pattern Recognition (CVPR). pp. 2387{2395 (June 2016)

64. Tom�e, D., Alldieck, T., Peluse, P., Pons-Moll, G., Agapi to, L., Badino, H., la Torre,
F.D.: SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Cam-
era. Transactions on Pattern Analysis and Machine Intelligence (TPAMI) pp. 1{1
(2020). https://doi.org/10.1109/TPAMI.2020.3029700

65. Tome, D., Peluse, P., Agapito, L., Badino, H.: xR-EgoPose : Egocentric 3D Human
Pose from an HMD Camera. In: International Conference on Computer V ision
(ICCV). pp. 7728{7738 (October 2019)

66. Vogel, C., Pock, T.: A primal dual network for low-level visi on problems. In: Pattern
Recognition. pp. 189{202. Springer International Publishin g, Cham (2017)

67. Wood, E., Baltru�saitis, T., Hewitt, C., Dziadzio, S., Joh nson, M., Estellers, V.,
Cashman, T.J., Shotton, J.: Fake It Till You Make It: Face Ana lysis in the Wild
Using Synthetic Data Alone. In: International Conference on Com puter Vision
(ICCV). pp. 3681{3691 (October 2021)

68. Xiang, D., Joo, H., Sheikh, Y.: Monocular Total Capture: Po sing Face, Body, and
Hands in the Wild. In: Computer Vision and Pattern Recognitio n (CVPR). pp.
10965{10974 (June 2019)

69. Xie, K., Wang, T., Iqbal, U., Guo, Y., Fidler, S., Shkurti, F .: Physics-Based Human
Motion Estimation and Synthesis From Videos. In: Internation al Conference on
Computer Vision (ICCV). pp. 11532{11541 (October 2021)

70. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face
alignment. In: Computer Vision and Pattern Recognition (CVP R). pp. 532{539
(June 2013)

71. Xu, H., Bazavan, E.G., Zan�r, A., Freeman, W.T., Sukthanka r, R., Sminchisescu,
C.: GHUM & GHUML: Generative 3D human shape and articulated pos e models.
In: Computer Vision and Pattern Recognition (CVPR). pp. 6183 {6192 (June 2020)

72. Yang, D., Kim, D., Lee, S.H.: LoBSTr: Real-time Lower-body Po se Prediction
from Sparse Upper-body Tracking Signals. Computer Graphics Forum ( 2021).
https://doi.org/10.1111/cgf.142631

73. Yuan, Y., Kitani, K.: Ego-Pose Estimation and Forecastin g as Real-Time PD Con-
trol. In: International Conference on Computer Vision (ICCV). pp . 10082{10092
(October 2019)

74. Yuan, Y., Kitani, K.M.: 3D Ego-Pose Estimation via Imita tion Learning. In: Eu-
ropean Conference on Computer Vision (ECCV). pp. 763 { 778 (September 2018)

75. Yuan, Y., Wei, S.E., Simon, T., Kitani, K., Saragih, J.: Si mPoE: Simulated Char-
acter Control for 3D Human Pose Estimation. In: Computer Visio n and Pattern
Recognition (CVPR). pp. 7159{7169 (June 2021)

76. Zach, C.: Robust bundle adjustment revisited. In: European Conference on Com-
puter Vision (ECCV). pp. 772{787. Springer International Pub lishing, Cham
(September 2014)

77. Zan�r, A., Bazavan, E.G., Zan�r, M., Freeman, W.T., Sukthan kar, R., Sminchis-
escu, C.: Neural Descent for Visual 3D Human Pose and Shape. In: Computer
Vision and Pattern Recognition (CVPR). pp. 14484{14493 (Jun e 2021)

78. Zhang, H., Tian, Y., Zhou, X., Ouyang, W., Liu, Y., Wang, L ., Sun, Z.: PyMAF:
3D human pose and shape regression with pyramidal mesh alignment feedback
loop. In: International Conference on Computer Vision (ICCV). pp. 11446{11456
(October 2021)



20 Choutas et al.

79. Zhang, S., Zhang, Y., Bogo, F., Marc, P., Tang, S.: Learning Motion Priors for 4D
Human Body Capture in 3D Scenes. In: International Conference on Computer
Vision (ICCV). pp. 11343{11353 (October 2021)

80. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the contin uity of rotation rep-
resentations in neural networks. In: Computer Vision and Patte rn Recognition
(CVPR). pp. 5738{5746 (June 2019)

81. Zollh•ofer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T. , P�erez, P., Stam-
minger, M., Nie�ner, M., Theobalt, C.: State of the art on monocu lar 3D face
reconstruction, tracking, and applications. In: Computer Grap hics Forum. vol. 37,
pp. 523{550. Wiley Online Library (2018)


