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Fig. 1: Multi-finger grasp synthesis with Differentiable Simulation. Analyti-
cally synthesized grasps, such as in ObMan [39] based on the Grasplt! [63], plan sparse
contacts at the fingertips. Our method (Grasp’D) for grasp synthesis discovers stable,
contact-rich grasps that conform to detailed object surface geometry. Grasp’D creates
larger contact-areas that better match the contact distribution of real human grasps.

Abstract. The study of hand-object interaction requires generating vi-
able grasp poses for high-dimensional multi-finger models, often relying
on analytic grasp synthesis which tends to produce brittle and unnatural
results. This paper presents Grasp’D, an approach to grasp synthesis by
differentiable contact simulation that can work with both known mod-
els and visual inputs. We use gradient-based methods as an alternative
to sampling-based grasp synthesis, which fails without simplifying as-
sumptions, such as pre-specified contact locations and eigengrasps. Such
assumptions limit grasp discovery and, in particular, exclude high-contact
power grasps. In contrast, our simulation-based approach allows for stable,
efficient, physically realistic, high-contact grasp synthesis, even for grip-
per morphologies with high-degrees of freedom. We identify and address
challenges in making grasp simulation amenable to gradient-based opti-
mization, such as non-smooth object surface geometry, contact sparsity,
and a rugged optimization landscape. Grasp’D compares favorably to
analytic grasp synthesis on human and robotic hand models, and resultant
grasps achieve over 4x denser contact, leading to significantly higher
grasp stability. Video and code available at: graspd-eccv22.github.io.
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1 Introduction

Humans use their hands to interact with objects of varying shape, size, and
material thousands of times throughout a single day. Despite being effortless
-- almost instinctive -- these interactions employ a complex visuomotor system,
with components that correspond to dedicated areas of computer vision research.
Visual inputs from the environment are processed in our brain to recognize objects
of interest (object recognition [16, 22, 26, 34, 85]), identify modes of interaction to
achieve a certain function (affordance prediction [7, 20, 53, 72, 76]), and position
our hand(s) in a way that enables that function (pose estimation [2, 6, 32, 37,
80, 91], grasping [25, 51, 82]). Proficiency in this task comes from accumulated
experience in interacting with the same object over time, and readily extends to
new categories or different instances of the same category.

This is an intriguing observation: humans can leverage accumulated knowledge
from previous interactions, to quickly infer how to successfully manipulate
an unknown object, purely from wvisual input. Granting machines the same
ability to directly translate visual cues into plausible grasp predictions can have
significant practical implications in the way robotic manipulators interact with
novel objects [25, 77] or in virtual environments in AR/VR [18, 30].

Grasp prediction has previously been considered in the context of computer
vision [42, 45, 67, 89] and robotics [69]. It amounts to predicting the base pose
(position and rotation) and joint angles of a robotic or human hand that is stably
grasping a given object. This prediction is usually conditioned on visual inputs,
such as RGB(D) images, point clouds, etc., and is typically performed online
for real-time applications. Predicting grasps from visual inputs can be naturally
posed as a learning problem, using paired visual data with their respective
grasp annotations. However, capturing and annotating human grasps is laborious
and not applicable to robotic grasping, so researchers often rely on datasets of
synthetically generated grasps instead (see Table 1 for a list of recent works).
Consequently, high-quality datasets of plausible, diverse grasps are crucial for any
modern vision system performing grasp prediction, motivating the development
of better methods for grasp synthesis.

Grasp synthesis assumes that the complete object geometry (e.g., mesh) is
known, and is usually achieved by optimizing over a grasping metric which can be
computed analytically or through simulation. Analytic metrics are handcrafted
measures of a grasp’s quality. For example, the epsilon metric [27] measures the
magnitude of the smallest force that can break a grasp, computed as a function
of the contact positions and normals that the grasp induces. While analytic
metrics can be computationally faster, they often transfer poorly to the real
world. Simulation-based metrics [24, 48, 90] measure grasp quality by running a
simulation to test grasp effectiveness, e.g., by shaking the object and checking
whether it is dropped. These can achieve a higher degree of physical fidelity, but
require more computation. In both cases, optimization is usually black box, as
neither the analytic metric or simulator is differentiable. Black box optimization
can find good grasps in a reasonable number of steps as long as the search
space is low-dimensional, e.g., when searching the pose space of parallel-jaw
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Hand Analytic (A) or

Y N
ear ame Model(s) Human Capture (HC)

Table 1: Modern vision-based grasp pre-

2019 ObMan [39] MANO A (Grasplt! [63]) o o ’

2019 ContactDB [7] MANO HC diction for multi-finger hands relies on
2020 Hope-net [21] MANO A (ObMan [39]) datasets created by human Capture or ana-
2020 UniGrasp [78] Various A (FastGrasp [71]) . . . .
2020 ContactPose [9] MANO  HC lytic synthesis. Human capture is expensive
2020 GANHand [15] MANO  Other (manual) and does not address the need for robotic
2020 Grasping Field [49] MANO A (ObMan) . ..

2020 GRAB [31] NGRS grasp datasets. Analytic synthesis is only
2021 Multi-Fin GAN [56] ~ Barrett A (Grasplt)) practical under significant limiting assump-
2021 DDGC [57] Barrett A (Grasplt!)

2021 Contact-Consistency [46] MANO A (ObMan) tions that exclude key grasp types [15, 39].

grippers [19, 23, 24, 66, 84]. However, when the number of degrees of freedom
becomes larger, as in the case of multi-finger grippers, black box optimization
over a grasping metric (whether analytic or simulation-based) becomes infeasible.
Simplifying assumptions can be made to reduce the dimensionality of the search
space, but they often reduce the plausibility of generated grasps.

To address these shortcomings, we propose Grasp’D, a grasp synthesis pipeline
based on differentiable simulation which can generate contact-rich grasps that
realistically conform to object surface geometry without any simplifying as-
sumptions. A metric based on differentiable simulation admits gradient-based
optimization, which is sample-efficient, even in high-dimensional spaces, and
affords all the benefits of simulation-based metrics, i.e., physical plausibility,
scalability, and extendability. Differentiable grasping simulation, however, also
presents new challenges. Non-smooth object geometry (e.g., at the edges or cor-
ners of a cube) results in discontinuities in the contact forces and, subsequently,
our grasping metric, complicating gradient-based optimization. Adding to that, if
the hand and the object are not touching, small perturbations to the hand pose
do not generate any additional force, resulting in vanishing gradients. Finally,
the optimization landscape is rugged, making optimization challenging. Once the
hand is touching the object, small changes to the hand pose may result in large
changes to contact forces (and our metric).

We address these challenges as follows: (1) At the start of each optimization,
we simulate contact between the hand and a smoothed, padded version of the
object surface that gradually resolves to the true, detailed surface geometry,
using a coarse-to-fine approach. This smoothing softens discontinuities in surface
normals, allowing gradient-based optimization to smoothly move from one con-
tinuous surface area to another. This is enabled by our signed-distance function
(SDF) approach to collision detection, which lets us freely recover a rounded
object surface as the radius r level set of the SDF. (2) We allow gradients to leak
through force computations for contact points that are not yet in the collision,
introducing a biased gradient that can be followed to create new contacts. The
intuition behind this choice is similar to the one for using LeakyReLU activations
to prevent the phenomenon of ‘‘dying neurons” in deep neural networks [58]. (3)
Inspired by Contact-Invariant Optimization (CIO) [64, 65], we relax the problem
formulation by introducing additional force variables that allow physics violations
to be treated as a cost rather than a constraint. In effect, this decomposes the
problem into finding contact forces that solve the task (of keeping the object
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Fig. 2: Our method can synthesize grasps for both human and robotic hands, such as the
four-finger Allegro hand in this figure. After hand initialization, we run gradient-based
optimization to iteratively improve the grasp, in terms of stability and contact area.
We include additional examples in Appendix B.

stably in place) and finding a hand pose that provides those forces. We evaluate

our method on synthetic object models from ShapeNet [11] and object meshes

reconstructed from the YCB RGB-D dataset [10]. Experimental results show
that our method generates contact-rich grasps with physical realism and with

favorable performance against an existing analytic method [39].

Figure 1 displays example grasps generated by our method side-by-side with
grasps from [39]. Because we do not make assumptions about contact locations or
reduce the dimensionality of the search space, our method can discover contact-
rich grasps that are more stable and more plausible than the fingertip-only grasps
usually discovered by analytic synthesis. The same procedure works equally for
robotic hands. Figure 2 displays snapshots of an optimization trajectory for an
Allegro hand. As optimization progresses and our simulated metric decreases,
the grasp becomes increasingly stable, plausible, and high-contact.

Summary of contributions:

1. We propose a differentiable simulation-based protocol for generating synthetic
grasps from visual data. Unlike other simulation-based approaches, our method
can scale to tens of thousands of dense contacts, and discover plausible, contact-
rich grasps, without any simplifying assumptions.

2. We address challenges arising from the differentiable nature of our scheme,
using a coarse-to-fine SDF collision detection approach, defining leaky gradi-
ents for contact points that are not yet in collision, and integrating physics
violations as additional terms to our cost function.

3. We show that our method finds grasps with better stability, lower interpene-
tration, and higher contact area when compared to analytic grasp synthesis
baselines, and justify our design choices through extensive evaluations.

2 Related Work

Grasp synthesis. Although analytic metrics have been successfully applied to
parallel-jaw gripper grasp synthesis (based on grasp wrench space analysis [27, 35,
63], robust grasp wrench space analysis [60, 86|, or caging [62, 74]), more recent
works [19, 24, 48, 66] have focused on simulation-based synthesis. While they are
more computationally costly, simulation-based metrics for parallel-jaw grasps
better align with human judgement [48] and with real world performance [17, 24,
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61, 66]. In contrast to parallel-jaw grippers, multi-finger grasp synthesis is still
largely analytic, with many recent works in multi-finger robotic grasping [56, 57,
78], grasp affordance prediction [49], and hand-object pose estimation [21, 39, 46]
relying on datasets of analytically synthesized grasps (see Table 1). Notably,
[21, 39, 46, 49, 56, 57] all use datasets synthesized with the Grasplt! [63] simulator,
which is widely used for both multi-finger robotic and human grasp synthesis.
The ObMan dataset [39] for hand-object pose estimation (also used in [46, 49])
is constructed by performing grasp synthesis with the MANO hand [75] in
the Grasplt! Eigengrasp planner, and rendering the synthesized grasps against
realistic backgrounds. The Grasplt! Eigengrasp planner optimizes analytic metrics
based on grasp wrench space analysis. Dimensionality reduction [13] in the hand
joint space, or using pre-specified contact locations for each hand link can be used
to make the problem more tractable, but this limits the space of discoverable
grasps and requires careful tuning. Our approach can successfully operate in the
full grasp space, eschewing such simplifying assumptions while excelling in terms
of physical fidelity over analytic synthesis for multi-finger grippers.

Human grasp capture. To estimate human grasps from visual inputs, existing
methods train models on large-scale datasets [7, 9, 31, 38, 83]. Collecting these
datasets puts humans in a lab with precise, calibrated cameras, lidar, and special
gloves for accurately capturing human grasp poses. A human in the loop may
also be needed for collecting annotations. All these requirements make the data
collection process expensive and laborious. In addition, the captured grasps are
only appropriate for human hands and not for robotic ones (which are important
for many applications [1, 12]). Some works [8, 52| aim to transfer human grasps
to robotic hands by matching contact patterns, but these suffer from important
limitations, since the same contacts may not be achievable by human and robotic
hands, given differences in their morphology and articulation constraints (e.g.,
see Fig. 8 of [52]). Our method provides a procedural way of generating high
quality grasps for any type of hand -- human or robotic.

Vision-based grasp prediction. Whereas grasp synthesis is useful for generat-
ing grasps when full object geometry is available (i.e., a mesh or complete SDF
is given), practical scenarios require predicting grasps from visual input. GAN-
Hand [15] learns to predict human grasp affordances (as poses of a MANO [75]
hand model) from input RGBD images using GANs. Since analytic synthesized
datasets do not include many high-contact grasps, the authors also released the
YCB Affordance dataset of 367 fine-grained grasps of the YCB object set [10],
created by manually setting MANO hand joint angles in the Grasplt! simulator’s
GUL. Rather than predicting joint angles, Grasping Field [49] takes an implicit
approach to grasp representation by learning to jointly predict signed distances
for the MANO hand and the object to be grasped. For parallel-jaw grippers,
most recent works [47, 61, 66, 79| learn from simulation-based datasets (e.g.,
[24, 48]). In contrast, multi-finger grasp prediction systems are still trained on
either analytically synthesized datasets or datasets of captured human grasps
(see Table 1). [21, 39, 46, 49, 56, 57| all use analytically synthesized datasets
from the Grasplt! simulator [63], whereas [7, 9, 81] use datasets of captured



6 D. Turpin et al.

human grasps. [36, 46] use captured human grasps to train a contact model, then
refine grasps at test-time by optimizing hand pose to match predicted contacts.
The higher quality training data generated by our grasp synthesis pipeline can
lead to improved performance for any of these vision-based grasping prediction
systems. Our system can also be used directly for vision-based grasp prediction,
by running simulations with reconstructed objects (see Section 4.3).

Differentiable Grasping. We know of two works that have created differen-
tiable grasp metrics in order to take advantage of gradient-based optimization for
multi-finger grasp synthesis. [54] formulates a differentiable version of the epsilon
metric [27] and uses it to synthesize grasps with the shadow robotic hand. They
formulate the epsilon metric computation as a semidefinite programming (SDP)
problem. Sensitivity analysis on this problem can then provide the gradient of
the solution with respect to the problem parameters, including gripper pose.
They manually label 45 potential contact points on the gripper. In contrast,
we are able to scale to tens of thousands of contact points. Since the gripper
may not yet be in contact with the object, they use an exponential weighting
of points. Liu et al. [55] formulate a differentiable force closure metric and use
gradient-based optimization to synthesize grasps with the MANO [75] hand
model. Their formulation assumes zero friction and that the magnitude of all
contact forces is uniform across contact points (although an error term allows
both of these constraints to be slightly violated). Our method requires neither of
these assumptions: the user can specify varying friction coefficients, and contact
forces at different points are free to vary realistically. Their optimization problem
involves finding a hand pose and a subset of candidate contact points on the hand
that minimize an energy function. They find that the algorithm performs better
with a smaller number of contact points and candidates. Selecting 3 contact
points from the 773 candidate vertices of the MANO hand, it takes about 40
minutes to find 5 acceptable grasps. In contrast, our method is able to scale to
tens of thousands of contact points while synthesizing an acceptable grasp in
about 5 minutes. Notably, both of these prior works aim to take an analytic
metric (the epsilon metric [27]) and make a differentiable variant. In contrast,
we are presenting a differentiable simulation-based metric, which prior work on
parallel-jaw grippers suggests will have greater physical fidelity [17, 24, 66] and
better match human judgements [48] than analytic metrics.

Differentiable Physics. There has been significant progress in the development
of differentiable physics engines [28, 33, 40, 41, 43, 44, 73, 87, 88|. However,
certain limitations in recent approaches render them inadequate. Brax [28] and
the Tiny Differentiable Simulator [41] only support collision primitives and
cannot model general collisions between objects. Nimblephysics [87] supports
mesh-to-mesh collision, but cannot handle cases where the gradient of contact
normals with respect to position is zero (e.g., on a mesh face). While its analytic
computation of gradients is fast, Nimblephysics requires manually writing forward
and backward passes in C++, and only runs on CPU. Our work presents a new
class of differentiable physics simulators to addresses many of these shortcomings.
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Fig. 3: Method overview. Grasp’D takes as input the discretized-SDF of an object
(computed from a mesh or reconstructed from RGB-D) and synthesizes a stable grasp
that can hold the object static as we vary the object’s initial velocity. We optimize
jointly over a hand pose u'™) and the stabilizing forces f. provided by its contacts.

Further, Grasp’D supports GPU parallelism, enabling us to scale to tens of
thousands of contacts, effectively approximating surface contacts.

3 Grasp’D: Differentiable Contact-rich Grasp Synthesis

We present a method for solving the grasp synthesis problem (Figure 3). From
an input object and hand model (represented respectively by a signed-distance
function and an articulation chain with mesh links), we generate a physically-
plausible stable grasp, as a base pose and joint angles of the hand. This is achieved
by iterative gradient-based optimization over a metric computed by differentiable
simulation. The final grasp is dependent on the pose initialization of the hand, so
different grasps can be recovered by sampling different starting poses. We detail
our method below, but first outline the challenges that motivate our design.
Non-smooth object geometry. When optimizing the location of contacts
between a hand and a sphere, the gradient of contact normals with respect
to contact positions is well-defined and continuous, allowing gradient-based
optimization to smoothly adjust contact positions along the sphere surface. But
most objects are not perfectly smooth. Discontinuities in surface normals (e.g.,
at the edges or corners of a cube) result in discontinuities in contact normals and
their gradients with respect to contact positions. Gradient-based optimization
cannot effectively optimize across these discontinuities (e.g., cannot follow the
gradient to move contact locations from one face of a cube to another). We
address this with a coarse-to-fine smoothing approach, optimizing against a
smoothed and padded version of the object surface that gradually resolves to the
true surface as optimization continues (see Section 3.2).

Contact sparsity. Of all possible contacts between the hand and object, only
a sparse subset is active at any given time. If a particular point on the hand is
inactive (not in contact with the object), then an infinitesimal perturbation of
the hand pose will not change its status (make it touch the object). The gradient
of the force applied by any inactive contact (with respect to hand pose) will be
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exactly zero. This means that gradient-based optimization can not effectively
create new contacts, since contacts that are not already active do not contribute
to the gradient. We address this by allowing gradient to leak through the force
computations of inactive contacts (see Section 3.3).

Rugged optimization landscape. When many contacts are active (i.e., hand
touching the object), small changes to hand pose may result in large changes
to contact forces and, subsequently, large changes to our grasp metric. This
makes gradient-based optimization challenging. We address this with a problem
relaxation inspired by Contact-Invariant Optimization [64, 65] (see Section 3.4).

3.1 Rigid body dynamics

In the interest of speed and simplicity, we limit ourselves to simple rigid body
dynamics. Let q and u be the joint and spatial coordinates, respectively, with
first and second time derivatives ¢, g, u, ii. Let M be the mass matrix. The
kinematic map H maps joint coordinate time derivatives to spatial velocities as
q = H(q)u, and is related to contact and external forces (f. and foyxt) through the
following motion equation: HMHT('J'[ = f. + fox¢, which yields the semi-implicit
Euler update used for discrete time stepping [5]:

G g® + AIMT(E, + fo) (1)
qtY «— q® + AtgttY. (2)

3.2 Object model with coarse-to-fine surface smoothing

SDF representation. For the purpose of collision detection, the hand is
represented by a set of surface points Xy, and the object to grasp is represented
by its Signed Distance Function (SDF), ¢(x) (similar to [4, 29, 59]). The SDF
maps a spatial position x € R? to its distance to the closest point on the surface
of the object, with a negative or positive sign for interior and exterior points,
respectively [68]. The object surface can be recovered as the zero level-set of the
SDF: {x|¢(x) = 0}. The gradient of the SDF V¢(x) is always of unit magnitude,
corresponds to the surface normal for x on the object surface, and yields the
closest point on the object as x — ¢(x)Vp(x). SDF representations are well-suited
to differentiable collision detection [59], since contact forces can be written in
terms of a penetration depth (¢) and normal direction (V¢), for which gradients
can be computed as V¢ and V2¢, respectively.

Whereas primitive objects (e.g., a sphere or box) admit an analytic SDF, this
is not the case for complex objects, for which an SDF representation is not readily
available. We model the object to be grasped by a discretized SDF which we
extract from ground truth meshes (easier to come by for most object sets [10, 11]),
yielding a 3D grid. Given a query point x, to compute ¢(x) based on the grid, we
first convert x to local shape coordinates (where the object is in canonical pose:
unrotated and centered at the origin), yielding Xjocal. If Xjocar falls within the
bounds of the grid, we map it to grid indices and compute ¢(Xjocal) by tri-linear
interpolation of neighbouring grid cells. If X}, falls outside the grid, we clamp it
to the grid bounds, yielding Xcjamp, and compute ¢(x) := ¢(Xclamp) + || X —Xclamp |-
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Coarse-to-fine smoothing. To successfully optimize contact locations over
non-smooth object geometry we employ surface smoothing in a coarse-to-fine way.
At the start of each optimization, we define the object surface not as the zero
level-set of the SDF, but as the radius r level-set: {x|¢(x) = r > 0}, which gives
a smoothed and padded version of the original surface. As optimization continues,
we decrease 7 on a linear schedule until it reaches 0, yielding the original surface.
This coarse-to-fine smoothing allows gradient-based optimization to effectively
move contact points across discontinuities and prevents the optimization from
quickly overfitting to local geometric features. We set r to approximately 10cm
at the start of each optimization. Details are in Appendix A.2.

3.3 Contact dynamics with leaky gradient

Contact forces. We use a primal (penalty-based) formulation of contact forces,
which allows us to compute derivatives with autodiff [3] and keep a consistent
memory footprint. For a given point x € Xy, the resultant contact force is

f.=f,+f (3)
f, = k, min(¢(x), 0)Vo(x) (4)
i = —min(kyl[vell, pllfnl)ve, (5)

where f,, is the normal component, proportional to penetration depth ¢(x), and
f; is the frictional component, computed using a Coulomb friction model. &,
and ks are the normal and frictional stiffness coefficients, respectively, u is the
friction coefficient, and v; is the component of relative velocity between hand
and object at the contact point x that is tangent to the contact normal V¢(x).
Leaky gradients. At any one time, most possible hand-object contacts are
inactive -- a property we refer to as contact sparsity. Since an infinitesimal
perturbation to hand pose will not activate these contacts (i.e., will not make
them touch the object), the gradient of their contact forces with respect to hand
pose is zero, i.e., Of./0q = 0f./0q = 0f./0g4 = 0. When the hand is not touching
the object, all contacts are inactive and gradient-based optimization can get
stuck in a plateau. We work around this by computing a leaky gradient for the
normal force term. From equation (4), we have %‘;’H = 0 if ¢(x) > 0 but we
instead set

(6)

O] (ka2 it g(x) <0
oq

ak, g—f; otherwise

where a € [0, 1] controls how much gradient leaks through the minimum. We set
a = 0.1 in our experiments.

3.4 Grasping metric and problem relaxation

Simulation setup. To compute the grasp metric, we simulate the rigid-body
interaction between a hand and an object. The hand is kinematic (does not
react to contact forces), while the object is dynamic (thus subject to contact
forces). The simulator state is given by the configuration vector q and its first
and second time derivatives q, . q is composed of hand and object components
q = (dn, do) With corresponding spatial coordinates u = (uy, Uop;). The object is
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always initialized with the same configuration qc(,o): unrotated and untranslated
at the origin. Given a state q(*), following equations (1) and (2), our simulator
uses a semi-implicit Euler update scheme to compute subsequent state q(t*1).
Computing the grasp metric by simulation. To measure the quality of a
candidate grasp qn, we test its ability to withstand forces applied to the object.
Given an initial state q(°) = (qu, qc()o)), we apply an initial velocity q&o) to the
object. The hand is kept static, with ay, = 0. We run forward simulation to
compute the object’s final velocity il(()T). A stable grasp will produce contact
forces that resist the object velocity, so lower ||11§T)|| indicates a more stable
grasp. In fact, a stable grasp should be able to resist object velocities in any
direction, so we perform multiple simulations with different initial velocities and
average the results. This suggests the following basic grasp metric: for each set
of M simulations, indexed by m = {1,..., M}, we set a different initial object

velocity, run the simulation, and record L,, = ||1'1(()T) |. Then, averaging, we have

M L,
Egrasp = Z ﬁ (7)
m=1

Since Lgrasp is a differentiable function of the output of a differentiable simulation,
it is itself differentiable with respect to qn, and we can compute loss gradients
OLgrasp/Oqn and use gradient-based optimization to find stable grasps.
Unfortunately, in practice, this basic procedure does not succeed. As explained
at the beginning of Section 3, the grasp optimization landscape is extremely
rugged, with sharp and narrow ridges, peaks, and valleys. Our leaky contact
force gradients (see Section 3.3) provide some help in escaping plateaus, but once
the hand is in contact with the object, small changes in hand configuration still
cause large jumps in contact forces by making/breaking contacts and shifting
contact normals. However, differentiability alone does not resolve this issue.
Problem relaxation. Inspired by Contact-Invariant Optimization [64, 65]
we relax the problem making it more forgiving to gradient-based optimization.
Specifically, we introduce additional desired or prescribed contact force variables.
This allows us to model physics violations as a cost rather than a constraint. For
each surface point on the hand x* € Xy, we introduce a 6-dimensional vector f¢
representing the desired hand-object contact wrench arising from contact at x?.
Our overall loss now has two components. The task loss Liask (fe) measures
whether the prescribed forces ?C successfully resist initial object velocities. This
is computed identically to the previous Lgrasp, except that instead of computing
contact forces according to equations (3), (4) and (5), contact forces are simply
set equal to /f\c The physics violation loss £phys(qh,fc) measures whether the
hand configuration qy actually provides the desired forces fc. It is computed as

Lonys(an, o) = || felan) = Ll (8)

where f.(qn) is the contact force arising from the hand pose gy, according to
equations (3), (4) and (5).
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Intuitively, minimizing these losses corresponds to finding a set of desired
forces (as close as possible to the actual contact forces arising from the current
hand configuration) that complete the task, and finding a hand configuration that
provides those forces. We expect problem formulations derived from and inspired
by Contact-Invariant Optimization [13, 14] to be a fruitful area of research as
they are made newly attractive by advances in differentiable simulation.
Additional heuristic losses. We include some additional losses that improve
the plausibility of resulting grasps. Most hand models have defined joint range
limits. Let q}°¥ and q,,” be the lower and upper joint limits respectively. Lyange
encourages hand joints to be near the middle of their ranges. Lyt penalizes
hand joints outside of their range. Linter penalizes self intersections of the hand.

up low
q, +4qy,
Lrange(Qh) = ||qh - %H (9)
Liimit (qn) = max(qn — qp, 0) + max(q™ — qn, 0) (10)
£inter(qh) = ||flink||~ (11)

The hand is kinematic, so it is not subject to contact forces. However, we still
compute forces arising from contact between the hand links, for use in this loss
term, as fj;nx. We ignore contacts between neighbouring links in the chain. For
the purpose of computing fj;,,i, we represent each hand link as both a point set
and an SDF and compute fj;,; according to equations (3), (4), and (5).

3.5 Optimization

We use the Modified Differential Multiplier Method [70], treating Liasx <
Ctask and Liimit < Climit as constraints, while minimizing Lohys, Liimit and Linter-
We update our parameters ?C and qy, using the Adamax [50] optimizer. Details
of learning rates, Ciasx and Climis can be found in Appendix A.7.

4 Experiments

Our evaluations and analysis of Grasp’D answer the following questions:

1. How well does Grasp’D perform compared to analytic methods? (Section 4.2)

2. Can Grasp’D generalize to objects reconstructed from real-world RGBD
images? (Section 4.3)

3. How much do coarse-to-fine SDF collision and the problem relaxation con-
tribute to final performance? (Section 4.4)

4.1 Experimental setup

For each experiment, we synthesize grasps following the procedure described in
Section 3. We compute the metric with M = 3 simulations: each setting a different
initial velocity on the hand: (0, 0,0), (0.01,0.01,0.01) or (—0.01, —0.01, —0.01)m/s.
Each simulation is run for a single timestep of length 1 x 10~ %s.

Evaluation metrics. We follow [39] and use contact area (CA), intersection

volume (IV), and the ratio between contact area and intersection volume ().

We compute evaluation metrics that measure grasp stability and contact area.
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Method | cat Iv] e et Vol 1 SD |
Scale (Unit) ‘ cm® cm?® em™! x107* x10* cm

ObMan [39] (top2)| 9.4 1.28 7.37 4.70 1.36 1.95
ObMan [39] (top5) 7.8 1.05 7.37 4.52 1.36 2.22
Grasp’D (top2) 43.0 5.70 7.55 5.01 1.44 0.59
Grasp’D (top5) 414 5.48 7.55 5.02 1.46 1.04

Table 2: Experimental results. We synthesize MANO hand grasps for ShapeNet
objects. Our grasps achieve over 4x denser contact (as measured by contact surface
area - CA) than an analytic synthesis baseline [39], leading to significantly higher grasp
stability (4x lower simulation displacement - SD). Higher contact does result in higher
interpenetration, but we keep a similar ratio of contact area to interpenetration volume.

In addition, we measure the contact area each grasp creates and the volume of
hand-object interpenetration. We compute two analytic measures of stability
-- the Ferrari-Canny (epsilon €) [27] and the volume metric (Vol) -- and one
simulated measure: the simulation displacement (SD) metric introduced in [39)].

Hand parameterization. We use a differentiable PyTorch layer [39] to compute
the 773 vertices of the MANO hand [75] model. The input is a set of weights for
principal components extracted from the MANO dataset of human scans [75].
We find that this PCA parameterization provides a useful prior for human-like
hand poses. We use the maximum number of principal components (44).

4.2 Grasp synthesis with ShapeNet models

We compare to baseline grasps from the ObMan [39] dataset, which generates
grasps with the Grasplt! [63] simulator using an analytic metric. We report these
metrics over the top-2 and top-5 grasps per scaled object, with ranking decided
by simulation displacement for our method and by ObMan’s heuristic measure
(detailed in Appendix C.2 of [39]) for theirs. Further details in Appendix A.6.

Data. We evaluate our approach to grasp synthesis by generating grasps with
the MANO human hand [75] model for 57 ShapeNet [11] objects that span 8
categories (bottles, bowls, cameras, cans, cellphones, jars, knives, remote controls),
and are each considered at 5 different scales (as in ObMan). See the Appendix A
for details of mesh pre-processing, initialization, simulation, and optimization.

Results. Results are presented in Table 2. Grasps generated by our method
(both top-2 and top-5) have a contact area of around 42cm?. This is higher than
the ~ 20cm? area achieved with fingertip only grasps [7] and about 4x higher
than grasps from the ObMan dataset (top-2 or top-5). These contact-rich grasps
achieve modest improvements in analytic measures of stability, and a significant
reduction in simulation displacement (~ 3x for top-2 grasps). Visualizations
of our generated grasps in Figure 1 confirm that these grasps achieve larger
areas of contact by closely conforming to object surface geometry, whereas the
analytically generated grasps largely make use of fingertip contact only. These
higher contact grasps have accordingly higher interpenetration, but the ratio
between contact area and intersection volume is similar to the ObMan baseline.
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Fig.4: Grasp synthesis from RGB-D. We use RGB-D captures from the YCB
dataset [10] (top row) to reconstruct object models from which we synthesize grasps

(bottom row). Our method can synthesize plausible grasps not just from ground truth
object models, but also from imperfect reconstructions.

4.3 Grasp synthesis from RGB-D input of unknown objects

Setting. One possible application of our method is to direct grasp prediction
from RGB-D images by simulation on reconstructed object models. Currently,
our method is too slow to be used online (about 5 minutes per grasp), but as
simulation speeds increase and recent works in implicit fields push reconstruction
accuracy higher and higher, we believe that grasp prediction by simulation models
will become increasingly viable. To validate the plausibility of using our method
with reconstructed object models, we present results from running our system
on meshes reconstructed from RGB-D inputs. We synthesize grasps based on
RGB-D (with camera pose) inputs from the YCB object dataset [10]. In addition
to reconstructed meshes, the YCB dataset provides the original RGB-D captures
the meshes are based on. Each object was captured from 5 different cameras at
120 different angles for a total of 600 images. To confirm that our method can
work with reconstructions done under more realistic assumptions, we limit our
reconstructions to using 5 different angles from 3 cameras (2.5% of captures).
Data. For a subset of the YCB objects, we generate Poisson surface reconstruc-
tions and use our method to synthesize MANO hand grasps. Since the inputs
are from cameras with a known pose, the object reconstruction is in the world
frame. Details in the Appendix A.4.

Results. Our results confirm the viability of using simulation to synthesize
grasps on reconstructed object models. Qualitative results are presented in
Figure 4; additional results can be found in Appendix D. Although synthesis
does not perform as well as with ground-truth models, plausible human grasps
are discovered for many objects and the grasps appear well-aligned with the
real-world object poses. Future work could take advantage of learning-based
reconstruction methods to achieve grasp synthesis with fewer input images.

4.4 Ablation study

We investigate the impact of our coarse-to-fine smoothing (Section 3.2),
leaky contact force gradients (Section 3.3), and relaxed problem formulation
(Section 3.4). We generate MANO hand grasps on 21 objects from the YCB
dataset [10]. Grasp’D w/o coarse-to-fine does not pad or smooth the object.
Grasp’D w/o problem relazation attempts to solve the problem without intro-
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Method | cat v} Saq et Vol 1 SD |
Scale/Unit ‘ cm? cm® em™! %1071 x10* cm
Grasp’'D 42.6 2.83 15.1 2.38 20.6 0.41
Grasp’D w/o coarse-to-fine 43.2 2.84 15.2 2.37 20.7 0.55
Grasp’D w/o problem relaxation 6.1 0.40 15.2 0.52 4.0 3.82

Table 3: Ablation study. We validate our design choices with an ablation study.
Our relaxed problem formulation has a large positive impact on all metrics. The
quantitative impact of coarse-to-fine smoothing is more limited, but we observe a
qualitative difference in grasps generated with and without smoothing.

ducing additional force variables or a relaxed objective. This amounts to the
“basic procedure’ described in Section 3.4, i.e., directly optimize over hand pose
to minimize Lgrasp and the heuristic losses.

Results. We adopt the same data as in Section 4.2. Table 3 presents the
results. Our relaxed problem formulation is key to our method’s success, and
without it, performance greatly degrades by all measures, with discovered grasps
creating very little contact (low contact area and intersection volume). Coarse-
to-fine smoothing has a modest impact, with all metrics comparable with or
without smoothing, except for simulation displacement, which is about 25%
higher without smoothing. We did not include a variant without leaky gradient,
since this variant would never make contact with the object (if the hand is not
touching the object at initialization, there will be no gradient to follow and
optimization will immediately be stuck in a plateau).

5 Conclusions

We presented a simulation-based grasp synthesis pipeline capable of generating

large datasets of plausible, high-contact grasps. By being differentiable, our
simulator is amenable to gradient-based optimization, allowing us to produce
high-quality grasps, even for multi-finger grippers, while scaling to thousands of
dense contacts. Our experiments have shown that we outperform the existing
classical grasping algorithm both quantitatively and qualitatively. Our approach
is compatible with PyTorch and can be easily integrated into existing pipelines.
More importantly, the produced grasps can directly benefit any vision pipeline
that learns grasp prediction from synthetic data.
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