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This supplementary material provides details that are not shown in the
main paper. We first present the implementation details on different datasets
in Sect. A. Then we present the ablation results in Sect. B, including ablation
results and more quantitative results. Finally, we present some unbalanced ex-
amples in Sect. C and show more visualization results in Sect. D.

A Implementation Details

A.1 Implementation Details on MNIST-Seq

We adopt the modified version of LeNet [7] as the frame-wise feature extrac-
tor (FFE) and set the dimension of output features to 3 for visualization.
Adadelta [8] optimizer is used for 30-epoch training with an initial learning rate
of 1.0. Each iteration processes 64 sequences and no augmentation technique
is applied during training. For the hyperparameter choice, we adopt λ1 = 1.0,
β = 0.2π and λ2 = 1.0 as the default setting.

A.2 Implementation Details on Phoenix14

Following previous setting [4], we select ResNet18 [2] as the FFE. The gloss-
wise temporal layer and two BiLSTM layers with 2×512 dimensional hidden
states are adopted for temporal modeling. We adopt Synchronized Cross-GPU
Batch Normalization (syncBN) [5] to gather statistics from all devices, which
can accelerate the training process. Therefore, we shorten the training time and
train all models for 40 epochs with a batch size of 2. Adam optimizer is used with
an initial learning rate of 1e-4, which decays by a factor of 5 after epochs 25 and
35. The training set is augmented with random crop (224x224), horizontal flip
(50%), and random temporal scaling (±20%). We replace the extra CTC (visual
enhancement loss in [4]) with the proposed RadialCTC to show its effectiveness
as intermediate supervision without using the visual alignment loss for simplicity.
For the hyperparameter choice, we adopt λ1 = 1.0, β = 0.2π and λ2 = 0.1 as
the default setting.
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A.3 Implementation Details on Scene Text Recognition

Following the setting of the benchmark, we adopt CRNN [6] as our baseline
model. CRNN is optimized by CTC loss and has three components, including
the convolution module, the recurrent module, and the decoder. The convolution
module converts resized image (1× 32× 100) to a feature sequence of size 512×
1 × 26, where 512 is the dimension of output features. The recurrent layer has
two BiLSTM layers with 2 × 256 hidden states and two fully-connected layers.
It predicts a probability distribution among 37 predefined classes for each frame
in the feature sequence. After that, the decoder converts the predictions into a
label sequence. We train the model for 30 epochs with a batch size of 512 under
the supervision of RadialCTC loss. Adam optimizer is used with β1 set to 0.5
and an initial learning rate of 1e-3 decaying with a rate of 0.2 after epoch 10
and epoch 20. For the hyperparameter choice, we adopt λ1 = 1.0, β = 0.2π and
λ2 = 0.1 as the default setting.

A.4 Implementation Details on mAP Calculation

As the RadialCTC is designed to control the boundary of the recognized item,
we calculate mAP like multi-label image recognition [1]. Specifically, we save the
confidence for each frame and each class, and compute the precious/recall curve
from the ranked confidence of each class. Recall Rk

n is defined as the proportion
of frames belonging to the class k ranked above a given rank n. Precision P k

n is
the proportion of all frames above that rank that are from the given class k. The
AP of the class k is defined as the mean precious at a set of 201 equally spaced
recall levels [0, 0.005, · · · , 1]: APk =

∑200
n=1(R

n
k − Rn−1

k )Pn
k . The final mAP is

calculated by taking an average of all AP values per class mAP = 1
K

∑K
k=1 APk.

RadialCTC retains the iterative alignment mechanism of CTC, which ensures
the continuity of predictions. Therefore, a larger mAP means more frames are
recognized, which also indicates a larger overlap with the framewise annotation
and better localization accuracy.

B Ablation Results

B.1 About the Choice of the Visualization Dimension

When ignoring the bias term in the classifier, no weight vector can satisfy the
unique role of the blank class in two-dimensional space. Considering a special
case with three non-blank classes shown in Fig 1a, the weight vectors of them
are w1, w2 and w3, respectively. If the weight vector of the blank wb is between
w1 and w2, we have:

w⊺
1w1 > w⊺

bw1

∥w1∥ > ∥wb∥ cos(θ)
, (1)
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Fig. 1: Illustration of the visualization dimension. (a) hard to find a weight vector
that can satisfy the role of the blank class in two-dimensional space; (b) an
example weight vector of the blank class in three-dimensional space

where θ is the angle between w1 and wb. Then any vector between w1 and w′
b

will not be classified to the blank class:
w⊺

b x = ∥wb∥ ∥x∥ cos(α+ θ)

= ∥wb∥ ∥x∥ cos(α)cos(θ)− ∥wb∥ ∥x∥ sin(α)sin(θ)
< ∥w1∥ ∥x∥ cos(α)− ∥wb∥ ∥x∥ sin(α)sin(θ)
< w⊺

1x

. (2)

Similarly, any vector between w2 and w′
b will not be classified to the blank

class. Therefore, we cannot find a weight vector of the blank class in two-
dimensional space to satisfy that any frame between two non-blank keyframes
can be classified into the blank class. This condition can be satisfied when the
dimension of feature space is larger than two (e.g., Fig. 1b), so we choose the
three-dimensional space for visualization.

B.2 Ablation Results on the Choice of Hyper-parameters

In Sect. 3, we propose a RadialCTC to constrain sequence features on a hyper-
sphere while retaining the iterative alignment mechanism of CTC. To provide
explanations of different constraints, we visualize the distribution of frame-wise
features with different hyper-parameters (angle β in Fig. 2, weight of center
regularization λ2 in Fig. 3 and non-blank ratio η in Fig. 4) in the test set of
Seq-MNIST.

Table 1 presents the ablation results of the angle hyper-parameter β on Seq-
MNIST dataset (λ2 = 1.0), and the corresponding distribution of features are
visualized in Fig. 2. We can observe that the model achieves the best perfor-
mance when the angle is 0.2π. We attribute this to the increase in arc length of
distribution, which also increases the difficulty of classification.
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(a)  𝛽 = 0.2 𝜋 (b) 𝛽 = 0.4 𝜋

(c) 𝛽 = 0.6 𝜋 (d)  𝛽 = 0.8 𝜋

Fig. 2: The distribution of frame-wise features with different angle hyper-
parameters β in test set of Seq-MNIST. Points with different colors are cor-
responding to different classes. Best view in color

Table 1: Recognition results (%) of the angle hyper-parameter β on Seq-MNIST
β 0.2π 0.4π 0.6π 0.8π

Train Acc. 99.6 99.2 97.9 97.0

Test
Acc. 95.7 94.8 94.8 94.3
mAP 23.4 26.2 27.6 24.3

Ablation results on the weight λ2 of center regularization are presented in
Table 2 and Fig. 3 (β = 0.6π). The models with different settings achieve similar
recognition results when the weight λ2 is less than 1. The model tends to make
more predictions with a large λ2, but is also at risk of making more errors.
Therefore, we adopt λ2 = 0.1 on real-world datasets for better generalization.

As we mentioned in Sect. 3.3, we propose a non-blank ratio η to control
the peaky behavior of CTC. As shown in Fig. 4, more frames are classified to
non-blank classes as η increases, which validates that a large η can encourage
the model to predict more non-blank labels. The improved localization results
can also be observed from Table 3. Due to the unguaranteed quality of extended
frames, the decision boundaries between non-blank classes look ambiguous when
adopting large λ2. Moreover, more frames tend to distribute near the decision
boundary as η increases, which may affect the recognition results of the model.
We have not found a proper solution that can take care of both localization and
recognition results.
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(a) 𝜆2 = 0.2 (b) 𝜆2 = 0.5

(c)  𝜆2 = 1.0 (d) 𝜆2= 10.0

Fig. 3: The distribution of frame-wise features with different weights λ2 of center
regularization in test set of Seq-MNIST. Points with different colors are corre-
sponding to different classes. Best view in color

Table 2: Recognition results (%) of the weight λ2 on Seq-MNIST
λ2 0.1 0.5 1.0 10.0

Train Acc. 99.4 99.6 99.4 88.3

Test
Acc. 94.6 94.5 94.8 83.7
mAP 24.0 24.6 27.6 39.1

B.3 Experimental Results with Three Dimensions

We present ablation studies on Seq-MNIST with high-dimensional output fea-
tures in Sect. 4.2. Ablation results with higher dimensions on Seq-MNIST are
present in Table 4, which have similar conclusions as Sect. 4.2. It is worth noting
that adopting constraints can help the sequence model achieves better results
when the dimension is high, which indicates these constraints are too strong to
be helpful in the low-dimensional case. Besides, we have not found that improv-
ing localization ability is helpful for recognition. Although RadialCTC achieves
competitive localization results under the unbalanced setting, it has much lower
accuracy than in the balanced setting. We assume this is due to the different
goals between recognition and localization, the former aims to extract discrimi-
native features, and the latter pays more attention to low-level features.

B.4 More Quantitative Results on Phoenix14

Due to the ambiguous event boundaries in sequence data, the framewise anno-
tation is costly and we have not found a proper dataset with frame-wise su-
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(a) 𝜂 = 0.2 (b)  𝜂 = 0.4

(c) 𝜂 = 0.6 (d)  𝜂 = 0.8

Fig. 4: The distribution of frame-wise features with different non-blank ratios
η in test set of Seq-MNIST. Points with different colors are corresponding to
different classes. Best view in color

Table 3: Recognition results (%) of the non-blank ratio η on Seq-MNIST
η 0.0 0.2 0.4 0.6 0.8

Train Acc. 95.1 95.5 97.6 95.8 89.5

Test
Acc. 90.3 89.4 87.4 85.5 78.3
mAP 21.2 42.1 59.3 74.6 85.7

pervision. Besides, we also conduct localization experiments on the real dataset
(PHOENIX14) in Table 5, and the localization performance is based on frame-
wise annotations estimated by HMM [3]. Experimental results show that Ra-
dialCTC can improve localization performance. We can also observe that Ra-
dialCTC does not bring significant performance gain for the predictions from
the intermediate layer (Conv), but greatly improve the predictions from the pri-
mary layers (BiLSTM). This result suggests that radial embedding constrained
by RadialCTC is helpful for sequence recognition.

CTC provides supervision via the Expectation-Maximization and easily reaches
a local maximum, especially when adopting a powerful temporal model with lim-
ited training data. Previous work [4] has shown that adopting intermediate su-
pervision can relieve the overfitting. As shown in Table 6, RadialCTC can further
improve performance and relieve the overfitting with the proposed constraints
in the low-resourced situation.
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Table 4: Experimental results (%) on Seq-MNIST (dim=128)
Setting balanced unbalanced

Constraint Train Test Train Test
Norm Angle Center Radial Acc. Acc. mAP Acc. Acc. mAP

99.9 96.4 25.5 99.8 93.3 25.7
✓ 99.9 95.9 27.5 99.9 89.9 35.8
✓ ✓ 99.9 96.0 34.7 99.8 92.0 32.6
✓ ✓ 99.9 96.4 25.1 99.8 91.5 29.0
✓ ✓ ✓ 99.9 96.5 27.2 99.9 91.1 27.6

✓ ✓ ✓ η = 0.0 98.0 94.3 21.5 98.3 84.1 21.2
✓ ✓ ✓ η = 0.2 99.6 95.4 40.7 99.2 87.6 42.8
✓ ✓ ✓ η = 0.4 97.4 91.0 66.6 95.4 82.6 66.3
✓ ✓ ✓ η = 0.6 97.4 89.4 82.8 81.9 75.9 81.9
✓ ✓ ✓ η = 0.8 90.6 81.9 89.4 67.3 69.4 86.5

Table 5: Experimental results (%) on Phoenix14 under different settings
Norm Angle Center Radial Train Conv BiLSTM

mAP del/ins WER del/ins WER

37.1 8.4/4.2 21.8 7.3/2.6 21.0
✓ 33.9 8.4/3.5 22.1 6.2/3.3 19.9
✓ ✓ 35.4 8.2/3.4 21.8 6.4/3.1 19.8
✓ ✓ 34.1 9.9/3.0 22.5 7.0/2.7 19.7
✓ ✓ ✓ 34.6 8.8/3.1 21.8 6.5/2.7 19.4

✓ ✓ ✓ η = 0.0 32.4 10.2/2.7 23.2 6.2/2.6 19.6
✓ ✓ ✓ η = 0.2 39.6 7.9/3.8 22.1 6.3/2.7 19.5
✓ ✓ ✓ η = 0.4 44.6 8.1/5.1 24.1 6.3/3.0 20.3
✓ ✓ ✓ η = 0.6 47.4 7.6/6.9 24.9 7.0/2.8 20.1
✓ ✓ ✓ η = 0.8 48.7 5.8/10.8 29.3 7.7/2.7 21.2

C Limitation

In Sect. 4.2, we discuss the limitation of RadialCTC, here we provide several
examples in Fig. 5. The first row is the weights of interpolation for each class,
and remain rows provide several unbalanced examples of pseudo labeling on the
training set of Seq-MNIST. Because RadialCTC controls the peaky behavior
through a sequence-dependent term, it does not guarantee that each label has
similar numbers of frames. For example, in the second row of Fig. 5, only 4
frames are recognized as 5 but 12 frames are recognized as 10.

Another concern is ‘merged repeated labels problems’ that the angular per-
turbation may choose to ignore the ‘blank’ between two ‘non-blank’ frames
of the same label. RadialCTC provides a localization approach in a weakly-
supervised manner, which also provides a solution that trains two models for
recognition and localization, separately. A proper decoding approach (e.g., π̂ =

argmaxπ p(π|v, l̂; θ)) can decode more accurate localization results from the lo-

calization model based on the predictions l̂ of the recognition models, which
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Table 6: Recognition results (%) on PHOENIX14 with sampled training data
20% 40% 60% 80%

Baseline [26] 47.7/47.1 33.8/34.1 28.6/29.1 25.9/26.4
VAC [26] 35.3/35.1 27.4/28.2 24.3/25.1 22.6/23.5

RadialCTC 33.4/32.8 26.2/26.4 23.2/23.2 21.0/21.6
RadialCTC (η=0.2) 34.3/33.7 26.2/26.9 22.8/23.4 21.2/21.6

Table 7: Scene text recognition (%) with different non-blank ratios
IIIT5K SVT IC03 IC13

η = 0.2 80.7 79.8 89.5 85.7
η = 0.4 80.2 79.6 89.4 85.2
η = 0.6 80.0 82.1 90.1 87.4
η = 0.8 76.6 74.0 85.2 82.0

can flexibly select hyperparameter η and can also solve the “merged repeated
labels problem”. Besides, RadialCTC aims to provide controllable boundaries
and instance-wise localization beyond the goal of this submission. It will be an
interesting research topic in the future.

Table 7 presents the relevant recognition results for scene text recognition
datasets, this problem is only observed when adopting a large threshold (e.g.,
η = 0.8), which leads to performance degradation.

Fig. 5: Examples of unbalanced labelings. The top row presents the weights of
interpolation for each class. The other rows present unbalanced pseudo labelings
on the training set of Seq-MNIST-UB



RadialCTC Supplementary Material 9

D Visualization Results

More visualization results on scene text recognition are visualized in Fig. 6.

(a) Pseudo labels (b) Correct predictions
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Fig. 6: Scene text recognition examples of pseudo labels and predictions with
different non-blank ratios (η=0.2, 0.4, 0.6, 0.8 from top to bottom)
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