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Abstract. Connectionist Temporal Classification (CTC) is a popular
objective function in sequence recognition, which provides supervision
for unsegmented sequence data through aligning sequence and its cor-
responding labeling iteratively. The blank class of CTC plays a crucial
role in the alignment process and is often considered responsible for the
peaky behavior of CTC. In this study, we propose an objective function
named RadialCTC that constrains sequence features on a hypersphere
while retaining the iterative alignment mechanism of CTC. The learned
features of each non-blank class are distributed on a radial arc from the
center of the blank class, which provides a clear geometric interpretation
and makes the alignment process more efficient. Besides, RadialCTC can
control the peaky behavior by simply modifying the logit of the blank
class. Experimental results of recognition and localization demonstrate
the effectiveness of RadialCTC on two sequence recognition applications.

Keywords: Deep feature embedding · Visaul sequence learning · Sign
language recognition · Scene text recognition

1 Introduction

Sequence data (e.g ., text, audio, and video) are present everywhere in daily life.
Automatically analyzing and understanding sequences is a challenging yet fas-
cinating field. As a fundamental task in sequence learning, sequence recognition
aims to recognize occurred events from the data stream in a weakly supervised
manner. Due to the continuity of the event, it is hard to identify its beginning
and end points, which brings difficulties to both data annotation and analysis.

Recent years have witnessed the great success of deep learning in sequence
learning tasks [2,37]. To achieve automatic alignment between sequence data and
its corresponding labeling, Connectionist Temporal Classification (CTC) [10]
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Fig. 1. The typical framework for visual sequence recongnition. Best view in color

leverages the natural monotonicity constraint that exists in sequence learning
and adopts an extra ‘blank’ class to maximize the posterior probability of all
feasible alignment paths. The typical framework is presented in Fig. 1, and CTC
has been successfully adopted in many sequence learning applications [3,11,12,29]
to provide intermediate or primary supervision.

One of the most interesting and controversial issues about CTC is its peaky
behavior [10]: networks trained with CTC will conservatively predict a series of
spikes. This peaky behavior helps the sequence recognition model quickly con-
verge and fast decode. On the other hand, some works [4,23,43] regard the peaky
behavior as a symptom of overfitting, which will deteriorate the performance
dramatically when data are insufficient. Although CTC can achieve outstanding
performance, its peaky behavior makes it unable to provide clear boundaries like
some traditional statistical models (e.g., Hidden Markov Model) do.

Many works [13,14,22,23,43,44] provide interesting insights and possible solu-
tions about the peaky behavior of CTC. Hu et al . [23] propose an entropy-based
regularization term, which maximizes the entropy of feasible paths and penal-
izes the peaky distribution. Some works [14,22] try to improve the generalization
ability of the model by extending the peaky prediction as frame-wise supervi-
sion. However, simply extending the peaky prediction may break the continuity
of features and not take full advantage of CTC. Earlier works [13,43] show that
CTC can be regarded as an iterative alignment process, which provides super-
vision via the Expectation-Maximization. Recent work [29] shows that training
with CTC also makes feature norm peaky, which makes it easier to overfit when
combined with powerful temporal models.

Inspired by the iterative alignment mechanism of CTC, we proposed an ob-
jective function named RadialCTC that constrains sequence features on a hyper-
sphere. RadialCTC adopts several constraints and enforces the model to learn
angularly discriminative features compared to the less constrained features in the
inner space. As shown in Fig. 1, the proposed RadialCTC constrains features of
non-blank classes to distribute on radial arcs from the center of the blank class.
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Such a radial distribution provides a clear geometric interpretation of the peaky
behavior of CTC and makes the alignment process more efficient.

Besides, the radial distribution of features provides an effective way to con-
trol the peaky behavior. Different from adding path-wise regularization [23] or
modifying the peaky predictions [14,22], RadialCTC adopts a radial constraint
to control the peaky behavior with the help of the iterative alignment mechanism
of CTC. The radial constraint is implemented by simply adding an angular per-
turbation term on the blank logit. This term is dominated by a global non-blank
ratio and sequence-wise angular distribution, providing consistent supervision
for all sequence data. With the help of this constraint, RadialCTC can provide
controllable event boundaries while achieving competitive recognition accuracy.

To show the effectiveness of RadialCTC, we conduct thoughtful experiments
on a simulated sequence recognition dataset and two public benchmarks. Exper-
imental results of recognition and localization demonstrate the effectiveness of
RadialCTC. The major contributions are summarized as follows:

– Proposing the RadialCTC for sequence feature learning, which constrains
sequence features on a hypersphere while retaining the iterative alignment
mechanism of CTC. Features of non-blank classes are distributed on radial
arcs from the center of the blank class.

– Proposing a simple angular perturbation term to control the peaky behavior,
which can provide consistent supervision for all sequence data considering
sequence-wise angular distribution.

– Conducting thoughtful experiments about the relationship between recog-
nition and localization. Experimental results show the effectiveness of Ra-
dialCTC, which achieves competitive results on two sequence recognition
applications and can also provide controllable event boundaries.

2 Related Work

2.1 Connectionist Temporal Classification

CTC [10] is proposed to provide supervision for unsegmented sequence data,
which has shown advantages in many sequence recognition tasks (e.g . hand-
writing recognition [12], speech recognition [11], and sign language recogni-
tion [1,21,29]). Compared to other attention-based methods [2,37], CTC sat-
isfies the monotonous nature of sequence recognition, and the CNN-LSTM-CTC
model becomes a popular framework in sequence recognition tasks [5,35]. A con-
troversial characteristic of CTC is its spike phenomenon [10]: networks trained
with CTC will conservatively predict a series of spikes. The spike phenomenon
can accelerate the decoding process but is also regarded as a symptom of over-
fitting [23,29]. Liu et al . [23] propose a entropy-based regularization method
to penalize the peaky distribution and encourage exploration. Min et al . [29]
propose a visual alignment constraint to enhance feature extraction before the
powerful temporal module. Adding constraints on the CTC-based framework
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can alleviate the overfitting problem. However, the peaky behavior still exists,
and it is hard to provide clear event boundaries.

Many works [13,14,22,43,44] try to understand the peaky behavior of CTC.
Earlier speech recognition works [13,43] interpret CTC as a special kind of Hid-
den Markov Model [33], which is trained with the Baum-Welch soft alignment
algorithm, and the alignment result is updated at each iteration. Some recent
works [22,14] leverage this iterative fitting characteristic and extend the spiky ac-
tivations to get better recognition performance. However, these methods change
the pseudo label at each iteration manually and may break the continuity of the
sequence feature. Similar work to ours is [44], where the authors find that the
peaky behavior is a property of local convergence, and the peaky behavior can
be suboptimal. Different to [44], we constrain sequence features on a hypersphere
and control the peaky behavior with an angular perturbation term.

2.2 Deep Feature Learning

The main goal of deep feature learning is to learn discriminative feature space
with proper supervision. In some fine-grained image classification tasks (e.g .,
face recognition), an important technical route is to learn strong discrimina-
tive features by improving the conventional softmax loss. Several margin-based
losses [8,25,26,39] are proposed to learn more separable feature space. Wen et
al . [41] propose to learn a center for each class and minimize the distance be-
tween deep features and their corresponding class centers, which can reduce
intra-class variance. L-softmax [26] ignores the bias term in the classifier and
adopts an angle-based margin to constrain the angles between learned features
and their corresponding weights. SphereFace [25] further normalizes the weights
of the classifier and constrains the learned feature on the unit hypersphere. On
the other hand, several works [31,34] observe that the L2-norm of the feature
is informative to its quality and adopt the feature normalization to overcome
sample distribution bias. Wang et al . [38] show the necessity of normalization
and normalizing both features and weights, which become a common strategy
in the following works [8,39]. Several angular-margin based losses [8,28,39] are
proposed to further improve the recognition results.

3 Method

3.1 A Toy Sequence Recognition Example

To better illustrate the proposed method, we first build a simulated sequence
recognition dataset named Seq-MNIST. Each sequence of Seq-MNIST is gener-
ated with four keyframes sampled from the MNIST database [19]. The transition
clip from the former keyframe to the next is generated by interpolating α frames
between them: the next keyframe fades in, and the former keyframe fades out.
An example of the generation process is visualized in Fig. 2. The Seq-MNIST
has 15,000 training sequences and 2500 testing sequences, and each sequence
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Fig. 2. An illustration of the data generation process of Seq-MNIST

contains 41 frames (α=9 and 5 additional transition frames at the beginning
and the end). The proposed Seq-MNIST can be used to explore the design of
the sequence recognition model, which is expected to recognize numbers from
the generated sequence (e.g ., [5, 6, 7, 0] for the sequence in Fig. 2).

We adopt the modified version of LeNet [41] as the frame-wise feature ex-
tractor (FFE) and set the dimension of output features to 3 for visualization.
The feature extractor takes the image sequence of T frames x = (x1, · · · ,xT )
and abstracts frame-wise features v = (v1, · · · ,vT ). To clearly illustrate the
relationship between frames, no temporal module is adopted in this sequence re-
congnition model. The output features are fed to the fully-connected (FC) layer
with n+1 output neurons (the vocubulary V contains n non-blank classes and
one extra ‘blank’ class) for recognition. The whole process is formulated as:

v = FFE(x), yti =
eW

⊺
i vt+bi∑N

j=1 e
W⊺

j vt+bj
, (1)

where v ∈ RT×d and d is the dimension of features. W ∈ Rd×(n+1) and b ∈ Rn+1

are the weight matrix and the bias term of the FC layer.
As a widely-used loss function for weakly-supervised sequence recognition,

CTC provides supervision by considering all possible alignments and maximizing
the sum of their probabilities. With the help of an extra ‘blank’ class, CTC
defines a many-to-one mapping B : VT → V≤T to align the alignment path π and
its corresponding labeling l. This mapping is achieved by successively removing
the repeated labels and blanks in the path. For example, B(-aaa--aabbb-) =
B(-a-ab-) = aab. The posterior probability of the labeling can be calculated by:

p(l|v) =
∑
π

p(π|l,v) =
∑

π∈B−1(l)

p(π|v)

p(π|v) =
T∏

t=1

p(πt|v) =
T∏

t=1

ytπt

. (2)

The frame-wise features v abstracted by the trained model are visualized
in Fig. 3(a). Although we adopt a small feature dimension for visualization,
it can reflect some characteristics of feature space and inspire us to optimize
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(a) (b)

Fig. 3. Visualization of (a) the distribution of frame-wise features and (b) an example
of transition trajectory in the test set of Seq-MNIST. Points with different colors are
cooresponding to different classes. Best view in color

the design of loss function, which can also be extended to the high-dimensional
case. From Fig. 3 we can observe that: (1) after training with CTC, the frame-
wise features are separable among non-blank classes, but the decision boundary
between non-blank classes and the blank class is pretty complicated, (2) over
half of the features are classified to the blank class, which is corresponding to
the peaky behavior of CTC, and features of the blank class have a large intra-
class variance, and (3) although some transition frames are pretty similar to the
keyframe, they are classified to the blank class as Fig. 3(b) shown.

3.2 The Design of Loss Function for Sequence Recognition

Many efforts have been devoted to learning discriminative features for fine-
grained image classification, and we briefly summarize relevant designs as:

min

N∑
i=1

(
− log p(li|vi,m)︸ ︷︷ ︸
margin-based loss

+
1

2
∥vi − cli∥2︸ ︷︷ ︸

center regularization

)

s.t. ṽi =
svi
∥vi∥2

, i = 1, · · · , N, W̃j =
Wj

∥Wj∥2
, j = 1, · · · , C︸ ︷︷ ︸

normalization

, (3)

where vi and li are visual feature of sample i and its label, and ck is the center
vector of class k. s controls the feature scale to ensure the convergence. The
center constraint aims to reduce intra-class variance [41], the normalization con-
straint can provide a geometric interpretation [25,38] and reduce the training
data imbalance issue [25], and the margin-based loss [8,25,26,28,39] can enforce
intra-class compactness and inter-class separation.

Like fine-grained image classification, sequence recognition needs a discrimi-
native yet steady feature space. Inspired by the design of loss function in Equ. (3),
we propose several constraints in the context of sequence learning.

Normalization. Different from image classification, sequence recognition
not only needs to learn steady feature space but also needs to learn a generalized
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(a) (b)

Fig. 4. The distribution of frame-wise features with (a) normalization and (b) normal-
ization, angle and center constraints in the test set of Seq-MNIST, Points with different
colors correspond to different classes. Best view in color

feature space from weakly supervised labeling. As shown in Fig. 3, the learned
features with supervision from CTC have large intra-class variance, especially on
the blank class, and the decision boundary between the blank class and non-blank
classes is not clear. The vanilla CTC takes the inner distance between features
and weights as input and provides little constraint on the alignment process. To
learn a more separable feature space, we normalize both the features and weights
and constrain the learned features on a hypersphere, which has been proven
a practical approach in face recognition [25,38]. Fig. 4(a) shows the learned
feature distribution after normalization. After constraining all features on the
hypersphere, the search space of the alignment process is reduced considerably,
and features are distributed along several disjoint paths from the center of the
blank class. Besides, these features are not equally distributed among different
classes and tend to distribute near the decision boundary rather than its class
center. We further propose angle and center constraints to relieve these problems
and make the features more discriminative.

Angle regularization. The blank class plays a unique role in CTC that
the model trained with CTC will predict blank labels at uncertain frames. In
other words, any frames between two non-blank keyframes can be classified into
the blank class. Therefore, any transition trajectory between two non-blank
keyframes will go through the decision region of the blank class as shown in
Fig. 3(b). The data distribution and the recognition difficulty will affect the an-
gle between the blank and non-blank classes. To enhance the discriminative and
the generalization ability of the model, we propose an angle regularization term
to minimize the distance between W̃ ⊺

b W̃nb and a given value cos(β).

Center regularization. As shown in Fig. 4(a), features are likely to be near
the decision boundary of the blank class. CTC provides supervision by consid-
ering all possible alignments and has no explicit constraint on the separability
of frame-wise features. Inspired by the pioneering work [38] that reduces intra-
class variance by minimizing the distance between the deep feature and its corre-
sponding class center, we assume that it is also helpful for sequence recognition.
However, sequence recognition generally does not require frame-wise labels, and
sequences often have many uncertain frames. Indiscriminately applying center
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regularization on all frames will affect the representation steadiness and gener-
alization ability of the model. Therefore, we only apply center regularization on
keyframes set KF (v), which is implemented by first estimating the alignment
path π̂ = argmaxπ p(π|v, l; θ) with the maximal probability as previous work [7]
does and then minimizing the distance between features of keyframes in π̂ and
their corresponding classes.

Fig. 4(b) visualizes the learned feature distribution with the above con-
straints. These constraints provide a clear geometric interpretation for the se-
quence recognition with CTC supervision: the blank class plays a central role
in the sequence recognition and the features of transition frames distributed on
the disjoint arcs between centers of the blank class and non-blank classes.

The conservative supervision from CTC only classified a small ratio of frames
to non-blank classes, but we can observe from Fig. 4(b) that features of the
blank class are also clustered into several groups, which are distributed along
the disjoint arcs to the centers of non-blank classes. This observation raises two
questions: (1) can we obtain accurate localization information from CTC, and
(2) what is the relationship between the recognition and localization abilities of
the model trained with CTC?

The role of the angular margin. Adopting an angular/cosine-margin-
based constraint is popular in deep feature learning, which can make learned
features more discriminative by adding a margin term in softmax loss. Different
from fully-supervised learning, sequence recognition does not require frame-wise
annotation generally. It is hard to generate reliable frame-wise labels to apply
a margin-based constraint on the sequence recognition model, but, what will
happen if we directly add an angular margin on a frame of the blank class?

Several previous works [13,43] regard the CTC method as a special case of
HMM, which is trained with Baum-Welch soft alignment at each iteration, and
its optimization process can be interpreted via Expectation-Maximization. The
gradient of p(l|x) with regard to the logit atk [10] is:

∂ ln p(l|v)
∂atk

= ytk − ŷtk, (4)

where ŷtk is the conditinal expected predictions calculated based on the Forward-
Backward Algorithm (FB) [10]:

ŷtk = FB(t, k,y, l) =
1

p(l|v; θ)
∑

π∈B−1(l),πt=k

p(π|v; θ). (5)

The frame-wise gradient of CTC has the same formulation as the Cross-
Entropy (CE) loss, and the optimization of CTC is equivalent to iterative fit-
ting [22]. However, the pseudo label ŷtk is calculated by considering probabilities
of all feasible paths. In other words, changes in the logit also influence the prob-
abilities of relevant paths, and adding a margin term on one frame also changes
the pseudo labels of its neighboring frames.

Fig. 5 presents an example to illustrate this characteristic of CTC. For a
sequence with five frames and labeling AB, the pseudo label ŷtk is calculated by
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(a) With unmodified logits (b) With modified logits

Fig. 5. An illstration of the iterative alignment mechanism of CTC

filtering out infeasible alignments and then calculating the expectation values.
When adopting a large margin term in softmax operation to change the output
of the fourth frame in Fig. 5(a) from (1.0, 0.0, 0.0) to (0.0, 1.0, 0.0), the pseudo
labels of 2-4th frames changes from the blank class to class A. In this example,
the angular margin plays a role in perturbation and provides a way to change
the pseudo label while retaining the iterative alignment mechanism of CTC.

3.3 RadialCTC

Adopting an angular perturbation term can change the pseudo label, which
provides a valuable tool to control the peaky behavior. However, it is hard to
choose reliable frames to add this term, and a pre-defined term is hardly suitable
for all sequences. Therefore, we try to control the peaky behavior of CTC by
perturbing blank logits of all frames with a sequence-dependent term.

As the decision boundaries between the blank class and non-blank classes
are similar, we look into the decision criteria of softmax in the binary case.
After normalizing both features and weights and ignoring the bias term, the
decision boundary between the blank class b and a non-blank class nb is θ1 = θ2,
where θ1 = arccos(W̃ ⊺

b ṽ) and θ2 = arccos(W̃ ⊺
nbṽ). A frame is recognized as the

blank class when it lies on the hyperarc-like region ω1 with θ1 < θ2, and Fig. 6
provides both 2D and 3D examples for better understanding. We can shrink the
constrained region of the blank class from θ1 < θ2 to θ1 + m < θ2 by adding
an angular perturbation term m on the blank frame. However, the prediction
will soon become peaky again when training the model with this term and CTC
because the learned features tend to evolve along with the decision boundary.

To control the peaky behavior flexibly, we propose a radial constraint that
is implemented by adding an angular perturbation term m(η,θ, l) between ṽ
and W̃b and adopt the pseudo label of the perturbed logits to provide supervision
for the original logits. Unlike adopting a global perturbation term, we search
for a proper frame within the sequence and move the decision boundary based
on its feature to satisfy a pre-defined non-blank ratio η. Specially, given visual
features v = (v1, · · · , vT ) and its corresponding labeling l = (l1, · · · , lU ), we find
the frame vτ which has the kth (k = U + 1 + ⌊(T − U) ∗ η⌋) largest angular
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Fig. 6. The geometric interpretation of the angluar perturbation process. Visualization
of the decision boundaries of (a) CTC on hypersphere, (b) CTC in binary case and (c)
RadialCTC in binary case

difference between the blank class and the class with the highest probability
that has appeared in the labeling. This process can be formulated as:

θ = arccos(W̃ ⊺ṽ)

m(η,θ, l), τ = topk(max
c∈l

θc − θb)
, (6)

where topk returns the kth largest value and its corresponding index. Then
we add this angular perturbation term between ṽ and W̃b and calculate the
perturbed prediction z, which is calculated by:

zi =


es cos(θb+m(η,θ,l))

es cos(θb+m(η,θ,l)) +
∑n+1

j=1,j ̸=b e
s cos(θj)

, if i = b

es cos(θi)

es cos(θb+m(η,θ,l)) +
∑n+1

j=1,j ̸=b e
s cos(θj)

, otherswise

. (7)

Fig. 6(b) and 6(c) provide the geometric interpretation of m(η,θ, l) in the
binary-class case. The original prediction of CTC is peaky, and only two frames
are classified to label nb. To adjust the blank ratio, the 5th largest angular
difference (θ2 − θ1) is selected as m(η,θ, l). The prediction calculation process
of Equ. 7 is equivalent to rotating the weight vector of the blank class from
Wb to the virtual weight vector Ŵb. The decision boundary will move to the
angular bisector of Ŵb and Wi and change the ratio of blanks as expected. The
position of Ŵb is adjusted by the non-blank ratio η and the sequence-wise angular
distribution, which is more flexible than a fixed global margin.

It seems like applying CTC to this modified prediction can adjust the ratio of
non-blank supervision from CTC. However, the modified process leverages the
labeling information, which is unknown during inference. A feasible solution is
adopting the modified prediction as the pseudo label and iteratively narrowing
the gap between it and the original prediction, which is similar to the iterative
soft alignment mechanism of CTC. With the help of the FB Algorithm of CTC,
we can calculate pseudo labels with higher quality and provide supervision for
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the original prediction:

ẑtk = FB(t, k, z, l)

L = − log p
(
li|vi,m(η,θ, l)

)
= −

T∑
t=1

N∑
k=1

ẑtk log y
t
k

. (8)

The only difference between Equ. 8 and the original CTC (Equ.4 and Equ.5)
is that the prediction used for pseudo label calculation is modified from the
original prediction, which can flexibly adjust the blank ratio while retaining the
iterative alignment mechanism of CTC. As the proposed method adjust the blank
ratio based on ‘radial’ feature distribution, we named this method RadialCTC.
The entire process can be formulated as:

min

N∑
i=1

(
− log p

(
li|vi,m(η,θ, l)

)
︸ ︷︷ ︸

radial constraint

+λ1

C∑
j=1,j ̸=b

(
W̃ ⊺

b W̃j − cos(β)
)2

︸ ︷︷ ︸
angle regularization

+ λ2

∑
ti∈KF (v)

∥∥∥ṽti − W̃yti

∥∥∥
2︸ ︷︷ ︸

center regularization

)

s.t. ṽi =
svi

∥vi∥2
, i = 1, · · · , N, W̃j =

Wj

∥Wj∥2
, j = 1, · · · , C︸ ︷︷ ︸

normalization

, (9)

where λ1 and λ2 are hyperparameters to control the strength of regularization.

4 Experiments

This section conducts ablation studies on the Seq-MNIST and evaluates the
recognition and localization results. To show the generalization ability of the
proposed method, we exemplify it for sequence recognition with two applications:
continuous sign language recognition (CSLR) and scene text recognition.

4.1 Datasets

Seq-MNIST. Seq-MNIST maintains the distribution balance from MNIST [19].
We also simulate an unbalanced training set by sampling images at the rate of
0.1 for classes 0 to 4 and remaining unchanged for others.
Phoenix14. As a popular CSLR dataset, Phoenix14 [17] contains about 12.5
hours of video data collected from weather forecast broadcast and is divided
into three parts: 5,672 sentence for training, 540 for development (Dev), and 629
for testing (Test). It also provides a signer-independent setting where data of 8
signers are chosen for training and leave out data of signer05 for evaluation.
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Table 1. Experimental results (%) on Seq-MNIST (dim=3)

Setting Balanced Unbalanced

Constraint Train Test Train Test
Norm Angle Center Radial Acc. Acc. mAP Acc. Acc. mAP

99.5 95.1 30.7 99.9 87.8 33.0
✓ 99.6 94.8 24.6 98.8 79.5 42.7
✓ ✓ 99.5 95.2 25.9 98.7 79.5 36.1
✓ ✓ 99.7 95.6 26.9 98.1 74.2 44.8
✓ ✓ ✓ 98.5 93.6 25.6 98.2 73.6 42.2

✓ ✓ ✓ η = 0.0 96.7 90.4 22.7 98.9 81.5 19.7
✓ ✓ ✓ η = 0.2 99.8 93.7 40.5 97.3 72.3 41.5
✓ ✓ ✓ η = 0.4 97.9 88.7 62.8 86.1 31.4 50.7
✓ ✓ ✓ η = 0.6 96.6 84.2 78.7 75.7 22.7 56.7
✓ ✓ ✓ η = 0.8 94.5 80.8 87.9 61.3 23.4 60.9

Scene Text Recognition Datasets. Following the standard experimental set-
ting, we use the synthetic Synth90k [15] as training data and test our methods on
four real-world benchmarks (ICDAR-2003 (IC03) [27], ICDAR-2013 (IC13) [16],
IIIT5k-word(IIIT5k) [30] and Street View Text(SVT) [40]) without fine-tuning.

For Seq-MNIST and scene text recognition datasets, we use sequence accu-
racy as the evaluation metric. Word error rate (WER) is adopted as the evalu-
ation metric of CSLR as previous work does [29]. We adopt the mean Average
Precious (mAP) [9] to evaluate the localization performance. Other implemen-
tation details can be found in the Supplementary.

4.2 Experimental Results

Ablation on RadialCTC design. We adopt the modified LeNet [41] men-
tioned in Sect. 3.1 as baseline and present ablation results of RadialCTC on
Seq-MNIST in Table 1. To better illustrate the effect of different constraints, we
set the dimension of output features to 3. We can observe that adopting either
angle or center regularization can improve the recognition results. However, the
combined use of them leads to a performance drop. We assume this is because
this constraint is too strong to learn separable features in this low-dimensional
space, and it achieves better performance when the dimension increases to 128.
We can also observe that RadialCTC performs worse on the extremely unbal-
anced setting, which tends to make more predictions (mAP increases from 33.0%
to 42.2%) but also brings more errors. Visualization of learned features and more
results can be found in the Supplementary.
Localization Ability of RadialCTC. We adopt the class with a larger in-
terpolation weight as its label for each frame in the sequence and calculate the
mAP of different settings to show their localization ability. As η increases, the
localization performance significantly improves (from 22.7% to 87.9%) in Ta-
ble 1. Although the sequence accuracy drops as η increases, we find this mainly
because model trained with larger η tends to merge repeated labels into one
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Table 2. Performance comparison (%)
on Phoenix14 dataset under multi-signer
setting

Dev Test
del/ins WER del/ins WER

Re-Sign [18] - 27.1 - 26.8
DNF [6] 7.8/3.5 23.8 7.8/3.4 24.4

CMA [32] 7.3/2.7 21.3 7.3/2.4 21.9
STMC [45] 7.7/3.4 21.1 7.4/2.6 20.7
SMKD [14] 6.8/2.5 20.8 6.3/2.3 21.0

Baseline [29] 7.3/2.6 21.0 7.6/3.0 22.6
RadialCTC 6.5/2.7 19.4 6.1/2.6 20.2

Table 3. Performance comparison (%)
on Phoenix14 dataset under signer-
independent setting

Dev Test
del/ins WER del/ins WER

Re-Sign [18] - 45.1 - 44.1
DNF [6] 9.2/4.3 36.0 9.5/4.6 35.7

CMA [32] 11.1/2.4 34.8 11.4/3.3 34.3

Baseline [29] 11.6/3.6 36.7 9.8/3.5 33.8
RadialCTC 10.5/2.9 33.8 9.7/2.9 32.2

Table 4. Performance comparison (%) on scene text recognition datasets

Method IIIT5K SVT IC03 IC13

R2AM [20] 78.4 80.7 88.7 90.0
STAR-Net [24] 83.3 83.6 89.9 89.1

RARE [36] 81.9 81.9 90.1 88.6

CRNN [35] 78.2 80.8 89.4 86.7
EnEsCTC [23] 82.0 80.6 92.0 90.6

ACE(1D, Cross Entropy) [42] 82.3 82.6 92.1 89.7
Reinterpreting CTC [22] 81.1 82.2 91.2 87.7

Baseline [35] 79.8 80.4 89.9 87.3
RadialCTC 83.2 82.1 92.3 90.7

(e.g., predicting 567 rather than 5567). After ignoring this case, the recognition
accuracy of the η = 0.8 setting improves from 80.8% to 94.6%, which indicates
the proposed RadialCTC can provide accurate boundaries while achieving com-
petitive recognition results. Besides, we can conclude that the localization ability
of vanilla CTC is between η = 0.0 and η = 0.2 settings.

Limitations of RadialCTC. Experimental results on the unbalanced setting
in Table 1 show some limitations of the RadialCTC. When the dataset is ex-
tremely unbalanced, prematurely adding center regularization will reduce intra-
class variance before the class centers are sufficiently separable and damage the
generalization ability of the model. Besides, the distribution of data also affects
the localization ability of the model. RadialCTC controls the peaky behavior
through a sequence-dependent term. Therefore, the model is more likely to pre-
dict the dominant sequence class and limits its localization ability on classes
with fewer samples. This conclusion is reflected in the slower growth of mAP.

Continuous Sign Language Recognition. As a typical visual sequence recog-
nition task, visual features play an essential role in CSLR. Recent work [29] has
shown that adding an extra CTC on visual features can efficiently improve the
recognition results. Therefore, we replace this extra CTC with RadialCTC to
show its effectiveness as intermediate supervision without using the distillation
loss for simplicity. As shown in Table 2, the proposed RadialCTC improves the
recognition results and achieves sota results, which indicates that RadialCTC
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Fig. 7. Scene text recognition examples with different non-blank ratios (η=0.2, 0.4,
0.6, 0.8 from top to bottom)

can learn more discriminative features even if the dataset has limited data. Sim-
ilar conclusions can be drawn from the signer-independent setting in Table 3.
Scene Text Recognition. As a classical framework for scene text recogni-
tion, modified versions of CTC [22,23,42] adopt CRNN [35] as the baseline and
evaluate the performance on a standard benchmark. We follow this experimen-
tal setting and present results in Table 4. By changing the primary supervision
from CTC to the proposed RadialCTC, the scene text recognition model achieves
more than 1.7% improvement on four real-world test sets. The proposed method
outperforms other modified versions of CTC on almost all test sets and is com-
petitive with other methods. Previous works [22,23] are also driven by designing
a proper method to relieve the peaky behavior. However, we have not found that
improving localization ability is helpful for recognition, and the performance gain
is obtained without using the radial constraint.

To better show the localization ability of RadialCTC, we visualize pseudo
labels and predictions of different non-blank ratios in Fig. 7. RadialCTC can
provide confident and accurate pseudo labels and predictions as η increases.

5 Conclusion

As a popular objective function in sequence recognition, CTC provides super-
vision for unsegmented sequences through an iterative alignment mechanism.
In this study, we propose a RadialCTC that constrains sequence features on a
hypersphere while retaining the iterative alignment mechanism of CTC. Radi-
alCTC provides a clear geometric interpretation of the distribution of sequence
features. Besides, an efficient constraint is proposed to control the peaky behav-
ior of vanilla CTC. Experimental results show that RadialCTC can effectively
improve recognition results and provide reliable localization results. We hope
the proposed RadialCTC can be a useful tool in sequence recognition, and the
geometric interpretation of CTC can inspire other sequence learning tasks.
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44. Zeyer, A., Schlüter, R., Ney, H.: Why does ctc result in peaky behavior? arXiv
preprint arXiv:2105.14849 (2021)

45. Zhou, H., Zhou, W., Zhou, Y., Li, H.: Spatial-temporal multi-cue network for
continuous sign language recognition. In: Proceedings of the Association for the
Advancement of Artificial Intelligence. pp. 13009–13016 (2020)


	Deep Radial Embedding for Visual Sequence Learning

