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In the Appendix, we first provide the body markers representation, archi-
tecture details, training and optimization setup, dataset pre-processing details,
and the AMT user study evaluation details in Appendix A. In Appendix B, we
illustrate the detailed baseline experiments and ablation study setup. We further
provide additional experimental results and visualization results in Appendix C,
and we discuss the existing limitations in Appendix D. Please see the video in
our project page for more random samples of synthesized grasping poses and
grasping motions.

A Method and Implementation Details

A.1 Body Markers Placement

To have informative yet compact markers setup, as illustrated in Fig. S1, we
follow the placement of the markers in GRAB [10] MoCap system, having 49
markers for the body, 14 for the face, 6 for hands and 30 for fingers (see Fig. S1
(a)-(c)) on SMPL-X body surface. As hand poses are subtle and the palm is
frequently in contact with the object, we additionally have 44 markers on two
palms (see Fig S1 (d-1)) to further enrich the markers information for a better
grasp. For the grasping ending pose generation in stage1, we use all these 143
markers for training and optimization. For the motion infilling network training
in stage2, we only use a sparse set of palm markers with 10 markers on fingertips
(see Fig. S1(d-2)).

A.2 Architecture Details

WholeGrasp-VAE We have visualized the WholeGrasp-VAE architecture in
Fig. 3. This CVAE is conditioned on the object height information and the
object geometry feature extracted with PointNet++ [9] encoder. In the en-
coder, taking the body markers’ postions M ∈ RN×3 and body markers contacts
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(a) Front view (b) Back view

(c) Top view

(d-1) Dense hand markers (d-2) Sparse hand markers

Fig. S1. Visualization of our body markers placement. We have 69 markers on the
body surface, which are visualized as red spheres on SMPL-X body surface, in which
49 for the body, 14 for the face and 6 for hands. For the WholeGrasp-VAE training,
we additionally have 30 markers on fingers and 44 markers on palms (d-1). For the
MotionFill-VAE training, we only have sparse hand markers (d-2) with 10 markers on
fingertips.

CM ∈ {0, 1}N as inputs, where N is the number of markers, the body branch
encodes the body feature FB ; Taking the object contacts CO ∈ {0, 1}2048 as
an additional feature of the object point cloud data, the object branch uses the
PointNet++ to encode the object feature. Further, we fuse them into a joint
16-dimensional latent space zs. In the decoder, we individually decode the body
markers’ positions, markers’ contacts, and object contacts. Note that we model
the contacts learning as a two-class (in-contact or out-of-contact) classification
task, and the decoder outputs the in-contact probability of each points. And the
PointNet++ encoder architecture is given by: SA(256, 0.2, [64, 128]) → SA(128,
0.25, [128, 256]) → SA([256, 512]), where SA denotes the set abstraction level [9].

MotionFill-VAE In TrajFill, the root state at time t is given by Γt = (xt, yt,
cos γt, sin γt), where xt, yt are the position of pelvis joint in the x-y (ground)
plane, and γt is the body rotation around z-axis. Given Γ0 and ΓT , the TrajFill is
built to learn the deviation∆Γ0:T+1 = Γ0:T+1−Γ 0:T+1 from an initial trajectory
Γ 0:T+1 which is a linear interpolation and one-step extrapolation of the given
Γ0 and ΓT , and we use Γ 0:T+1 as the condition. Inside TrajFill, we use MLP
structures for the encoder and the decoder. For the encoder, input trajectory
features are passed through two residual blocks, which has the same hidden size
as the input dimension (8T , where T is the time length of the input). After that,
two linear branches project the features into the 512-dimensional latent space.
The decoder includes two residual blocks with hidden sizes equal to 8T and 4T ,
respectively. We get the final output of TrajFill by adding the last residual block
output and the initial rough trajectory Γ 0:T+1.

In LocalMotionFill, following the same input processing step as in [12], we
build a 4-channel local motion image I ∈ R4×(3N+n)×T , where N,n are the
number of markers and the dimension of foot-ground contact labels. The first
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channel of I is a concatenation of foot-ground contacts CF0:T
∈ {0, 1}n×T and the

normalized local markers M l
0:T ∈ R3N×T .The other three channels of Il are the

normalized root local velocities vl
0:T . To incorporate the condition information

(M0,MT ,v0:T ) into the LocalMotionFill, similarly, we build a condition image
Ic which essentially is the masked input image I. We use the same CNN-based
encoder and decoder network as in [12] to learn the infilled motion image.

A.3 Dataset Processing

GRAB. We use GRAB (https://grab.is.tue.mpg.de/license) dataset to train
both the WholeGrasp-VAE and MotionFill-VAE for grasping ending pose gen-
eration and motion infilling, respectively.

For WholeGrasp-VAE training, considering the different body shape pattern
of male and female, we suggest training the male model and the female model
separately. Following GrabNet [10], for training, we take all frames with right-
hand grasps. And out of the 51 different objects in GRAB dataset, following
the same split of object class in GrabNet [1,10] we take out 4 validation objects
(apple, toothbrush, elephant, hand) and 6 test objects (mug, camera, toothpaste,
wineglass, frying pan, binoculars), and the remaining 41 objects are used for
training. We center the object point cloud and the body markers at the geometry
center of the object.

For MotionFill-VAE training, we only utilize sequences where humans are
approaching to grasp the object. GRAB dataset captures the motion sequences
where the human starts with T-pose, approaches and grasp the object, and then
interacts with the object. For MotionFill-VAE training, we clip those approach-
ing and grasping sequences. Since most of these approaching motion sequences
only last for about 2s in the GRAB dataset, we clip 2-second videos from each
sequence by ensuring that the last frames are at stable grasping poses. If the
sequence is shorter than 2s, we pad the first frame to have the two-second clip.

AMASS.We pretrain our motion infilling model MotionFill-VAE on the AMASS
(https://amass.is.tue.mpg.de/license.html). We down-sample the sequences to
30 fps and cut them into clips with same duration. To be consistent with GRAB
dataset, we clip 2-second sequences from the AMASS for the grasping motion
infilling task. We also evaluate our motion infilling network by conducting ex-
periments on the general motion infilling task with different time lengths (see
Appendix C.2), and for that, we clip the AMASS dataset into 4-second and 6-
second sequences. Similar to [13], we reset the world coordinate for each clip.
The origin of the world coordinate is set to the pelvis joint in the first frame. The
x-axis is the horizontal component of the direction from the left shoulder to right
shoulder, the y-axis faces forward, and the z-axis points upward. For training, we
use all the mocap datasets except EKUT, KIT, SFU, SSM synced, TCD hand-
Mocap, and TotalCapture. For testing, we use TCD handMocap, TotalCapture,
and SFU.
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Algorithm 1 WholeGrasp-Opt: grasping pose optimization

Input: Sampled markers M̂ , markers-object contacts ĈM , ĈO.
Output: Body mesh BT (ΘT ) and the queried markers MT .
Require: Optimization steps (N1, N2, N3) = (300, 400, 500).

for i = 1 : N1 do
Optimize t,R to minimize Efit in Eq. 5.

for i = N1 : N1 +N2 do
Optimize t,R,β,θb to minimize Efit in Eq. 5.

for i = N1 +N2 : N1 +N2 +N3 do
Optimize θb,θh,θe to minimize Eopt in Eq. 4-6.

return ΘT = [β, t,R,θb,θh,θe]

A.4 Implementation Details

We implement our experiments using PyTorch v1.6.0 [7]. In the following, we
introduce the training details of WholeGrasp-VAE and MotionFill-VAE, and
optimization details of GraspPose-Opt and GraspMotion-Opt respectively.

WholeGrasp-VAE training. In Sec. 3.2, we have introduced the WholeGrasp-
VAE training losses. Note that for the object and markers contact map recon-
struction, due to the class in-balance, we employ the weighted binary cross-
entropy loss, and we empirically set the weights for in-contact class for objects
and markers as 3 and 5 respectively. And we set the object and markers con-
tact map reconstruction weight λM , λO in Eq. 1 as 1. For the VAE training,
we adopt the linear KL weight annealing strategy [5] to avoid posterior collapse
issue in VAE training. And we empirically set λc = 1 and λKL = 0.005e in
Ltrain = Lrec+λKLLKL+λcLc, where e is the epoch number, and we train the
WholeGrasp-VAE for 40 epochs.

MotionFill-VAE training. In the experiments for Table. 3, for local motion
infilling (given the starting pose, ending pose and trajectory), we train our Local-
MotionFill model on AMASS training set; for the entire MotionFill-VAE (“Traj
+ local motion infilling”), we first pretrain our TrajFill module and LocalMo-
tionFill module on the GRAB and AMASS training set respectively, and we
further finetune the entire MotionFill-VAE on the GRAB training set. We em-
pirically set the hyper-parameters in LM = Lrec+λKLLKL and Eq. 8 as follows:
{λKL, λ1, λ2, λ3, λ4} = {1, 0.05, 1, 1, 0.5}.
GraspPose-Opt optimization. In Sec. 3.2, we have illustrated the GraspPose-
Opt optimization losses design to recover SMPL-X body mesh from sparse mark-
ers and refine the body pose for more perceptually realistic human-object inter-
actions. We empirically set the hyper-parameters in Eq. 5-7 {αo

cont, α
m
cont, α

O
colli,

αB
colli, αθ} = {15, 15, 100, 200, 0.0005}. As it can be difficult for the optimization

process to converge by jointly optimizing the high-dimensional SMPL-X param-
eters, which include the body global configuration t and R, shape parameters
β, body pose parameters θb, and the more local hand pose θh and eye pose
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θe parameters, similar as in MOJO [13], we suggest a multi-stage optimization
mechanism by optimizing in a global-to-local fashion to facilitate a gradual con-
vergence. And the detailed multi-stage training process can be found in Alg. 1.
We use Adam [4] optimizer, and the initial learning rates for these three stages
are set as 0.016, 0.012, 0.008 respectively.

GraspMotion-Opt optimization. In Sec. 3.4, we have shown the GraspMotion-
Opt optimization losses design to recover smooth SMPL-X body motions from
sparse markers sequence. Additionally, we introduce more details about our mo-
tion smoothness loss and foot skating loss design.

– Cross-frame smoothness loss. To encourage a temporarily smooth whole-
body motion, following [12], we enforce smoothness on the smooth motion
latent space S1:T−1 = AE(M1:T −M0:T−1) encoded by a pretrained autoen-
coder. Also, we explicitly enforce smoothness on the hand vertices, and the
overall smoothness loss is given by:

Esmooth = αB
s

T−2∑
t=1

|St+1 − St|2 + αh
s

T−1∑
t=0

|Vh
Bt+1

− Vh
Bt

|2 (S.1)

– Foot skating loss. Following [12], we reduce the foot skating artifacts by
optimization based on the foot-ground contact labels ĈF .

Eskat = αskat

∑
t∈Tc

∑
|vfoot

t |≥σ

||vfoott | − σ| (S.2)

where Tc means the timestamps with foot-ground contact, vfoott represents
the velocity (location difference between adjacent timestamps t and t+1) of
vertices on the left toe, left heel, right toe, and right heel, at time t. σ is a
threshold and we use σ = 0.1 in our experiments.

The overall optimization loss is given by Ebasic+Eg+Esmooth+Eskat, where
Ebasic and Eg are formulated in Eq. 10 - 11. We optimize the overall loss in two
stages, where we first fit SMPL-X body mesh to the predicted markers sequences
by minimizing the markers fitting loss (Efit in Eq. 10), and then we refine the
recovered body mesh sequences by minimizing the overall loss. We present the
detailed optimization procedure in Alg. 2. We also use Adam [4] optimizer. For
the first frame, the initial learning rate is 0.1, and for the other frames the initial
learning rate is 0.01. Stage 1 optimization takes 100 steps and the learning rate
becomes 0.01 after step 60 and decreases to 0.003 after step 80. The second
stage optimization takes 300 steps, and the initial learning rate is set to 0.01
and decays to 0.005 after 150 steps.
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Algorithm 2 GraspMotion-Opt: grasping motion optimization

Input: Sampled body markers sequences M̂0:T , mutual markers-object contacts ĈM ,
ĈO and dynamic foot-ground contact ĈF0:T ; Body shape parameters β
Output: Smoothed whole-body grasping motion B0:T (Θ0:T ).
Require: Optimization steps (N1, N2) = (100, 300).

for i = 1 : N1 do

Optimize [t,R, θ]0:T to minimize
T∑

t=0

Efit in Eq. 10.

for i = N1 : N1 +N2 do
Minimize Ebasic + Eg + Esmooth + Eskat in § 3.4

return Θ0:T = {β, [t,R, θ]0:T }

A.5 Amazon Mechanical Turk (AMT) User Study

We perform user study via AMT, and the user study interface is presented
in Fig. S2. We perform user study on both ground truth motion sequences
from GRAB dataset and our randomly generated sample sequences. We test
our pipeline with 14 unseen objects from both GRAB test set and HO3D [2]
dataset, and we generate 50 random grasping motion sequences for each object,
where objects are randomly placed. Each sequence is scored by 3 users and we
take the average score, and the score range from 0 to 5 (from strongly disagree to
strongly agree). The average perceptual score for each object class is presented
in Table S1.

Table S1. Perceptual score results of both ground truth (GT) grasping motion se-
quences and our synthesized sequences for grasping various unseen objects. Due to the
lack of ground truth whole-body grasping motions for objects in HO3D dataset, we
only evaluate ground truth sequences for objects from GRAB dataset.

GRAB HO3D Average Score

Object
Score

Object Score (Ours) GT Ours
GT Ours

Cracker box 3.15

4.04 3.15

Binoculars 3.83 2.98 Sugar box 3.45
Camera 3.92 3.60 Mustard bottle 3.49

Toothpaste 4.22 3.47 Meat can 3.43
Mug 4.38 2.82 Pitcher base 2.68

Wine glass 3.85 2.87 Bleach cleanser 3.56
Frying pan 4.16 1.7 Mug 2.61

Power drill 2.86
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Fig. S2. AMT user study interface. We present both the first-view video (on the left
side) and third-view video (on the right side) to the user for the grasping motion quality
evaluation.

B Baselines Implementation Details

In Sec. 4.1 and Sec. 4.2, we conduct several baseline experiments as comparisons
with our WholeGrasp-VAE and MotionFill-VAE and also some ablation studies.
In this section, we illustrate more implementation details about our baselines
and ablation studies.

B.1 Baselines to WholeGrasp-VAE

In Sec. 4.1, we extend the GrabNet [10] to the whole-body grasping pose gen-
eration task (GrabNet-SMPLX) as a comparison with our WholeGrasp-VAE
design, and we also study the effectiveness of the multi-task WholeGrasp-VAE
by comparing with the single-task design (WholeGrasp-single). In the following,
we provide detailed experimental setup of these two experiments.

– GrabNet-SMPLX. GrabNet proposed to synthesize diverse hand grasps
by directly learning the hand model parameters. And a similar idea can be
extended to the full-body grasp synthesis by learning the compact SMPL-X
body model parameters, which can include the body global configurations t
and R, the shape parameters β, and the full-body pose θ = [θb, θh, θe]. Fig. S3
(a) shows the schematic architecture of the GrabNet-SMPLX baseline. Dif-
ferent from the original GrabNet, instead of encoding the object shape using
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basic point set features [8], we employ the PointNet++ [9] in the GrabNet-
SMPLX baseline, which is consistent with our WholeGrasp-VAE.

– WholeGrasp-single. As visualized in Fig. S3 (b), we build a single-task
WholeGrasp-VAE, namely WholeGrasp-single, where we only learns the
body markers positions. We employ the same multi-stage optimization algo-
rithm as in GraspPose-Opt to fit SMPL-X body mesh to sampled markers.
Recall that in our GraspPose-Opt, with the predicted body and object con-
tact map, we design a contact loss accordingly (see Eq. 6) to refine the
mutual contacts between the human body and object. However, due to the
lack of contact map prediction in the single-task WholeGrasp-single, we can-
not directly leverage this contact loss term to refine the hand pose. Instead of
simply ignoring the contact refinement loss term in this test-time optimiza-
tion step, we build a strong baseline by pre-defining a fixed hand contact
pattern and designing a heuristic contact loss accordingly. Concretely, we
firstly compute the average contact probability for each hand vertices over
all the GRAB dataset, and we denote this hand contact prior probability
as CH. Heuristically, we encourage those hand vertices that have a high
prior contact probability (greater than 0.7) and also are closed enough to
the object (less than 2cm) to contact with the object, and we formulate this
heuristic contact loss baseline Eh

cont as:

Eh
cont = αh

cont

∑
h∈Vh

B

1(Ch > 0.7)1(d(h,O) < 0.02) ∗ Chd(h,O) (S.3)

where Vh
B and O denote the hand vertices and object point cloud respec-

tively, and d(x,Y) = miny∈Y ||x − y||22. Therefore, the overall optimization
loss for the single-task WholeGrasp-single experiment is given by:

Esingle
opt (Θ) = Efit + Eo

colli + Eh
cont + Eg

cont. (S.4)

where Efit, E
o
colli, E

g
cont have the same formulations as in our GraspPose-

Opt.

B.2 Baselines to MotionFill-VAE

In Sec. 4.2, we compare our method with the convolution autoencoder network
(CNN-AE) in [3], LEMO [12], and RouteNet and PoseNet from Wang et al. [11].
For RouteNet and PoseNet, we remove the scene encoding branch from [11] and
adopt the same route encoding branch and pose encoding branch architecture
design. We use the same body representation as ours in all these experiments.

C Additional Results

C.1 Ablation Study on GraspPose-Opt optimization losses

In Sec. 4.1 and Table 2, we have studied the effectiveness of our proposed
GraspPose-Opt optimization loss design in Eq. 4 for optimizing human-object
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Fig. S3. (a) The schematic architecture of GrabNet-SMPLX baseline. Similar as in
GrabNet, we build a CVAE model to directly generate SMPL-X parameters; (b) The
Schematic pipeline of the WholeGrasp-single baseline, which merely learns positions
information of body markers.

interactions. In Fig. S4, we also present the visualization results of optimized
hand poses using different loss designs to show the effects of our proposed loss
terms. Since the hand pose can be highly sensitive to even tiny noises in mark-
ers positions, using only the basic markers fitting loss and foot ground contact
loss, the recovered hand pose from markers can hardly interact with the object
in a perceptually realistic way (see visualization result in Fig. S4 (a)). While
the object collision loss Ecolli helps to mitigate the hand-object interpenetration
issue (Fig. S4 (b)), the optimized hand does not grasp the object steadily. Us-
ing our mutual human-object contact loss Eo

cont, the object surface areas with
higher contact probability attract hand vertices, and we can yield realistic and
plausible hand-object interaction (see visualization result in Fig. S4 (c)).

(a) (b) (c) 

Fig. S4. Visualization results of ablation study on the GraspPose-Opt optimization loss
design in Table 2. We present the optimized hand poses using different loss designs,
and the red areas on the object surface indicate higher contact probability.

C.2 Additional Visualizations and Results on MotionFill-VAE

In Table 3, we have shown the quantitative results of our method compared with
other state-of-the-art methods. In Fig. S5, we qualitatively present the diversity
of the motions generated by our model which is finetuned on GRAB dataset [10].
The figure shows that our method can generate diverse trajectories as well as
diverse local motions.

Limited by the short sequence length in the GRAB dataset, we only conduct
the two-second motion infilling experiments with our MotionFill-VAE. Beyond
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Fig. S5. Visualization on generated diverse motion sequences. (a) Three motion se-
quences on three different trajectories generated by TrajFill-CVAE, respectively. (b)
Three motion sequences generated on the same ground truth trajectory. Different colors
(red, green, blue) represent different motion sequences in each sub-figure. The diverse
intermediate frames show the stochasticity of our TrajFill-CVAE and LocalMotionFill-
CVAE.

generating two-second motion sequences given the starting pose and the ending
pose, we show that our motion infilling model can be easily generalized to longer
time lengths. Given the starting pose, ending pose, we train our MotionFill-VAE
on AMASS dataset with 2s, 4s, 6s clips, respectively. In Fig. S6, we present the
infilled motion sequences of 2 seconds, 4 seconds, and 6 seconds. The visualization
results show that our motion infilling model is able to generate motions with
different time lengths.

D Limitations

Although our method can generate realistic grasping poses and grasping motions
for most of the unseen objects in our test set, we observe some failure cases
where the synthesized human fails to grasp the object in a realistic way. We
have the similar observation as mentioned in GrabNet [10], the frying pan is the
most challenging object to grasp. As visualized in Fig. S7, though the generated
humans are in contact with the pan, they typically fail to grasp the pan handle,
resulting in perceptually unrealistic results and low perceptual score in Table S1.
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Fig. S6. Visualization on generated motion sequences with different time lengths (2s,
4s, 6s). (a) 2-second motion sequences. (b) 4-second motion sequences. (c) 6-second
motion sequences. We train these three MotionFill-VAE models using training data
with different time lengths on AMASS dataset [6]. The visualization results show that
our motion infilling model can be easily generalized to different time horizons.

Fig. S7. Grasping pose random samples for grasping the frying pan. Generating real-
istic grasping poses for frying pan pan is challenging. Although the generated humans
are still in contact with the pan, they typically fails to grasp the handle of the pan,
resulting in perceptually unrealistic results.
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