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Abstract. Object pose transformation is a challenging task. Yet, most
existing pose transformation networks only focus on synthesizing hu-
mans. These methods either rely on the keypoints information or rely
on the manual annotations of the paired target pose images for training.
However, collecting such paired data is laboring and the cue of keypoints
is inapplicable to general objects. In this paper, we address a problem
of novel general object pose transformation from unpaired data. Given
a source image of an object that provides appearance information and
a desired pose image as reference in the absence of paired examples, we
produce a depiction of the object in that specified pose, retaining the
appearance of both the object and background. Specifically, to preserve
the source information, we propose an adversarial network with Spatial-
Structural (SS) block and Texture-Style-Color (TSC) block after the
correlation matching module that facilitates the output to be semanti-
cally corresponding to the target pose image while contextually related
to the source image. In addition, we can extend our network to complete
multi-object and cross-category pose transformation. Extensive exper-
iments demonstrate the effectiveness of our method which can create
more realistic images when compared to those of recent approaches in
terms of image quality. Moreover, we show the practicality of our method
for several applications.

Keywords: Pose Transformation, Adversarial network, Semantically,
Contextually

1 Introduction

Image-to-image translation tasks include image colorization [4], image super-
resolution [20,64], style transfer [13], domain adaptation [35] and pose transfor-
mation [31,51], etc. Among them, we are interested in pose transformation, which
has huge potential applications in re-enactment, character animation, movie or
game making and so on. However, most recent approaches [2,32,23] merely ex-
plore human pose transformation, and such methods require abundant keypoints
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Fig. 1. Illustrative examples of different general objects pose transformation.
Given the desired pose image (1st row) and the appearance image (2nd row) in the
absence of paired examples, we produce the output image (3rd row) in that pose and
retain the appearance of object and background. We can obtain high-quality images
and apply the network to different object posture modalities. The generated samples
are not cherry-picked, more samples are provided in supplementary material.

information [5,55] or paired data, e.g., they collect the same person of different
target poses for training. With these in mind, we argue that the previous works
suffer from some limitations: (1) In addition to human, some other general
objects should also be able to conduct pose transformation, which is helpful for
wider applications. (2) As for the general objects, such human keypoints [5] and
body mesh [15] information will not be suitable. (3) In real life, it is difficult
for us to collect different postures of the same object, which is laborious and
time-costly.

To address the issues mentioned above, we propose a Unified Framework for
general Object Pose Transformation with unpaired data, termed as UFO-PT.
As shown in Fig 1, given the unpaired images that provide pose and appearance
information, respectively, we can yield the output images in that pose while
keeping the appearance of objects and background unchanged. Our method can
be applied not only to human body pose transformation, but also to non-rigid
objects such as mammals (i.e., cow, sheep, horse, etc.) and birds, and even rigid
objects such as vehicles.

In this paper, we propose a network which comprises four sub-blocks as shown
in Fig 2: (1) The correlation matching block is introduced to align the unpaired
images and warp the appearance image into the target pose. Specifically, we
estimate two types of warpings inspired by [66] in different level: (i) Dense warp-
ing. (ii) Thin Plate Spline (TPS) warping [59]. The former has a high degree of
freedom, which can be utilized to map pixels to be well-aligned with the target
pose. While the latter roughly transfers the images into the desired pose but
with well-preserved details, which can be utilized to retain the appearance infor-
mation. (2) The Spatial-Structural (SS) block employs the information from the
output of dense warping in the form of spatially-variant de-normalization [43]
to progressively inject the spatial details to the generated network. (3) The
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Texture-Style-Color (TSC) block employs the information from the output of
TPS warping to preserve the appearance details when synthesizing the results.
(4) The generating block is responsible to combine the transformed foreground
object and background to produce the output, which is semantically aligned
to the target pose image while contextually related to the source appearance
image. Moreover, our proposed method can be applied to some practical appli-
cations such as data augmentation and video imitation. Our contribution can be
summarized as follows:

– We address the problem of general object pose transformation and propose
a unified framework with unpaired data, which to our best knowledge, has
not been well explored.

– With the proposed four sub-blocks in the network, we can generate more
realistic transformed images in the desired pose preserving the original ap-
pearance and background compared to recent methods.

– Quantitative comparisons against several prior methods demonstrate the
superiority of our approach, which can also be applied to several practical
applications.

2 Related Work

Pose-Guided Human Image Generation: Skeletal pose cues [5,54,53] pro-
vide strong information and most previous methods are based on conditioned
generative adversarial networks (CGAN) [34]. Ma et al. [31] generates human
images conditioned on pose utilizing a two-stage network. Siarohin et al. [51]
introduces deformable skip connections to spatially transform the features. Si
et al. [49] proposes a multistage adversarial loss and separately generates the
foreground and background. Zhu et al. [71] designs a progressive pose-attention
transfer block to avoid the issues of capturing the complex structure of the global
manifold. Some other works like [2,32,49,38,50] all combine target image along
with source pose (2D keypoints) as inputs or use video optical flow [7] informa-
tion to generate images by GANs. Liu et al. [23] later suggests to use SMPL [27]
to disentangle the pose and shape, which can help to promote the transformed
results. However, the above mentioned methods only focus on synthesizing hu-
mans, and they require paired data and keypoints information for training. It
is difficult to collect such data and they fail to conduct general objects pose
transformation, which will weaken their practicality. These shortcomings might
limit their wide applications.

View Synthesis: View synthesis is a task in computer vision in which unseen
camera views or poses of objects are synthesized given a prior image. Most view
synthesis work has focused on simple rigid objects such as cars [14,19,42,44,69].
These methods rely on camera viewpoints and underlying 3D models. Recently,
HoloGan [41], Graf [47] and π-GAN [6] propose to correctly inject 3D priors into
the GAN framework to transform the 3D pose of 2D objects, while our proposed
technique in this paper treats the problem as a 2D one and attempts to replace
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Fig. 2. The Overview of the UFO-PT architecture. For simplicity, we take
“horse” as an example for input. Given the unpaired images Ia and Ip providing ap-
pearance and pose information, the matching block first aligns them and establishes
the two types of warpings. Then, the generating block yield the transformed output
Io based on the different injected warped intermediates from SS block and TSC block,
respectively.

pixels of one object with another one. Lv et al. [29] later addresses the problem
of novel view synthesis for vehicles without exploiting additional 3D details but
using stack hourglass [39] to obtain keypoint polygon. Likewise, some of these
methods depend on the paired target pose data for training and the objects they
work with are relatively easy and have a simple background.

Example-Guided Image Synthesis: Recently, a few works [30,3] propose
to synthesize photorealistic images from semantic layout under the guidance of
exemplars. Wang et al. [60] and Zhang et al. [68] both can readily be applied
to human pose transformation that semantically consistent to the label maps.
However, these methods require to constitute style consistency image pairs or
generate images from abstract semantic label maps such as pixel-wise segmen-
tation maps or sparse landmarks, which makes it unsuitable for general image
translation and it is difficult to obtain instance-level labels.

Content-Style Image Translation: Unpaired image-to-image translation
aims to map an image from a source domain to a target domain. Such meth-
ods as [17,70,16] encourage the translated domain to be faithfully reconstructed
when mapping back to the original domain with cycle loss. Lorenz et al. [28] pro-
poses an part-based disentangling method for object shape and TransGaGa [65]
introduces geometry-aware technique for image translation. However, they either
focus on human animation or object faces. More recently, Liu et al. [21] and Saito
et al. [46] introduce more powerful methods to preserve the structure of the in-
put image while emulating the appearance of the unseen domain. However, these
methods fail to delicately control the output since this content-style translation
will break the global information of the image in the pose transformation task.
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3 Method

Correspondence Matching Block. To synthesize the transfer results, one of
the main challenges is to establish the correlation between the input Ia and Ip.
Inspired by [59] in the Virtual Try-on field, a good practice to facilitate the
generation is to utilize warping methods to align the appearance image with
the target pose image first before feeding them into the generating network.
However, we just want to warp the foreground objects to preserve the local style
but retain the global background details.

To this end, as shown in Fig 2, we first adopt an off-the-shelf unsupervised
salient object detection network [40] to obtain the mask Ma and Mp. Then, we
employ two separate feature extractors FA and FB to extract high-level features
fa and fp of Ia and Mp, where fa = FA(Ia, θa) and fp = FB(Mp, θp). The merit
of this is that when conducting warping, it only pays attention to the foreground
objects and will not be interfered by the background. After that, we estimate
the correspondence matrices Cdense ∈ RHW

4 ×HW
4 using a sliding kennel size =

1, stride = 1 and padding = 0, while Ctps ∈ RHW
16 ×HW

16 by utilizing a sliding
kennel size = 4, stride = 4 and padding = 0 for spatial reduction, where H and
W indicate the spatial size of the original input image.

As for dense correspondence warping, we propose to match the features of
fa and fp by using cosine similarity as follows:

Cdense =
(fa − µa)

T (fp − µp)

||fa − µa||||fp − µp||
, (1)

where µa and µp represent the mean vectors. We then calculate the weighted
average to estimate the dense correspondence warping in the form as [68]:

Wa =
∑

Softmax(αCdense · Ia,dim = 1), (2)

where α is a hyper-parameter that controls the sharpness of the softmax function.
To force the network to learn a reasonable dense semantic warping, we introduce
a geometric loss as follows:

Lgeo = ||Ip −Wa||1. (3)

Although dense warping is capable to handle high degree of geometric changes,
it fails to preserve the detailed style and texture information. To tackle this draw-
back, we further involve TPS warping, which can roughly transform the objects
but with little information loss.

As for TPS warping, after obtaining Ctps matrix like Cdense, then we employ
a regression net [59] to predict the corresponding control points and calculate
the flow parameters T . Concretely, we use the following loss to restrict the trans-
formation flow:

Ltps = ||BS(Ia, T )− Ip||1 + Lcst, (4)
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where BS indicates the bilinear sampler operation. Lcst is a constraint loss [67]
that restricts the warp distance and amplitude to prevent the internal patterns
from losing natural information.

SS and TSC Block. (i) SS block utilizes the information from the output
of the dense warping. Specifically, we employ the spatially-adaptive denormaliza-
tion block [43] to project the spatially variant style to different activation decoder
layers in the generating network as shown in Fig 2. Formally, let F i ∈ Rh×w de-
note the activations of the i-th layer of a deep convolutional network, we inject
the dense warping information as follows:

F̂ i = γiWa ×
F i − µi

σi
+ βiWa, (5)

where σi =
√

1
nhw

∑
((F i)2 − (µi)2) and µi = 1

nhw

∑
F i, where n is batch sam-

ple number. We implement the functions γi and βi by using a simple two-layer
convolutional network. (ii) TSC block employs the information from the output
of TPS warping and project the appearance details to different activation en-
coder layers in the generating network. Formally, let Xi denote the activations of
the i-th layer of the network, we inject the TPS warping information as follows:

X̂i = φi(BS(Ia, T )) +Xi, (6)

where we use a simple plain convolutional layer to obtain φi.
Generating Block. For GFg, we combine Wa and Mp as input. For GBg,

we take Ba = Ia ⊗ (1 − Ma) as input, and they do not share parameters. The
final output can be obtained as: Io = Fg⊗Mp+Bg. More details about network
architectures are provided in supplementary material.

End-to-end Training. To encourage the training of different blocks benefit
from each other, we train our model in a joint style, and we combine several
different losses to produce high-quality transferred output images:

Perceptual-Loss: the final output should be semantically consistent with the
desired pose image, we then minimize the semantic discrepancy between them
as follow:

Lperc = ||ϕl(Io)− ϕl(Ip)||2, (7)

where ϕl are the activation after relu4 2 layer in the VGG-19 network.
Contextual-Loss: To encourage our network to preserve more details from

source appearance image, we employ the loss proposed in [33] as follow:

Lcont =
∑
l

ζl[−log(
1

nl

∑
i

max
j

Al(ϕl(Io), ϕl(Ia)))], (8)

where i and j index the feature map of layer ϕl that contains nl features, and
ζl controls the relative importance of different layers. Al denotes the pairwise
affinities between features. We use relu2 2 up to relu5 2 layers for ϕl.

Style-Loss: In order to obtain the more realistic output, we penalize the
statistic error between high-level features as follow:
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Lstyle =
∑
l

||Gl(Io)−Gl(Ia)||2, (9)

where Gl denotes the Gram matrix estimated from ϕl form relu2 2 to relu4 2.
Self-Loss: To fully utilize the data under self-supervision, we construct pseudo

paired data by apply random geometry transformations to Ia to obtain its desired
pose image I ′a. In this way, the output Io should be the same as I ′o, we then
penalize the loss as follow:

Lself =
∑
l

||ϕl(Io)− ϕl(I
′
a)||1, (10)

where ϕl denotes the activation of layer form relu2 2 to relu5 2.
Regularization-Loss: In the matching block, since we align the image and

mask from two domains, we here apply a L1 regularization to encourage them
to be closer as follow:

Lreg = ||fa − fp||1. (11)

Adversarial-Loss: To force the generator to generate realistic images, we de-
ploy a discriminator like in [61] to discriminate the generated fake images. The
adversarial objectives of D and G are respectively formulated as follow:

LD
adv = −E[(D(Ia))]− E[−D(G(Ia, Ip))],

LG
adv = −E[D(G(Ia, Ip))].

(12)

Finally, we optimize the total loss as follow:

Ltotal = λ1Lgeo + λ2Ltps + λ3Lperc + λ4Lcont

+ λ5Lstyle + λ6Lself + λ7Lreg + λ8Ladv,
(13)

where λ1 ∼ λ8 are hyper-parameters controlling the weights to balance the ob-
jectives.

4 Experiment

Implementation. We adopt Adam [18] with β1 = 0.1, β2 = 0.999 as the opti-
mizer in our all experiments using PyTorch library. Our model is jointly trained
for 200 epochs with input-size = 256×256. we set the learning rates to 0.0001
and 0.0004 respectively, for the generator and discriminator. We set α = 100,
λ1 = λ2 = 1, λ3 = 0.1, λ4, λ6 = 1, λ5 = 0.01, λ7, λ8 = 10. Let CkiSj denote a con-
volution layer with kernel size of i and a stride of j, followed by InstanceNorm2d
Normalization [57] and ReLu activation function [36]. Let ResBlock denote the
Residual Block structure proposed by [10], in which the BatchNorm2d Normal-
ization is replaced by InstanceNorm2d Normalization [57]. Similar to [68], the
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Fig. 3. Visual comparisons of our ablation methods.

Methods
Human Mammals Birds Cars

mFID ↓ mSSIM ↑ mFID ↓ mSSIM ↑ mFID ↓ mSSIM ↑ mFID ↓ mSSIM ↑

w/o Lperc 63.1 0.255 68.4 0.193 57.6 0.211 71.4 0.132
w/o Lcont 52.8 0.406 58.5 0.394 49.2 0.301 62.2 0.267
w/o Lself 40.6 0.601 36.6 0.521 30.7 0.528 43.1 0.452
w/o Lreg 38.8 0.649 35.0 0.533 29.5 0.538 41.6 0.464
w/o Tps 38.9 0.645 35.0 0.547 29.3 0.527 41.6 0.459

w/o Dense Warp 38.7 0.651 34.8 0.554 28.9 0.539 41.3 0.464
w/o Lstyle 39.1 0.635 35.2 0.523 29.8 0.517 41.9 0.448

TPS (TSC) ↔ Dense Warp (SS) 38.2 0.655 34.3 0.543 29.1 0.542 41.3 0.468

Ours (full) 37.6 0.676 33.9 0.576 28.3 0.571 40.8 0.491

Table 1. Exploration of different components of our method. ↔ denotes the position
change of SS and TSC blocks where they inject to.

two separate feature extractors FA and FB share the same structure but without
sharing weight in the form of {Ck3S1

, Ck4S2
, Ck3S1

, Ck4S2
, Ck3S1

,ResBlock ∗ 3},
which will output two different features. Note that we perform different Ck1S1

and Ck4S4 operations to estimate the Cdense and Ctps, and thus these two matri-
ces are in different shapes. Let L denote a linear function output m dimensions.
As for the TPS warping regression network, we follow [59] and adopt the struc-
ture in the form of {Ck4S2

, Ck4S2
, Ck3S1

, Ck3S1
, L18}. The foreground generator

is in a encoder-decoder like network and the background generator network can
be in arbitrary Unet [37] structure for reconstruction. More network architecture
can be referred to supplementary material.

Datasets. We evaluate our method on several challenging datasets that con-
tain large variations in terms of pose and category. Specifically, to illustrate that
our framework can conduct pose transformation for general objects, we bench-
mark our method using four datasets: (i) Human: We perform training on the
DeepFashion dataset provided by [26]. Note that we do not use the skeleton
information and the ground-truth targeted pose images for training. (ii) Mam-
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mals: We collect 5 classes of animals images including horse, cow, sheep, dog and
lion from ImageNet [45] and WebDataset [48]. We then combine them to build
the Mammals dataset. In total, it consists of ∼5k images, and we split them into
training/testing set at the ratio of 8:2 on each subject separately. (iii) Birds: We
use the Caltech-UCSD Birds-200-2011 [58] as our Birds dataset. We follow the
setting as the original list for training and testing. (iv) Cars: We use VeRi [25]
dataset as our Cars dataset which contains many categories with diverse poses,
and we strictly follow the training and testing set as in the original paper.

Evaluation metrics. We use the mean Fréchet Inception Score (mFID) [11]
and mean Structural Similarity (mSSIM) [63] to measure the distance between
the distributions of transferred synthesized images and original real images. We
also conduct a user study to compute user preference (UP) scores on the transla-
tion results. Specifically, given 30 images from each method randomly, we inter-
viewed 1,00 participants and asked them to rate their favorite works. Note that
the participants are unaware of the specific algorithm that produce the trans-
ferred images, and we finally report the proportion of the results they prefer.

4.1 Ablation Studies.

Table 1 reports all the results of our ablation experiments. Specifically, in four
datasets, our full model outperforms others by different degrees. It shows that
removing some kinds of blocks and loss functions, it will make the network learn
less detailed appearance or spatial information. In addition, changing SS and
TSC position can not yield better results. We conjecture that the encoder can
retain the underlying appearance information, while the decoder is responsi-
ble for incorporating the high-semantic spatial transformation information. We
further visualize some examples and make qualitative comparison, as shown in
Fig 3. We show three cases including cow, sheep and horse, and we define them
as hard, medium, easy examples according to their pose and appearance diffi-
culties. w/o Lstyle and w/o Tps will cause the network to miss some detailed
appearance information such as textures, style and colour, i.e., the skin of cow,
which makes the output results less realistic. Besides, although the visual per-
formance of w/o Dense warp is close to the full model due to the powerful loss
functions driven, it fails to achieve the satisfactory results in terms of mFID and
mSSIM metrics.

4.2 Qualitative comparison.

Since general object pose transformation has not been extensively studied, there-
fore, we re-implement and compare with some existing generative models which
can be applied to our task. Specifically, for Mammals and Birds datasets, we
compare our method with CoCosNet [68], FUNIT [21] and COCO-FUNIT [46],
where the former one aims to synthesize realistic images given the examplar im-
ages while the latter two focus on style-content translation. They both can be
readily applied to our tasks, and we retrain the methods with the same training
set as ours to keep the fairness. For Human dataset, we use the state-of-the-art
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Fig. 4. Qualitative comparison of different methods on Mammals and Birds dataset.
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Fig. 5. Qualitative comparison of different methods on Human and Cars datasets.

method Liquid-GAN [23] and Liquid++ [24] for comparisons. For Cars dataset,
we compare our method with PAGM [29] and HoloGan [41], which can be ap-
plied to car view-synthesis. Note that all the re-implement results are produced
by using the open-source code.

As shown in Fig 4, it shows that our model synthesizes more convincing
results with well-preserved characteristics of objects. To be specific, Although
CoCosNet [68] yields the transferred outputs, it fails to preserve the same ap-
pearance details from the source images. For instance, the output “horse” should
be in brown body and with a little white on head rather than in the whole black
body. Moreover, it can not fix the original background information, making the
output images unsatisfactory. Likewise, FUNIT [21] and COCO-FUNIT [46] also
fail to predict high-quality results since it transfers the style from one image to
another globally, which will also break the background information. As for the
foreground object characteristics, it cannot well deal with the issue of retaining
the content from the source appearance images. Compared to these methods, our
proposed method can successfully yield the output in the desired pose retaining
the appearance of both objects and background due to the proposed sub-blocks
and loss functions. Table 2 shows the detailed quantitative metrics comparison
between these methods, among which, our method outperform them by a large
margin and achieve the top user preference.



General Object Pose Transformation Network from Unpaired Data 11

Methods
Mammals Birds

mFID ↓ mSSIM ↑ UP ↑ mFID ↓ mSSIM ↑ UP ↑

FUNIT [21] 78.5 0.138 4% 80.4 0.182 3%
COCO-FUNIT [46] 70.7 0.141 7% 78.8 0.186 4%

CoCosNet [68] 81.6 0.156 6% 64.5 0.211 6%

Ours 33.9 0.576 83% 28.3 0.571 87%

Table 2. Quantitative comparisons of our method with other methods on Mammals
and Birds dataset.

Methods
Human Cars

mFID ↓ mSSIM ↑ UP ↑ mFID ↓ mSSIM ↑ UP ↑

Liquid [23] 44.6 0.559 20% - - -
Liquid++ [24] 41.4 0.567 30% - - -
HoloGan [41] - - - 51.8 0.251 18%
PAGM [29] - - - 46.7 0.284 28%

Ours 37.6 0.676 50% 40.8 0.491 54%

Table 3. Quantitative comparisons of our method with other methods on Human and
Cars dataset.

For Human dataset, Fig 5 (left) shows that our method can produce more
reasonable results. Note that our method is a generic general object pose trans-
formation framework but not specially designed for human. In other words, we
do not employ Face-Loss [22] and some keypoints or body mesh [27] information
to train our network as in [23,24]. Therefore, the transferred output images we
yield are acceptable and make it convenient to conduct human pose transforma-
tion without using auxiliary information. More quantitative comparisons can be
seen in Table 3.

For Cars dataset, our method outperforms the recent state-of-the-art PAGM [29]
and HoloGan [41] as shown in Table 3. More specifically, Fig 5 (right) shows us
some examples that the previous methods fail to retain the color of the car (up-
per) or abortively transfer the view of the vehicle (bottom). As for our proposed
framework, we successfully synthesize the new view of vehicle given the unpaired
data, which illustrates the effectiveness of our approach.

4.3 Multi-object Pose Transformation.

To further illustrate the generality of our framework, we conduct experiments
and visualize some multi-object examples. As shown in Fig 6 (left), given the
same number of objects in appearance and desired pose images, we can transfer
all the objects in the same pose, which broadens the usefulness of our frame-
work. It’s worth mentioning that we do not advocate transferring images with
mismatched number of objects between appearance and pose images. This is
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Fig. 6. Qualitative results of multi-object pose transformation and cross-category ob-
ject pose transformation.

Network CAM Pseudo-Masks Seg. Masks (val) Seg. Masks (test)

IRNet [1] 48.3 65.9 63.5 64.8
+DA 49.6+1.3 66.8+0.9 64.6+1.1 65.8+1.0

SEAM [62] 55.4 63.4 64.5 65.7
+DA 56.4+1.0 64.4+1.1 65.7+1.2 66.5+0.8

Table 4. Different baselines performance with data augmentation by our framework
in mIoU on PASCAL VOC dataset. +DA denotes conducting data augmentation.

because asymmetrical quantities will lead to ambiguity in object pose transfor-
mation.

4.4 Cross-category Pose Transformation.

Under some extreme circumstances, some species often have only a few images,
and it is difficult to construct unpaired pairs. Take “horse” as an example, in real
life, we may only observe the standing horses, and there is no other reference
data. However, there are many other similar animals in nature, such as cow
and sheep, which they all have limbs. Based on cross-category observations, we
humans have the ability to imitate “horse” to an unknown posture based on
references from other categories. With this in mind, we conduct experiments
on cross-category pose transformation. As shown in Fig 6 (right), our proposed
method can address this issue and produce reasonable images, which will not miss
the original appearance details. This finding will encourage wider applications
in the future.

4.5 Applications.

Data Augmentation. In the weakly supervised semantic segmentation (WSSS)
task [1,56], it aims to leverage the class-activation-maps [52] to find out the ob-



General Object Pose Transformation Network from Unpaired Data 13

Frame 10 Frame 20 Frame 30 Frame 40 Frame 50 Frame 60 Frame 70 Frame 80

Fig. 7. Illustrative examples of objects video imitation. The reference pose videos are
sampled from Got-10k [12] dataset. For more examples, please refer to supplemental
material.

jects’ potential regions and yield the pseudo masks with only class-level labels.
In order to improve the class-activation-maps, object diversity is of great signif-
icance in weakly supervised semantic segmentation. In this setup, our goal is to
expand the object images in different poses so as to provide more realistic im-
ages for training. We here choose IRNet [1] and SEAM [62] as baseline models
to conduct experiments on PASCAL VOC dataset [8] to verify the quality of
the images we produce. Note that we train our UFO-PT using PASCAL VOC
dataset without extra data. Specifically, we produce more training images in
different poses by our method, including “horse”, “cow”, “sheep”, “dog”, “cat”,
“person” and “vehicle”. Table 4 shows that compared to the baseline model, our
method can help both the baselines boost the performance, which demonstrates
the practicality of our method.

Video Imitation. Moreover, we can apply our method to video imitation. As
shown in Fig 7, given a static image providing appearance and a dynamic sequen-
tial video, we can yield an unseen video of that object. This intriguing study has
a wide range of applications, which can synthesize more action videos of objects
to reduce the burden of collecting data artificially.

4.6 Failure Case.

While our approach effectively addresses the general object pose transformation
problem, it still has several failure modes. Fig 8 illustrates some failure cases
generated by our method. When the body part of the image is hard to localize,
the model generates unsatisfactory results. However, this is a common problem
in deep learning, such as object occlusions and pose extraction of hard examples.
We will try to alleviate this issue in future work to further improve our method.
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Fig. 8. Failure cases visualization.

5 More-In-Depth Discussion.

This paper pushes the frontier of the general object pose transformation that is
beneficial to many applications in computer vision tasks. The final generation
might be upper-bounded by the quality of the saliency mask, however, most
of the previous works also adopt off-the-shelf methods like Densepose [9] or
SMPL [27] to segment out the object for transformation. Segmenting out the
foreground is not the main focus of our method. We take the early step to
conduct general pose transformation, and we use the unsupervised saliency to
highlight the foreground objects and conduct warping and generating images,
which is acceptable.

6 Conclusion

Unlike the previous works that only focus on whether humans or some mammals
in isolation, we introduce a unified framework for general object pose transfor-
mation with unpaired data. We propose to align and match two input images
semantically using SS block and TSC block to inject spatial and detailed style in-
formation into the generating block. Experiments on different datasets show the
superiority of our approach. Moreover, we can apply our framework to several
applications such as data augmentation and video imitation, which can further
show its practicality.
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