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In the supplementary, we first provide method details, including architecture
illustrations, training losses, and compositional body generation in Sec. A. We
then elaborate on experiment details in Sec. B. In Sec. C, we present ablation
studies on different body representations and the two-stage generation frame-
work. In Sec. D, we show more qualitative results and discuss typical failure
cases and limitations.

A Method Details

A.1 Architecture Details

PelvisVAE. We illustrate the detailed architecture of PelvisVAE in Fig. S1.
The PelvisVAE encoder and decoder use a stack of 2 transformer layers with an
embedding dimension of 64. PelvisVAE represents a human as a pelvis frame of
location and orientation. At the decoder, PelvisVAE takes a zero vector as the
body token.

PointNet++. We train a PointNet++ [12] network to extract sparse key points
from point clouds, which reduces the number of object nodes to a suitable level
for transformers. We show the architecture of the PointNet++ object encoder
in Fig. S2. The PointNet++ module comprises two set abstraction layers to
extract 256 key points for each object. The output points features are projected
to vectors of dimension 128 for BodyVAE and dimension 64 for PelvisVAE using
a linear layer.

SMPL-X Regressor We train a multi-layer perceptron (MLP) to regress
SMPL-X parameters from body meshes as shown in Fig. S3. The MLP has six lin-
ear layers, and we employ residual connections. The MLP outputs the SMPL-X
body poses using the 6D continuous representation [18], body shape parameters,
and the first six hand pose PCA components for each hand. Following [8], We
detach the gradients of the reconstructed body from the computational graph
and use the concatenation of the reconstructed body and a template T-pose
body as inputs to the MLP.
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Fig. S1: Detailed architecture of PelvisVAE.
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Fig. S2: The architecture of the PointNet++ object encoder, where D denotes
the embedding dimension used by transformers.

A.2 Training Loss

Our BodyVAE is trained to minimize the Lbody loss:

Lbody = Linteraction + Lmesh + Lfeature + LKL + Lregress, (1)

where the terms represent the interaction loss, body mesh reconstruction loss,
contact feature reconstruction loss, the Kullback-Leibler divergence, and the
SMPL-X regression loss. Weights for each term are omitted for simplicity. The
term Linteraction encourages the vertices with predicted positive contact feature
to have zero distance to the input objects:

Linteraction =

655∑
i=1

ĉi · min
vo∈Vo

||v̂i − vo||2, (2)

where ĉi and v̂i denote the predicted contact feature and location of body vertex

i respectively, and Vo =
M⋃
i=1

oi denotes the set of all points of input interaction

objects.
The body mesh reconstruction loss consists of the vertex coordinate loss

Lvertex, the surface normal loss Lnormal, the edge length loss Ledge following



Compositional Human-Scene Interaction Synthesis with Semantic Control 3

Li
ne
ar

Li
ne
ar

Li
ne
ar

Li
ne
ar

Li
ne
ar

Li
ne
ar

1024 1024 1024 1543930 1024

B
od
y

SM
PL

-X

1024

Fig. S3: The architecture of the SMPL-X regressor.

[4, 13], and the normal consistency loss Lconsistency that regularizes the normal
of adjacent faces to change smoothly, which helps in particular with details of
the hands. The loss terms are defined by:

Lmesh = Lvertex + Lnormal + Ledge + Lconsistency. (3)

Lvertex = ||V̂ − V ||1, (4)

Lnormal =
∑
f∈F

∑
(i,j)∈f

∣∣∣∣∣⟨nf ,
v̂i − v̂j

||v̂i − v̂j ||2
⟩

∣∣∣∣∣ , (5)

Ledge =
∑
f∈F

∑
(i,j)∈f

∣∣∣∣∣1− ||v̂i − v̂j ||2
||vi − vj ||2

∣∣∣∣∣ , (6)

Lconsistency =
∑

fi,fj∈F,fi∩fj ̸=∅

1− ⟨n̂fi , n̂fj ⟩, (7)

where V , F denote the vertices and faces of input body mesh, nf denotes the

normal of triangle f ∈ F and (̂·) denotes the corresponding reconstructions.
The contact feature reconstruction loss is calculated as the binary cross-

entropy loss (BCE) between reconstructed Ĉ and ground truth C contact fea-
tures:

Lfeature = BCE(Ĉ, C). (8)

We use the robust Kullback-Leibler divergence (KL) [15, 16] to avoid posterior
collapse:

LKL = Ψ(KL(q(z|I)||N (0, I))), (9)

where Ψ is the Charbonnier function [2] Ψ(s) =
√
1 + s2 − 1. The SMPL-X

parameter regression loss Lregress comprises parameter error and vertex error:

Lregress = ||θ − θ̂||2 + |M(θ)−M(θ̂)|, (10)
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where θ and θ̂ are GT and predicted SMPL-X body parameters respectively, and
M denotes the SMPL-X model mapping parameters to mesh vertices.

The PelvisVAE is trained with the following losses:

Lpelvis = Ltransl + Lorient + LKL, (11)

where Ltransl and Lorient denote the reconstruction loss of pelvis joint location
and orientation, and LKL is the robust Kullback-Leibler divergence loss from
Eq. (9).

A.3 Interaction-Based Optimization.

We use the sampled SMPL-X parameters as initialization and optimize body
translation t, global orientation R and pose θ. The optimization objective is
given by:

E(t, R, θ) = Linteraction + Lcoll + Lreg, (12)

The interaction term Linteraction is defined in Eq. (2). The scene collision term

is defined as Lcoll =
∑655

i=1 Ψ(v
i), with Ψ(vi) denoting the signed distance of

vertex i to the scene. For computational efficiency, we use a precomputed SDF
grid for each scene and use interpolation to get SDF value for body vertices. The
regularization term Lreg = |t − tinit| + |R − Rinit| + ||θ − θinit||2 penalizes t, R
and θ deviating from their initialization.

A.4 Implementation Details

Our implementation is based on PyTorch [11]. We use the Adam optimizer [5]
with the learning rate 3e-4 and batch size of 8 for training all models. For
PelvisVAE, we use weights of 3, 1, 1 for {Ltransl,Lorient,LKL}. For Body-
VAE, we use weights of 1, 1, 0.1, 0.2, 0.05 for {Linteraction, Lvertex, Lnormal,
Ledge, Lconsistency}. We use weight 1 for LKL and apply the weight annealing
scheme [1]. For SMPL-X regressor, we use weights of 1 for vertex and body pose
reconstruction and 0.1 for shape parameter and hand PCA components recon-
struction. our contact features used a threshold object distance of 5cm. We use
latent dimensions of 6 and 128 for PelvisVAE and BodyVAE, respectively.

For the interaction-based optimization, we respectively use weights of 1 for
interaction term Linteraction, 32 for collision term Lcoll, 0.1 for translation and
orientation regularization and 32 for pose regularization.

For composite pelvis sampling, we use the Adam optimizer with a learning
rate of 0.1 and 100 optimization steps. We scale the sum of log probability of
latent codes with the weight of 0.05 to balance the influence of pelvis frame
difference and probability.
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B Experiment Details

B.1 Dataset Collection

We extend the PROX-S dataset based on PROX [7], which contains 3D recon-
structions of 12 static scenes and RGB-D recordings of natural human-scene
interactions captured using a Kinect sensor. The pseudo-ground truth body fit-
tings of PROX recordings are estimated using [7, 14]. To obtain object instance
segmentation and interaction semantics, we further process the PROX dataset
to get: (1) 3D instance segmentation in all the PROX scenes and (2) per-frame
interaction semantic labels in the form of action-object pairs.

We first conduct instance segmentation for the 12 scenes based on the scene
semantic annotation provided in the PROX-E [17] dataset. Specifically, we split
the scene into multiple possible over-segmented instances using connected com-
ponents analysis. Then we manually annotate the instances in the scenes. The
instance segmentation results of the 4 test scenes are visualized in Fig. S4.

To obtain interaction semantics, we densely annotated the PROX dataset
using the VIA video annotation tool [6]. The annotators are asked to label all
intervals containing interactions specified by the action-noun pairs. The anno-
tation tool is illustrated in Fig. S5. Note that multiple interaction labels can
exist in a single frame if the human interacts with multiple objects. We further
retrieve interaction object instance ID using the scene segmentation and object
category annotation. When there is more than one object instance of the anno-
tated category in one scene, we assign the object label to the instance with the
closest distance to action-related body parts.

The PROX-S dataset contains around 32K frames of human-scene interac-
tions from 43 sequences recorded in 12 indoor scenes. We follow the dataset split
in [17] to use ‘MPH16’, ‘MPH1Library’, ‘N0SittingBooth’, and ‘N3OpenArea’
as test scenes and the remaining eight scenes for training. The training data
comprises a total of 17 different actions and 42 categories of interactions defined
as action-object pairs. We evaluate interaction synthesis with semantic control
on about 150 different combinations of action and object instances in the four
test scenes.

B.2 Perceptual Study

We conduct binary perceptual studies to evaluate the interaction naturalness
and unary perceptual studies to evaluate the semantic accuracy of the generated
interactions on Amazon Mechanical Turk (AMT). The AMT interfaces of the two
perceptual studies are illustrated in Fig. S6. For the binary perceptual studies,
we uniformly select 160 samples from PROX pseudo ground truth with varying
semantic labels and respectively generate 160 random samples with the same
semantic labels using our method and two baselines. We render each interaction
with two different views and compare out method against the two baselines
and pseudo ground truth. During the study, participants are instructed to select
one sample that they think is more realistic from two samples generated with
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N3OpenArea MPH1Library

MPH16 N0SittingBooth

Fig. S4: Visualization of instance segmentation results in the 4 test scenes. The
objects are colored according to their semantic categories.

different methods. Each comparison task is distributed to three participants for
evaluation.

For the unary perceptual studies, we sample and render one interaction for
the 155 combinations of actions and objects in our test scenes. These interaction
samples are shown to the participants with the interaction semantic labels and
the participants are instructed to rate the semantic accuracy from 1 (strongly
disagree) to 5 (strongly agree).

C Ablation Study

We investigate the influence of body representations and the two-stage genera-
tion design.

We compare three body representations of joint locations (JL), joints loca-
tions and orientations (JLO), and mesh vertices locations (VL) in BodyVAE
by evaluating the semantic contact score of sampled interactions without opti-
mization, and the consistency error between generated body and corresponding
SMPL-X body defined as:

Lbody = |B−M(θ, β)|, (13)

where B denotes the generated body joints (JL and JLO) or vertices loca-
tions(VL), and M(·) denotes the SMPL-X body model that yields body joints
and vertices given body pose θ and shape parameter β. We use the pose and
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Fig. S5: Our annotation tool for annotating interaction semantics. RGB record-
ings and the visualization of SMPL-X fitting are displayed side-by-side. Anno-
tators are instructed to label the intervals containing interactions using action-
noun pairs.

Table 1: Evaluation of body representation choices.
Semantic Contact ↑ Body Consistency (m) ↓

Vertex Location 0.72 0.01
Joint Location 0.71 0.02

Joint Location and Rotation 0.69 0.04

shape parameters predicted by the SMPL-X regressor for JL and VL. We do
not train a regressor for JLO and directly use the input shape parameter of the
template body and the generated joint orientations to pose the SMPL-X body.

Directly generating joint locations with orientations in JLO leads to a lower
semantic contact score of 0.69 and a significantly worse body consistency error
of 0.04m. This is because generating joint locations and orientations together
by networks does not directly yield valid SMPL-X bodies, as the bone lengths
defined by the generated joint locations may not correspond to valid human
skeletons. Regressing joint rotations from joint or vertex locations leads to bet-
ter performance and vertex location representation achieves the best semantic
contact score of 0.72 and body consistency error of 0.01m. Our result indicates
that regressing SMPL-X body parameters from body mesh vertices is easier than
from a skeleton of joints and generates slightly better human-object contact.

To quantify the importance of the two-stage design in interaction generation,
we train two models for one-stage generation which directly predicts the human
body given objects in the original scene coordinate system and re-centered scene
coordinate system, respectively. The re-centered scene coordinate system trans-
lates the origin to the average of interaction object points. The semantic contact
score of interactions generated from the one-stage models using original and re-
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(a) Binary perceptual study

(b) Unary perceptual study

Fig. S6: AMT User interfaces for the perceptual studies.

centered scene coordinates rapidly drops to 0.20 and 0.31 respectively, compared
to 0.72 of the two-stage method. Our result shows that learning to jointly pre-
dict global interaction location, orientation, and body pose is much more difficult
and the two-stage design is necessary for generating interactions with natural
human-scene contact.

D More Qualitative Results

D.1 Retarget Novel Objects.

Our method can naturally retarget learned interactions to unseen objects with
similar geometry and affordance because we use the point cloud object represen-
tation which encodes object shapes, instead of the object category in previous
works. Figure S7 shows some created novel interactions that are not seen in
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“lie on the floor” “walk on the table” “step up the bed” “sit on the monitor”

Fig. S7: Novel combinations of actions and objects generated by our method that
were not part of the training data.

Fig. S8: Interaction synthesis results with explicitly controlled varying human
body shapes, where the extremely thin and heavy bodies are not seen during
training.

training. It demonstrates the generalization capability of our method and the
potential for synthesizing interactions with open-set objects beyond predefined
object categories. Moreover, our method also creates some interesting interac-
tions that are less possible in the real world, e.g., sitting on a monitor.

D.2 Explicit Body Shape Control.

Our method features explicit body shape control in interaction generation, which
is achieved by using personalized body templates. Figure S8 shows interaction
synthesis results where we control the SMPL-X body shape parameters changing
from -3 to 3. Note that the extremely thin and heavy bodies are not seen during
training and our method generalizes to such extreme shapes.

D.3 Random Interaction Samples

We show more random interaction samples from our method in Fig. S9. Our
method generates natural and diverse human-scene interactions.

D.4 Interaction Refinement

We demonstrate how the interaction-based optimization improves human-scene
penetration and contact in Fig. S10.
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D.5 Compositional Interaction Generation

We show composite interactions randomly generated by composing atomic inter-
actions in Fig. S11. Our method is capable of generating composite interactions
without corresponding training data.

D.6 Synthesis in Scenes with Noisy Segmentation

To show the possibility of generating interactions in scenes without ground truth
segmentation using our method, we generate interactions in scenes with noisy
segmentation obtained using off-the-shelf segmentation methods [3,10] where the
object geometry can be incomplete and noisier than the scene segmentation we
use. We show the generation results on noisily segmented PROX test scenes in
Fig. S12. Our method can generate reasonable interactions given noisy objects
as long as the object shape is not significantly different from training objects.

Regarding training with such noisy scene segmentation, we find it demands
prohibitively more effort in collecting interaction semantic annotation with noisy
segmentation and conclude that a clean scene segmentation that is consistent
with human perception is necessary.

D.7 Failure Cases and Limitation

We show typical failure cases of generating interactions from semantic specifica-
tions in Fig. S13 and failure cases of composing atomic interactions in Fig. S14.

Our method has some limitations. Firstly, our generative models currently
ignore scene objects that are not explicitly specified in the input, which can lead
to penetration with unspecified objects. We currently solve such penetration
using post-processing based on pre-computed scene SDF grids. It is possible to
get rid of the demand for scene SDF grid if we use recent human-occupancy
methods [9], and learning obstacle-aware generative models is an interesting
future direction.

Besides, we observe that hand-object contact in generated results of the
touching action are not accurate enough, an issue caused by the low-quality
hand estimation in used pseudo-ground truth data. Using hand-object inter-
action data with high-quality hand estimation can be future work to improve
hand-object contact in synthesis results.

In addition, the action semantics considered in this paper is relatively coarse-
grained due to the limited scale of interaction data in PROX. We do not distin-
guish left and right limbs in annotation due to limited data and can not generate
fine-grained composite semantics such as touching the chair with the left hand
while touching the table with the right hand. Given larger scale interaction data,
we expect to model more expressive interaction semantics and compose actions
corresponding to finer-grained body parts segmentation, e.g., put the left palm
on the table and lean on the right elbow on the table.
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Moreover, we observe our mask-based composition method fails in two cases
as shown in Figure S14: 1) when physically impossible interaction combinations
are specified as input, such as sitting on a cabinet while touching a bed 10 meters
away. 2) when the data distributions of atomic actions have no intersection in
the training data, such as the combination of lying and touching since none of
the touching poses are simultaneously lying in our training data.
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Fig. S9: Randomly sampled interactions from our method. Each interaction is
rendered with two views.
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(a) before (b) after (c) before (d) after

Fig. S10: Illustration of interaction-based optimization where (b) and (d) are the
optimized results of (a) and (c). The human-scene penetration and contact are
improved after the optimization.
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Fig. S11: Randomly sampled composite interaction from our method. Note that
the model is not trained with the corresponding training data.
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touch sit on sit on sit on

Fig. S12: Synthesized interactions in PROX scenes with noisy object instance
segmentation. The noisy interaction objects are highlighted as red.

(a) Penetration (b) Geometry Variance (c) Local Minimum

Fig. S13: Typical failure cases in our results. Example (a) shows penetration
with thin-structure objects where the scene SDF is not effective in resolving
penetration. Example (b) shows the synthesis result of touching a table with
significantly different geometry from tables in training data, i.e., much lower
and smaller in size. Example (c) shows a failure case of being stuck in local
minimum in optimization where the human is blocked by the bed from touching
the wall.



16 K. Zhao et al.

(a) (b)

Fig. S14: Typical failure cases in generating novel interactions by semantic com-
position. Example (a) shows the failed composition of sitting on a cabinet and
touching a bed far away due to being physically impossible. Example (b) shows
the failed composition of lying on the floor and touching the wall.
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