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Abstract. People often interact with their surroundings by applying
pressure with their hands. While hand pressure can be measured by
placing pressure sensors between the hand and the environment, doing
so can alter contact mechanics, interfere with human tactile perception,
require costly sensors, and scale poorly to large environments. We explore
the possibility of using a conventional RGB camera to infer hand pres-
sure, enabling machine perception of hand pressure from uninstrumented
hands and surfaces. The central insight is that the application of pres-
sure by a hand results in informative appearance changes. Hands share
biomechanical properties that result in similar observable phenomena,
such as soft-tissue deformation, blood distribution, hand pose, and cast
shadows. We collected videos of 36 participants with diverse skin tone
applying pressure to an instrumented planar surface. We then trained a
deep model (PressureVisionNet) to infer a pressure image from a single
RGB image. Our model infers pressure for participants outside of the
training data and outperforms baselines. We also show that the output
of our model depends on the appearance of the hand and cast shadows
near contact regions. Overall, our results suggest the appearance of a pre-
viously unobserved human hand can be used to accurately infer applied
pressure. Data, code, and models are available online1.

1 Introduction

Humans often interact with their surroundings by applying pressure with their
hands. Given the importance of hand pressure, methods that enable the machine
perception of this quantity could have broad applications. Traditionally, mea-
suring the pressure a hand exerts has been accomplished with physical sensors
that sit between the hand and contact surface. This includes sensors worn on the
hand, such as pressure-sensitive gloves, and sensors mounted to the environment,
such as arrays of pressure sensors.

While physical sensors are accurate and robust, they have drawbacks. Sen-
sors between the hand and the environment alter surface properties, changing
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Fig. 1. PressureVisionNet takes an RGB image as input and outputs a pressure image
with estimates of pressure applied by the hand to a planar surface. Each pixel of the
pressure image is an estimate of hand pressure for the corresponding pixel in the RGB
image. Black, purple, and yellow represent zero, low, and high pressure.

appearance and interfering with contact mechanics relevant to human manipu-
lation and tactile sensing. Sensors attached to hands can also be uncomfortable.
Sensors mounted to environments require large numbers of sensing elements to
cover modest areas, such tabletops, at high resolution and can be difficult to
apply to varied surfaces.

Cameras have the potential to economically cover surfaces with virtual pres-
sure sensors at high spatial resolution and do so without requiring the application
of cumbersome instrumentation. Much like markerless pose estimation has en-
abled new applications by inferring human kinematics from RGB images, visual
hand pressure estimation has the potential to be widely applied. For example,
modern augmented and virtual reality headsets have cameras that could be used
to perceive hand pressure, turning a wall into a giant touchscreen, or a tabletop
into piano keyboard.

As a first step towards general visual hand pressure estimation, we investigate
the feasibility of estimating hand pressure from RGB images under controlled
conditions. To the best of our knowledge, our work is the first to demonstrate
the feasibility of this approach. In particular, we address two critical questions:
1) Can appearance-based inference estimate hand pressure? 2) Can visual hand
pressure inference generalize to previously unseen hands from a diverse popula-
tion? We use a planar pressure sensing array to measure ground truth pressure
during natural interactions from 36 participants with diverse skin tones.

We developed PressureVisionNet to infer hand pressure from a single RGB
image. PressureVisionNet performed well with unseen participants, providing
evidence that the visual signals used for pressure estimation are shared across
people. Our sensitivity analysis also indicates that PressureVisionNet relies on
the appearance of the hand close to regions of contact, where we expect ap-
plied pressure to most influence hand appearance. Similarly, PressureVisionNet
performs poorly at estimating pressure for visually occluded parts of the hand.
We also provide a demonstration of PressureVisionNet inferring plausible pres-
sure given conditions outside of the training data. Our demonstrations involve a
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No Contact Low Force High Force

Fig. 2. Fingers display visible cues indicative of applied pressure. In the no-contact
case, shadows are diffuse and the finger can be less sharp due to motion blur. As the
finger makes contact, the skin at the fingertip loses color, the distal joint hyperextends,
the texture of the skin changes, and the finger pad expands.

smartphone camera observing an uninstrumented tabletop with ambient office
lighting being contacted by people outside of the training set.

Our central insight is that hands display subtle visual cues that indicate the
presence of pressure. As the hand applies pressure to a surface, the surface applies
equal and opposite pressure to the hand. As such, the hand itself can serve as a
physical probe that changes in predictable ways when pressure is applied to it,
and the camera can observe this probe from a distance to infer the associated
pressure. The shape of the hand can also result in informative shadows cast on
the surface.

Hands are complex, non-rigid appendages with multiple types of soft tissues
and fluids surrounding an interior skeleton that is often modeled as having 27
degrees of freedom. Pressure applied to the hand deforms tissues, moves fluids,
and changes the configuration of the joints. The active application of pressure
also involves contraction of hand muscles and tensile force applied by muscles in
the forearm via tendons. These biomechanical processes result in changes to the
appearance of the hand in visible light, including changes to surface geometry,
color, and texture (Figure 2).

In summary, our paper makes the following contributions:

– We propose a novel task, visual hand pressure estimation.
– We present PressureVisionNet and show that it can infer hand pressure from

a single RGB image and generalize to new people.
– We release PressureVisionDB, a dataset of 36 participants with paired pres-

sure and image data.
– We release our trained models and code.

2 Related Work

Physical Sensors for Force Measurement Sensors to directly measure the
force that a hand exerts generally fall into two categories: sensors on the hand
and sensors on the surface being touched. Gloves instrumented with flexible
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force sensors can directly measure the force that the hand exerts [7,54]. While
sensors on the hand work for a wide range of objects, they can inhibit natural
manipulation, reduce the person’s tactile sensation, and often do not cover the
entire hand. Commercially available systems are also expensive [46,56].

Alternatively, objects can be instrumented to capture force information [2,6,39,45].
While these methods can accurately measure pressure, they change the proper-
ties of the surfaces they cover, can be challenging to mount on curved surfaces,
and scale poorly to larger surfaces.

A variety of fingertip pressure sensors have been developed for robotic grip-
pers. These internal sensors sometimes observe the deformation of a soft exterior
[58,65] or monitor an internal fluid [59].

Inferring Contact and Force from Vision One class of methods uses physics
to infer the contact forces given the contact points and object trajectory. Meth-
ods proposed to determine the contact points include neural networks [17,34]
or by combining markerless tracking of the hands with mesh-object intersec-
tion [44,45,47]. These methods complement our own because they can infer con-
tact that is occluded or out-of-view, but methods that rely on the accelerations
of hand-held objects cannot generalize to interactions with relatively immobile
surfaces like tables.

Additional work studies force application in general human-environment in-
teractions such as sitting and standing [52,68,69]. Clever et al. use depth data
to regress the amount of pressure between a human at rest and a mattress [12].
They use a neural network to estimate the pose of a body on the bed in addition
to pressure.

Predicting Pressure using Hand and Surface Appearance As the hand
applies force, blood in the surrounding tissue is displaced. This effect is visible
at the fingertip and underneath the fingernail, where a whitening of the tissue
can be observed. Various techniques have been proposed to estimate fingertip
force using optical sensors focused on this effect [9,36,37].

The soft tissue in the palm and pads of the fingers deforms under applied
force [43]. This deformation is accompanied by expansion in other areas, often
visible as a widening of the pads of the fingers. Hwang et al. [30] use surface
deformation to infer contact force, but support only unoccluded point contacts.
Johnson et al. [31] use the deformation of the hand to perform a high-resolution
reconstruction of the object surface.

Cast shadows provide important cues in human perception of depth in a
3D scene [26,27,29]. Researchers have used visual observations of shadows for
closed-loop control of a robot [18].

It has additionally been demonstrated that videos of faces can be used to
identify if participants are squeezing an object tightly [1].

Amplifying Imperceptible Visual Cues Various techniques have been pre-
sented to extract subtle cues from images or video which are typically not noticed



PressureVision: Estimating Hand Pressure from a Single RGB Image 5

by the human eye. Wu et al. present Eulerian Video Magnification [60]. They
magnify periodic signals to make them clearly visible, including minute changes
in skin color due to bloodflow. Davis et al. [14] are able to amplify tiny subpixel
vibrations in videos to reconstruct audio from visual data.

Contact for Grasping and Pose Estimation Contact between hands and
objects is important for grasping and manipulation. Estimating where contact
should occur is often a first step for planning a robotic grasp [4,10,50,51] or cre-
ating anthropomorphic animation [32,64,67]. For pose estimation during hand-
object interaction [19,21], using contact to enforce consistency between hands
and objects improves pose plausibility and accuracy [20,22,23,48,57]. In a broader
context, contact is used when reasoning about people interacting with the sur-
rounding environment [11,25,40,53,68].

Contact for Human-Computer Interaction Detecting contact with or-
dinary surfaces can be useful for building human-computer interfaces. MR-
Touch [61] uses depth data to identify touches on flat surfaces for the Microsoft
HoloLens. The method first fits a 3D plane to the wall or tabletop surface and
thresholds the distance between the plane and the fingertip. TapID [38] uses
subtle accelerations from a pair of IMU sensors on the wrist to detect contact
between fingers and surfaces. TouchAnywhere [41] detects touch via heuristics
by estimating the intersection between finger and its shadow, but only detects
binary contact and does not include pressure ground truth.

Table 1. Datasets for contact between hands and surfaces: GRAB [55] infers dynamic
contact via geometric models and marker-based motion capture. TactileGloves [54]
measures dynamic pressure with a sensorized glove. ContactDB [3] and ContactPose [5]
measure static contact via thermal imaging. Ours, PressureVisionDB, measures pres-
sure with a sensorized plane and provides registered and synchronized RGB images.

Diverse
Surfaces

Bare
Hands

Images Pressure

GRAB [55] ✔ ✗ ✗ ✗

TactileGloves [54] ✔ ✗ ✗ ✔

ContactDB [3] ✔ ✔ ✗ ✗

ContactPose [5] ✔ ✔ ✔ ✗

PressureVisionDB (Ours) ✗ ✔ ✔ ✔

Hand-Object Contact Datasets GRAB [55] uses optical motion capture to
capture hand and object pose and indirectly infers contact using mesh proximity.
ContactDB [3] measures high-resolution contact on a variety of objects. After
participants grasp an object, the thermal imprint from the hand is measured from
the object surface using a thermal camera. ContactPose [5] adds paired images,
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object poses, and hand poses to ContactDB. ContactDB and ContactPose do
not provide pressure measurements and only provide contact for static grasps.

As shown in Table 1, our dataset is unique compared with these datasets,
providing RGB images paired with high-resolution, dynamic pressure images.

3 The PressureVisionDB Dataset

We collected PressureVisionDB, a novel dataset of bare hands interacting with
a pressure-sensitive object. The dataset includes 16 hours of data collected from
36 participants with pressure data and RGB images from four synchronized
cameras, totalling 64 hours of RGB video data.

3.1 The Capture Setup

We assemble a rigid frame to which we attached cameras, lights, and a pressure
sensing surface (Figure 3a). Participants reached through one side of the cube-
shaped frame to place their hands on the planar sensing surface.

a) b) c)

Fig. 3. a) The data capture rig used to collect PressureVisionDB. Participants reach
into the front opening to make contact with the elevated pressure sensor. b) The sen-
sorized plane records a pressure image, which is projected into image space for training
and evaluation. Pressure is visualized as bright blue regions. c) PressureVisionDB in-
cludes participants with diverse skin tones, ages, and genders under varied lighting
conditions.

Pressure Sensor To measure hand pressure, we used a Sensel Morph [39]
(Figure 3b). The sensor is a planar surface featuring a grid of force-sensitive
resistor (FSR) pixels. The sensor produces a 185x105 “pressure image”, with
each pixel having a pitch of 1.25mm. The sensor produces diffuse readings below
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0.5 kPa, which we use as the minimum effective pressure, and the 99th percentile
pressure recorded in the dataset is 82 kPa.

We covered the sensor surface with a white vinyl overlay for most partici-
pants, and covered it with a wood-textured overlay for seven participants. We
mounted the sensor above the table surface to allow participants to reach un-
derneath the sensor for pinching and grasping actions (Figure 3a). PressureVi-
sionDB only measures pressure across this single planar surface, and we leave
the capture of hand pressure on more diverse shapes to future work. Addition-
ally, the sensor measures pressure normal to the plane, so we only consider this
component of pressure.

Cameras The capture setup uses four synchronized and calibrated OptiTrack
Prime Color cameras to capture 1080p RGB frames. We mounted the cameras
to provide overhead views of the scene along with three OptiTrack eStrobe light
sources. Each light can be turned on or off to achieve 8 different lighting condi-
tions. The lighting condition was changed after each participant.

Participants PressureVisionDB was collected from a diverse set of adults (Fig-
ure 4) with a range of skin tones, ages, and genders (Figure 3c). Participants
self-reported their age and gender, and their skin tone were measured objec-
tively. A Pantone RM200 colorimeter was used to classify the participant’s skin
tone in the Pantone SkinTone Guide [42]. These skin tones were then divided
into three categories: light, medium, and dark.

Protocol We developed a protocol to capture a variety of hand-surface interac-
tions. Participants were asked to perform 36 different actions with one hand and
then the other. Prior to each action, participants were shown a text description
and an image of the action. The list of actions includes pressing with a single
finger (index, thumb, or other), pressing with the whole hand, applying tangen-
tial force, grasping the edge of the sensor, and drawing with a finger. For many
actions, participants were prompted to use one of three force levels: high force,
low force, and no contact. For the no contact condition, participants moved their
hand very close to the sensor, as if they intended to touch the sensor, but did
not make contact.

Ethics Participants gave informed consent and were compensated for their time.
The data was captured by a third-party corporation that specializes in data
collection with human participants. The capture rig was designed so that no
images of the participants’ torsos or faces were collected. The third-party did
not provide personally identifiable information to the research team.

At the inception of our project, we were concerned about the potential for
darker skin tones to reduce performance [13,33,8]. Melanin and hemoglobin both
influence skin color in visible light and melanin concentration varies widely across
people [70]. As such, we prioritized recruiting participants with a wide range of
skin tones (Figure 3c).
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Dark Skin Tone Medium Skin Tone Light Skin Tone

Fig. 4. PressureVisionDB includes data from participants with diverse skin tones.

4 Estimating Pressure and Contact from RGB

We designed a deep network to infer hand contact and pressure. From an in-
put RGB image, the network estimates a pressure image of the same size. The
pressure image provides a pressure estimate for each pixel of the RGB image.

4.1 Network Architecture

We designed PressureVisionNet to estimate the location and magnitude of pres-
sure between a hand and surface. The network is an encoder-decoder architecture
which inputs a single RGB image, I, and outputs a pressure map, P̂ = f(I).
During training and evaluation, the ground truth pressure data from the sensor
is projected into image space (Figure 3b). Consequently, the network estimates
hand pressure for each pixel of the input image, which results in an output
pressure image that is the same size as the input image.

Pressure estimation is treated as a classification problem. The pressure range
is divided into nine bins placed in logarithmic space [15]. The network infers the
pressure bin for each pixel of the output pressure image. We experimented with
direct regression of pressure scalars, but found that this was outperformed by
the classification approach.

We cropped images from each camera to include a margin around the pres-
sure sensor and resized the images to 480x384 pixels. PressureNet uses a SE-
ResNeXt50 [24,28,62] encoder, with weights from pretraining on ImageNet [16].
A feature pyramid network (FPN) [35,63] decoder produces the output image. A
cross-entropy loss was used during training. During inference, the network runs
at 53 FPS using an RTX 3090 GPU.

4.2 Evaluation Metrics

We considered four types of contact and pressure metrics. Contact is a binary
quantity that describes if the hand and sensor are touching, while pressure is a
scalar describing how hard the hand and sensor are pressing against each other.
Contact maps C are generated by thresholding the pressure map P at a low
value, Pth = 1.0 kPa. Values greater than this are marked as in contact.
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Input Image Estimated Pressure Ground Truth Pressure Input Image Estimated Pressure Ground Truth Pressure

Fig. 5. Results from PressureVisionNet on held-out participants. Some images have
been magnified for clarity. PressureVisionNet can accurately infer the location and
magnitude of pressure from an RGB image. PressureVisionNet correctly identifies the
lack of contact in “no-contact” actions (right, top two). The bottom row illustrates a
common failure mode: no pressure is estimated for parts of the hand that are occluded.

– Temporal Accuracy To evaluate the temporal accuracy with which the
onset and termination of contact are estimated, if any contact is present
in the estimated and ground truth contact maps, Ĉ and C, the frame is
marked as in contact. A frame is marked correct if the presence of contact
is consistent in estimated and ground truth frames.

– Contact IoU To evaluate the spatial and temporal accuracy of estimated
contact, we computed the intersection over union (IoU) between the the
binary contact images. This metric does not consider the magnitude of the
estimated pressure, and is an upper bound on Volumetric IoU.

– Volumetric IoU We propose the Volumetric IoU (Figure 6), a novel metric
that extends Contact IoU to evaluate the magnitudes of pressure estimates
in addition to their spatial and temporal accuracy. Each 2D pressure image
is converted into a 3D “pressure volume”, where the height of the volume is
equal to the amount of pressure at that pixel. The Volumetric IoU can be
calculated as:

IoUvol =

∑i,j
min(Pi,j , P̂i,j)∑i,j
max(Pi,j , P̂i,j)

(1)

– Mean Absolute Error To evaluate the accuracy of estimated pressure in
physical units, we calculate mean absolute error (MAE) over each pixel. As
most of the dataset pressure images consist of zeros, these numbers are close
to zero.
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IoUvol =

Fig. 6. Volumetric IoU quantifies the agreement between two pressure images by treat-
ing them as pressure volumes.

4.3 Dataset Splits

The dataset consists of 36 participants. Prior to using the dataset to develop
PressureVisionNet, we selected 6 participants spanning skin tone and demo-
graphics for a held-out test set. We used data from the remaining 30 participants
for training and validation.

5 Results

Our primary goal was to investigate the potential to infer hand pressure from a
single RGB image. In addition to characterizing overall performance, we focused
on three questions. First, we considered how well performance can generalize
to people outside of the training set, since feasibility depends on the existence
of shared properties across hands and human behavior. Second, we considered
whether the appearance of the hand and its cast shadows were used for inference.
Third, we considered whether a trained model can produce reasonable estimates
for images captured in an unseen environment.

b)a) c) Ground Truth Contact

Baseline Contact

Fig. 7. a) A 3D pose estimator is used to estimate hand pose. b) As monocular pose
estimators have difficulty in estimating true hand scale, hand scale is swept through
a range of values (selected scales are visualized, optimal scale is colored). c) Ground
truth contact is compared to contact calculated by mesh intersection.
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5.1 Baseline Models

Since inferring hand pressure from an RGB image is a new task, there were
no existing methods available for direct comparison. To provide context for our
numeric results, we created a baseline model for comparison.

3D models of the human body have been used to infer contact and pressure
in other contexts [55,20,12]. Our use of a single RGB image makes this approach
more challenging. Prior work used multiple cameras, depth cameras, and motion
capture systems to obtain high fidelity 3D models. We used FrankMocap [49]
to produce a 3D pose estimate with a free parameter for the scale of the hand.
As the true hand scale is not known, for each sequence we swept the hand scale
with a discretization that corresponds to sub-millimeter adjustment in depth,
and find the scale that maximizes the Contact IoU with respect to ground truth
(Figure 7). Contact was estimated by finding intersection between the hand and
sensor meshes.

5.2 Can inference succeed with new people?

Table 2. PressureVisionNet outperforms the 3D Pose Baseline on a test set of unseen
participants.

Method Temporal Acc Contact IoU Vol. IoU MAE

Zero Guesser 53.7% 0.0% 0.0% 51.9 Pa

3D Pose Baseline [49] 78.1% 13.0% - -

PressureVisionNet 96.2% 55.8% 41.3% 39.9 Pa

Table 2 shows performance on the ≈490k images in our test set, which in-
cludes frames from all four cameras, five distinct lighting conditions, and 6 par-
ticipants performing 36 actions. None of the participants in our test set were in
our training set, so performance indicates how well our approach generalizes to
new people.

Table 3. Participants were prompted to perform actions with various force levels.
Estimated forces from PressureVisionNet correlate with ground truth (GT).

Force Requested Mean GT Mean Est.
to Participant Force Force

High Force 8.16 N 5.73 N

Low Force 3.24 N 3.63 N

No Contact 0.00 N 0.04 N

PressureVisionNet outperformed our baseline model. Its discretized repre-
sentation for pressure limits its best possible Volumetric IoU to 81% and MAE



12 P. Grady et al.

to 10.9 Pa. The Zero Guesser always outputs a zero-pressure image. It achieved
53.7% temporal accuracy since no pressure was recorded for the majority of
frames in the dataset. The 3D Pose Estimator had generally low performance.
PressureVisionNet performed well with non-contact images and inferred higher
pressures on average when participants were instructed to apply more force (Ta-
ble 3 and Figure 5).

Skin Tone Skin tone is a significant source of variability across people. Due
to the limited number of participants in each skin tone category, we used cross-
validation. The training set is split into five folds, and the model is trained with
one rotating fold left out for testing. As shown Table 4, the highest performance
was with dark skin tones. We performed a two-sample Kolmogorov–Smirnov
test between each pair of skin tone categories, and did not find a statistically
significant difference.

Table 4. Performance across skin tones is found via cross validation. We did not find
a statistically significant difference between categories.

Skin Tone Vol. IoU

Light 38.5%

Medium 37.2%

Dark 39.0%

5.3 Is hand-related appearance used for inference?

We expected the appearance of the hand and cast shadows to provide visual
cues for pressure inference. Our results suggest that this is the case. In addition
to providing evidence for the underlying information used for inference, these
results reduce the likelihood that PressureVisionNet is exploiting information
specific to our data that would not be generalizable, such as unintended sensor
artifacts.

Sensitivity Analysis We conducted a sensitivity analysis to identify spatial
regions that strongly influence PressureVisionNet’s output. Our method is sim-
ilar to the Occlusion Sensitivity method from Zieler and Fergus [66]. We divide
the input RGB image into a 48x48 grid of cells. For each cell i, j, we create a new
image Bi,j(I) replacing the cell contents with its average color. We provide this
image as an input to the network and calculate how much the output pressure
changes. We create a sensitivity image by normalizing the following image, S,
to be between 0 and 1.

Si,j = ||f(Bi,j(I))− f(I)||2 (2)



PressureVision: Estimating Hand Pressure from a Single RGB Image 13

Input Image Estimated Pressure Ground Truth PressureSensitivity

Sensitivity Images

Press Index

Press All Fingers

Press Palm

Projected Sensitivity

Fig. 8. Left: PressureVisionNet is sensitive to the appearance of the hand and shad-
ows near regions of contact. Right: Results of projecting sensitivity images onto hand
meshes and averaging over many frames for selected actions.

Figure 8 shows examples of resulting sensitivity images that indicate the
model uses the appearance of the hand and cast shadows near regions of contact.
To show this objectively, we also projected the sensitivity images from multiple
frames onto the hand meshes generated for the 3D Pose Baseline. Figure 8 shows
the results for three different actions that confirm that PressureVisionNet is
highly sensitive to blurring of the hand near regions of contact.

We also found a common failure mode that corroborates this result. As shown
in the bottom row of Figure 5, PressureVisionNet typically guesses zero pressure
for parts of the hand that are occluded from view.

Dependence on Actions We found that PressureVisionNet’s performance
depended on the participant’s action. For example, performance was highest
with a single index finger action and lower with actions that apply pressure with
the palm (Table 5). Two relevant factors are likely the visibility of the part of
the hand near the region of contact and the tendency for larger areas of ground
truth pressure to result in larger errors.

Table 5. The performance of PressureVisionNet on selected actions. Actions with
lower visibility and larger contact areas tend to result in lower performance.

Action name Vol. IoU

Press index, pull towards 59.4%

Press all fingers 42.1%

Press all fingers and palm 35.4%

Press palm 33.2%
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a) b)

Fig. 9. PressureVisionNet may generalize to new environments. Results shown in b)
were captured with a smartphone camera in unaltered office lighting on a tabletop.
Pressure estimates can be accumulated over time to allow writing with a finger.

5.4 Is inference reasonable with new conditions?

We considered whether PressureVisionNet can produce reasonable estimates
when given new RGB images acquired with conditions that differ from Pressure-
VisionDB. For this question, we provide preliminary evidence based on images
of hands not included in the dataset. We captured additional data with a smart-
phone camera in unaltered office lighting. The smartphone camera had different
focal length, resolution, and color characteristics than the dataset cameras. The
smartphone was mounted with a tripod to observe a normal white tabletop.

Figure 9 demonstrates that PressureVisionNet has some ability to generalize
to new environments. The system can generalize to images with multiple hands,
and can run over multiple frames in a video while accumulating inferred pressure
estimates. In the bottom image, an author used the system to write with their
index finger first with low pressure, then with high pressure. This illustrates a
potential application and provides evidence that PressureVisionNet is not overly
sensitive to the camera, the illumination, or the contact surface.

6 Conclusion

We collected a novel dataset, PressureVisionDB, and developed a deep model,
PressureVisionNet, to infer hand pressure from a single RGB image. Using this
model, we provided evidence that hand pressure can be accurately inferred from
a single RGB image of a hand from a previously unobserved person. Our results
suggest that the appearance of regions of the hand near regions of contact are
especially informative when inferring pressure.
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