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A Details of Pose Estimator

The disentangled representation is used for the pose estimator output as in [3].
For each iteration i, our ResNet34 [2] based pose estimator predicts relative
translation on image space, which can be written as follows:
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where vix and viy are pixel-wise translation estimation, viz is the relative scale
of the object, fx and fy are focal lengths of x and y axis in intrinsic matrix,
respectively, and tix, t

i
y, and tiz are the components of the translation vector ti.

With the Equations (1), (2), and (3), we update the translation vector ti−1 to
ti for each iteration.

The network also predicts the two three-dimensional vectors ei1 and ei2 for
rotation representation as in [3, 6], which can be converted to relative rotation
matrix as follows:
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∥ei1∥2
, (4)
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, (5)

ri2 = ri3 ∧ ri1, (6)

where ∧ represents the cross product, and ri1, r
i
2, and ri3 are the vectors in the

relative rotation matrix of the i-th iteration.
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To localize the initial projection of object in bounding box (x, y, w, h) as
in [3], we set the initial translation t0 as follows:
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where t0x, t
0
y, and t0z are components of initial translation vector, cx and cy are

center of the bounding box, px and py are principal point, and d represents
the diameter of object which is set to two in our normalized object setting.
Additionally, we use the identity matrix for the initial rotation matrix R0.

B Additional Ablation Studies

The performances of grid matching (GM), point matching (PM), and image
matching (IM) objective function are visualized in Fig. B.1. The mean distance
between object vertices in camera space is used for PM as in [3, 4], and mean-
squared-error between projection in image space is used for IM as [1]. We confirm
that the GM predict the rotation more accurately than PM in long objects such
as glue in the LM dataset, and the shape bias in PM causes performance degra-
dation. In detail, since the PM uses the object vertices, even if the actual rotation
error of two predictions are same, the loss vary depending on the direction of
misalignment. For example, the PM loss of the axial rotation error of a long
object is relatively lower than other direction errors, which hinders accurate
prediction of axial rotation. On the other hand, since the GM uses a uniformly
distributed grid, no performance degradation due to shape bias has occurred.
Furthermore, since the GM reflects the projective geometry on the grid shape
and leverages it to predict the distance to object, the GM shows better results
than PM in z-axis translation. Unlike the GM and PM, since the IM does not
leverage the 3D location information, IM based model fails to predict the pose
in some objects and shows low performance.

C Additional Qualitative Results

We demonstrate the additional example result of each iteration for the LMO and
YCBV dataset in Fig. C.2 and Fig. C.4, respectively. In addition, we illustrate
additional qualitative results of the LMO dataset and YCBV dataset in Fig. C.3
and Fig. C.5, respectively. Additionally, to demonstrate the competence of our
method, we compare the qualitative results of our method and the other state-
of-the-art methods in C.6. We also visualize reference feature quality in C.7 with
the number of references. As shown in the figure, the more the reference view is
used, the more accurate the shape becomes, but there is a trade-off in which the
texture is blurred.
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Fig. B.1. Comparison of accuracies according to loss functions on the LM
dataset: Each column demonstrates the accuracy of GM loss, PM loss, and IM loss
on the LM dataset, respectively. We visualize the translation error for each axis in the
first three rows and rotation error in the last row.
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Fig. C.2. Qualitative results of iteration on the LMO dataset: For each column
in the grey cell, we visualize the contours of the projection, projection by estimated
pose, and object space grid. From the first row to the fourth row in each gray cell, the
ground-truth pose, the initial pose, the first iteration pose, and the second iteration
pose are visualized. The predicted and ground-truth poses are represented by blue and
green contour, respectively.

Fig. C.3. Qualitative results on the LMO dataset: We visualize additional results
on the LMO dataset. The predicted pose’s contour is represented by blue, and the
ground truth pose’s contour is demonstrated by green.
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Fig. C.4. Qualitative results of iteration on the YCBV dataset: For each col-
umn in grey cells, we visualize the contours of the projection, projection results, and
object space grid. From the first row to the fourth row in each gray cell, the ground-
truth pose, the initial pose, the first iteration pose, and the second iteration pose are
visualized, respectively. The predicted pose’s contour is represented by blue, and the
ground truth pose’s contour is demonstrated by green.

Fig. C.5. Qualitative results on the YCBV dataset: We visualize additional
results on the YCBV dataset. The predicted pose’s contour is represented by blue, and
the ground truth pose’s contour is demonstrated by green.
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Fig. C.6. Comparison of qualitative results with other SOTA methods: For
each row, we visualize the qualitative results of DeepIM [4] (first row), GDR-Net [5]
(second row), and our method (last row) on the LM dataset. The green and blue
boxes visualize the projection of the object 3D bounding box using ground-truth and
predicted pose, respectively.
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Fig. C.7. Qualitative results of Nr: We visualize the projection of reference feature
to compare the quality with the number of reference views. The first and second rows
show the reference features from the YCBV dataset object, and the third and last rows
visualize the reference feature from the LM dataset object.
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