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Abstract. Estimating 3D interacting hand pose from a single RGB im-
age is essential for understanding human actions. Unlike most previ-
ous works that directly predict the 3D poses of two interacting hands
simultaneously, we propose to decompose the challenging interacting
hand pose estimation task and estimate the pose of each hand sepa-
rately. In this way, it is straightforward to take advantage of the lat-
est research progress on the single-hand pose estimation system. How-
ever, hand pose estimation in interacting scenarios is very challenging,
due to (1) severe hand-hand occlusion and (2) ambiguity caused by
the homogeneous appearance of hands. To tackle these two challenges,
we propose a novel Hand De-occlusion and Removal (HDR) framework
to perform hand de-occlusion and distractor removal. We also propose
the first large-scale synthetic amodal hand dataset, termed Amodal In-
terHand Dataset (AIH), to facilitate model training and promote the
development of the related research. Experiments show that the pro-
posed method significantly outperforms previous state-of-the-art inter-
acting hand pose estimation approaches. Codes and data are available
at https://github.com/MengHao666/HDR.

Keywords: 3D Interacting Hand Pose Estimation, De-occlusion, Re-
moval, Amodal InterHand Dataset

1 Introduction

Estimating the 3D hand pose from a monocular RGB image is critical in many
real-world applications, e.g. human-computer interaction, augmented and virtual
reality (AR/VR), and sign language recognition. Although significant progress
has been made for single-hand pose estimation, analysis of hand-hand interac-
tions remains challenging. Estimating 3D interacting hand pose from a single
RGB image has attracted increasing research attention in recent years.

In this paper, we propose to decompose the challenging interacting hand pose
estimation task, and predict the pose of the left and the right hand separately.
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Fig. 1. State-of-the-art hand pose estimation models often struggle to estimate the
3D poses of interacting hands, due to severe hand-hand occlusion and appearance
ambiguity of two hands. In this example, we observe erroneous pose estimation of
the occluded part and significant uncertainty between the left and right wrist. Our
HDR framework tackles these two challenges via hand de-occlusion (recovering the
appearance content of the occluded part) and removal (removing the other distracting
hand). It transforms the challenging interacting hand image into a simple single-hand
image, which can be easily handled by the hand pose estimator.

However, solving single-hand pose estimation in close two-hand interaction cases
is non-trivial, because of two major challenges. One of the main challenges is the
severe hand-hand occlusion. Considering hands in close interactions, the occlu-
sion patterns are complex. Many areas of the target hand can be occluded,
making it very challenging to infer the pose of the invisible parts. Another chal-
lenge is that the homogeneous and self-similar appearance of hands (i.e. the left
and the right hand) may cause ambiguities. And the hand pose estimator may
be confused by the other visually similar distracting hand.

To tackle these challenges, we propose a simple yet effective Hand De-occlusion
and Removal (HDR) framework. Specifically, our HDR framework comprises
three parts, Hand Amodal Segmentation Module (HASM), Hand De-occlusion
and Removal Module (HDRM), and the Single Hand Pose Estimator (SHPE).
HAS segments both the complete (amodal) and visible parts for both two hands.
The resulting segmentation masks not only contain information to localize the
rough position of the two hands, but also provide cues for subsequent de-occlusion
and removal process by HDRM. De-occlusion targets at predicting the appear-
ance content of the occluded part. Removal targets at removing the distracting
part in the image. In our case, when estimating the pose of the right hand, the
left hand becomes the distracting part and should be removed. As shown in
Fig. 1, recent state-of-the-art hand pose estimation methods suffer from severe
hand-hand occlusion and the homogeneous appearance of two hands, resulting
in inferior pose estimation results. Thanks to our proposed HDR framework, we
can transform the challenging scenario of hand-hand interactions into a common
single-hand scenario, which can be easily handled by an off-the-shelf SHPE.

However, to the best of our knowledge, there exist no datasets that contain
both the amodal segmentation and appearance content ground-truths of interac-
tive hands. To fill in this blank, we synthetically generate a large-scale Amodal
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InterHand dataset, namely AIH dataset. The dataset contains over 3 million
interacting hand images along with ground-truth amodal and modal segmenta-
tion, de-occlusion and removal ground-truths. The dataset consists of two parts,
i.e. AIH Syn and AIH Render. AIH Syn is obtained by simple random copy-
and-paste. It retains detailed and realistic appearance information. However, it
may generate implausible interacting hand poses that violate the biomechan-
ical structure of the human body. AIH Render is generated by rendering the
textured 3D interacting hand mesh to the image plane. The inter-dependencies
between two hands are fully considered to avoid physically implausible configu-
rations, e.g. intersecting fingers. However, it may suffer from the appearance gap
because the rendered texture is synthetic. Combining the advantages of both,
we make a large-scale 3D hand-hand interaction dataset with large pose and
appearance variety. We empirically validate the effectiveness of the synthetic
dataset through extensive experiments. We envision that our proposed dataset
will foster the development of the related research, e.g. interacting hand pose
estimation, amodal or modal instance segmentation, de-occlusion, etc.

Our proposed Hand De-occlusion and Removal (HDR) framework is simple,
flexible, and effective. Extensive experiments on the well-known InterHand2.6M
benchmark [21] show that our method significantly outperforms the state-of-the-
art 3D interacting hand pose estimation systems. Our framework builds upon
the latest research progress of amodal segmentation [33], de-occlusion [38,36,19],
and 3D single-hand pose estimation [39]. Note that, we do not perform com-
plete comparisons with previous amodal segmentation, de-occlusion, and SHPE
approaches. We also do not claim any algorithmic superiority concerning model
architecture design. Because our aim is to propose a framework to solve the chal-
lenges of 3D interacting hand pose estimation. And designing powerful modules
to improve the performance of amodal segmentation, de-occlusion, and SHPE is
not the focus of this paper.

Our contributions are summarized as follows:

– We propose a novel Hand De-occlusion and Removal (HDR) framework to
tackle the challenging task of 3D interacting hand pose estimation.

– We propose to explicitly handle the challenges of self-occlusion by hand de-
occlusion and the homogeneous appearance ambiguity by distractor removal.
To the best of our knowledge, we are the first to apply de-occlusion tech-
niques to improve the downstream pose estimation accuracy.

– We propose the first large-scale synthetic Amodal InterHand Dataset (AIH)
to settle the task of hand de-occlusion and removal. We envision that AIH
will foster the development of the related research.

2 Related Work

2.1 Amodal Instance Segmentation and De-occlusion

Amodal Instance Segmentation. Unlike modal instance segmentation, which
aims at assigning labels to visible parts of instances, amodal instance segmenta-
tion targets at producing the amodal (integrated) masks of each object instance
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involving its occluded parts. Li and Malik [16] proposed the first amodal instance
segmentation model which iteratively expands the bounding boxes and recom-
putes the heatmaps. Zhu et al. [40] proposed COCOA dataset for amodal in-
stance segmentation and presented AmodalMask model as the baseline. Zhan et
al. [36] propose a method to reason about the underlying occlusion ordering
and recover the invisible parts in a self-supervised manner.

De-occlusion. De-occlusion aims at recovering the appearance content of
the invisible occluded parts. SeGAN [6] adopts a residual network based model
for mask completion and inferring the appearance of the invisible parts of indoor
objects. Yan et al. [34] presented an iterative multi-task framework for amodal
mask completion and de-occlusion of vehicles. Zhou et al. [38] built upon a
well-known inpainting approach [19] and proposed to reason about the occluded
regions and recover the appearance content of humans. Baek et al. [2] presents
a weakly-supervised method to adapt from hand-object domain to single hand-
only domain. However, its image generation module and the pose estimator are
deeply coupled together, limiting its generalization ability to adapt to different
hand pose estimators and resulting in low-quality restored image.

Our approach differs from previous works in three major aspects. First, previ-
ous works mostly focus on improving the quality of image content recovery, while
we aim to improve the performance of the downstream task, i.e. 3D interactive
hand pose estimation. Second, compared with common rigid objects, recovering
the appearance content of the interacting hands is more challenging because of
larger pose variations, severe hand-hand occlusion, and self-similar appearance
of hands and fingers. Third, besides de-occlusion, our proposed HDR framework
also performs distracting hand removal to reduce the ambiguities caused by the
homogeneous appearance of hands.

2.2 Monocular RGB-based Hand Pose Estimation

Isolated hand pose estimation. RGB-based single (isolated) hand pose es-
timation has made significant progress in the past few years. Zimmermann et
al. [41] introduced one of the first deep learning models to estimate hand poses
from monocular RGB images. It first uses HandSegNet to localize hand regions,
then uses PoseNet to estimate 2D hand poses, and finally maps 2D poses into
3D space. Iqbal et al. [11] proposed to encode hand joint locations with 2.5D
heatmap representation to address the depth ambiguity problems and improve
localization precision. Spurr et al. [29] proposed a VAE-based generative model
to regress 3D hand joint locations. Zhou et al. [39] proposed to fully exploit non-
image MoCap data to improve model generalization and robustness. Recently,
many works also attempt to estimate 3D hand meshes from monocular RGB im-
ages. Most of them [1,4,35] are model-based, which train a convolutional neural
network to estimate the MANO parameters [26]. Others are model-free, which
directly regress 3D vertices of the human hand using mesh convolution [15],
graph neural networks [5], or transformers [18].

Interacting hand pose estimation. Most works conduct interacting two-
hand pose estimation by utilizing multi-view RGB images [3,9], depth data [23,22,30],
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Fig. 2. Illustration of our Hand De-occlusion and Removal (HDR) framework for the
task of 3D interacting hand pose estimation. We first employ HASM (Hand Amodal
Segmentation Module) to segment the amodal and modal masks of the left and the
right hand in the image. Given the predicted masks, we locate and crop the image
patch centered at each hand. Then, for every cropped image, the HDRM (Hand De-
occlusion and Removal Module) recovers the appearance content of the occluded part
of one hand and removes the other distracting hand simultaneously. In this way, the
interacting two-hand image is transformed into a single-hand image, and can be easily
handled by SHPE (Single Hand Pose Estimation) to get the final 3D hand poses.

and tracking strategy [23,28,31]. Only a few existing works have considered es-
timating 3D poses of two hands from a single RGB image, which is challenging
due to severe occlusion and close interactions. Lin et al. [17] employed a syn-
thetic egocentric hand dataset to learn to estimate two-hand poses from a single
RGB image. Moon et al. proposed a large-scale interacting hand dataset, termed
InterHand2.6M dataset [21], and designed the InterNet model to predict 2.5D
hand poses. Zhang et al. [37] designed a hand pose-aware attention module to
address the self-similarity ambiguities and leveraged a context-aware cascaded
refinement module to improve pose accuracy. Kim et al. [13] introduced an end-
to-end trainable framework to jointly perform interacting hand pose estimation.
Rong et al. [27] presented a two-stage framework to generate precise 3D hand
poses and meshes with minimal collisions from monocular single RGB images.
Fan et al. [7] proposed DIGIT (DIsambiGuating hands in InTeraction) to ex-
plicitly leverage the per-pixel probabilities to reduce the ambiguities caused by
self-similarity of hands.

In this work, we empirically show that existing hand pose estimators often
suffer from extreme self-occlusions and appearance ambiguity. To this end, we
propose a novel Hand De-occlusion and Removal (HDR) framework to explicitly
handle these two challenges, which significantly outperforms prior arts.

3 Method

3.1 Overview

As shown in Fig. 2, we propose a three-stage framework for interactive hand
pose estimation. The first stage segments the complete and visible part for both
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Fig. 3. Illustration of the HDRNet. The input of HDRNet includes 4 kinds of data: (a)
the image erased on occluded portion of the right hand ID, (b) the modal mask of the
right hand Mrv, (c) the image erased on redundant portion of the distracting hand IR,
and (d) the modal mask of background Mbv. HDRNet recovers the appearance content
of the occluded parts and inpaints the distracting hand to avoid ambiguity.

two hands. The second stage recovers the RGB values of the occluded hand and
the background behind the distracting hand at the same time. The third stage
predicts the 3D pose of each hand separately.

3.2 Hand Amodal Segmentation Module (HASM)

As shown in Fig. 2, given an interacting two-hand image, we first obtain the
modal and amodal masks of both hands using the Hand Amodal Segmenta-
tion Module (HASM). We simply adapt the off-the-shelf instance segmentation
model, i.e. SegFormer [33], to fit in our two-hand amodal segmentation tasks.
Specifically, we increase the number of decode heads from one to four to predict
four kinds of segmentation masks, namely the right hand amodal mask Mra, the
right hand visible mask Mrv, the left hand amodal mask Mla and the left hand
visible mask Mlv. These segmentation masks contain (1) spatial localization in-
formation to roughly localize the left/right hand, and (2) rich cues about the
occluded regions for de-occlusion and the distractor regions for removal.

We apply the binary cross entropy losses LBCE (∗) to supervise the segmen-
tation model. The final segmentation loss functions are formulated as follows:

LHAS = LBCE (Mra,M
∗
ra) + LBCE (Mlv,M

∗
lv)+

LBCE (Mla,M
∗
la) + LBCE (Mlv,M

∗
lv) ,

(1)

where Mra, Mlv, Mla, and Mlv are predicted segmentation masks; M∗
ra, M

∗
lv,

M∗
la, and M∗

lv are the corresponding ground-truth masks.

3.3 Hand De-occlusion and Removal Module (HDRM)

Hand De-occlusion and Removal Module (HDRM) aims at transforming a pre-
viously challenging case of hand-hand interactions into a common single-hand
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case, which can be easily solved by an off-the-shelf single-hand pose estimator.
Specifically, given amodal and modal masks, De-occlusion is responsible for re-
covering the appearance content or RGB values of the occluded regions, while
Removal targets at inpainting the distracting regions in the image, reducing the
ambiguities caused by the homogeneous appearance of two hands.

For clarity, in the following sections, we will focus on the right hand only and
regard the left hand as the distractor. Note that, the left-hand centered image
can be flipped horizontally before performing hand de-occlusion, removal, and
pose estimation, thus following the same pipeline.

As shown in Fig. 2, for the right hand, we first use the amodal mask Mra

to locate the right hand. Then we crop the original image and the segmentation
masks at the center of the right hand. The newly cropped image and masks are
denoted as Icrops , M crop

ra , M crop
rv , M crop

la and M crop
lv respectively. We will omit the

superscript crop in subsequent sections for simplicity.

We use MD to denote the region where the target hand is occluded by the
other hand and MR to denote the region where the distracting hand occupies.
They are computed as follows:

MD = Mra · (1−Mrv) ,

MR = (1−Mra) ·Mlv.
(2)

ID and IR are the original image Is erased by the mask MD and MR respec-
tively. They can inform the HDRNet where to focus and how to inpaint these
two regions with partial convolution [19]. In addition, the modal mask of the
right hand Mrv and the modal mask of the background Mbv point out where the
HDRNet can refer to for de-occlusion and removal respectively. Formally, ID, IR
and Mbv are computed as follows:

ID = Is · (1−MD),

IR = Is · (1−MR),

Mbv = (1−Mra) · (1−Mla).

(3)

ID, Mrv, IR and Mbv are concatenated together as the input, as shown in
Fig. 3. HDRNet then uses these data to recover the appearance content of the
occluded parts and inpaints the distracting hand to avoid ambiguity. For model
architecture choice, we follow [38,36] to adopt the network of Liu et al. [19] and
further improve it by adding a few transformer blocks [32]. The transformer block
enhances image feature interactions, enlarges the receptive fields, and focuses
more on important image regions. Finally, the HDRNet outputs a recovered
image Io. We follow [38] to employ an image discriminator [12] D to enhance
the image recovery quality through adversarial training. The loss function of
HDRNet is as follows:

LHDR =λ1(EIo [log(1−D(Io))] + EI∗
o
[log(D(I∗o ))])+

λ2Lℓ1(Io, I
∗
o ) + λ3Lprec(Io, I

∗
o ) + λ4Lstyle(Io, I

∗
o ),

(4)
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where Lprec(∗) denotes the perceptual loss [8], and Lstyle(∗) denotes the style
loss [19]. Io is the recovered image, while I∗o is its corresponding ground truth.
λ1, λ2, λ3, and λ4 are hyper-parameters to balance the losses.

3.4 3D Single Hand Pose Estimation (SHPE)

Our de-occlusion and removal framework can be applied to any off-the-shelf
pose estimators. However, designing a more powerful hand pose estimation net-
work architecture is not the focus of this paper. In this work, we choose the
DetNet of MinimalHand [39] as our baseline SHPE for its simplicity and good
performance. MinimalHand [39] comprises two modules, i.e. DetNet and IKNet.
DetNet predicts the 2D and 3D hand joint positions. IKNet then takes as input
the predicted 3D hand joint positions and maps them to the joint angles. In our
implementation, we simply discard the IKNet and re-train the DetNet on the
InterHand2.6M dataset [21]. The loss function of SHPE is as follows:

LSHPE = Lheat + Lloc + Ldelta + Lreg, (5)

where Lheat is the 2D heatmap loss. Lloc and Ldelta are location map loss and
delta map loss respectively. Lreg is a ℓ2 weight regularizer to avoid overfitting.
Please refer to Zhou et al. [39] for more training details.

4 Amodal InterHand (AIH) Dataset

Existing amodal perception datasets [40,24,10] mostly focus on amodal segmen-
tation of common objects (e.g. , vehicles, buildings, and indoor objects). To the
best of our knowledge, there exists no dataset that targets at amodal segmenta-
tion and appearance content recovery of interactive hands. To fill in this blank,
we synthetically generate the first large-scale Amodal InterHand dataset, namely
AIH dataset. We envision that the proposed dataset will boost the related re-
search, e.g. amodal perception, de-occlusion, and hand pose estimation.

Our AIH dataset is constructed based on the well-known InterHand2.6M V1.0
dataset [21]. As shown in Fig. 4, our proposed Amodal InterHand (AIH) dataset
consists of two parts: AIH Syn and AIH Render. In total, AIH dataset consists of
about 3 million images, where AIH Syn contains 2.2M samples and AIH Render
contains over 0.7M samples. AIH Syn is generated by simple 2D image-level copy
and paste, i.e. copy the left single-hand image and paste it on the right single-
hand image; AIH Render is obtained by rendering the textured interacting hand
mesh to the image plane. Both AIH Syn and AIH Render contain the amodal
and modal segmentation masks as well as the appearance content ground-truths.

AIH Syn We first get the hand mesh with the ground-truth MANO param-
eters of the single-hand samples from the InterHand2.6M V1.0 dataset, and then
project it into the 2D image plane to get the amodal segmentation mask. Then,
we filter out some bad samples in which MANO parameters or the corresponding
image are not valid. As a result, we get over 250K cropped single-hand images
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Fig. 4. Visualization of our proposed Amodal InterHand (AIH) dataset. AIH Syn is
obtained by simple 2D copy-and-paste, while AIH Render is generated by rendering
the textured 3D interacting hand mesh to the image plane.

with masks for each side hand. To generate the interacting two-hand samples,
we randomly pick two hands with similar texture from both sides. Then we crop
the left hand region given its amodal mask and paste it on the right hand image.
Random scaling, rotation, and color jittering are applied to increase diversity.

AIH Render Although AIH Syn provides plenty of amodal data, such 2D
level copy-and-paste can not generate mutual occlusion cases which are very
common for interacting hands. Therefore, based on MANO parameters of Inter-
Hand2.6M V1.0 dataset, we decorate the corresponding hand mesh with random
hand texture [25], augment it with random translation and rotation, and finally
render it to a random background image from the dataset.

5 Experiments

5.1 Implementation Details

All experiments are conducted on 8 NVIDIA Tesla V100 GPUs. Training mini-
batch size is set as 48 and Adam [14] is adopted for model parameter tuning.
Details of HASM. Our HASM is trained for 200k iterations with a learning
rate of 2.5 × 10−3 following the training setting of SegFormer [33]. Details
of HDRM. Our HDRM has an input resolution of 256 × 256. And the loss
weights are set as λ1 = 0.1, λ2 = 3.0, λ3 = 0.1, λ4 = 250.0. We first train
HDRM with ground-truth masks for 100k iteration, and then fine-tune it with
segmentation masks for another 100k iteration. The learning rate of these two
stages are 1.5× 10−3 and 1× 10−3 respectively. Details of SHPE. Our SHPE
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has an input resolution of 256 × 256. We train the network for 300k iterations
with an initial learning rate of 1×10−3. The learning rate is decayed to 1×10−4

and 1×10−5 at the 100k and 200k iterations respectively. Other training settings
are kept the same as those of MinimalHand [39].

5.2 Datasets and Evaluation Metrics

Datasets. The experiments are conducted on InterHand2.6M V1.0 [21] dataset
and Tzionas dataset [30]. InterHand2.6M V1.0 dataset [21] is a publicly avail-
able large-scale realistic pose estimation dataset for two-hand interactions. The
dataset provides RGB images with semi-automatically annotated 3D poses, and
MANO [26] parameters obtained from NeuralAnnot [20]. In the experiments, we
follow the common practice [21] to use the downsized 512×334 image resolution
at 5 frames-per-second (FPS) version of the released dataset. Following the of-
ficial configurations, the dataset is split into three branches, namely ‘H’ for the
human annotation branch, ‘M’ for the machine annotation branch, and ‘ALL’
for all data. The ‘M’ branch data contains many unseen poses and more diverse
sequences, which makes it more similar to real-world scenarios. Moreover, we no-
tice that the ‘H’ branch data contains missing or incomplete mesh annotations.
In the experiments, we majorly conduct experiments on the ‘M’ branch, but also
report the results on ‘ALL’ branch for comparisons. To focus on the interacting
hands, the original dataset [21] divides the whole dataset (IH26M-ALL) into
single-hands subset (IH26M-SH) and interacting-hands subset (IH26M-IH). Fol-
lowing [27], we further select samples from the original “IH26M-IH” test set, and
generate a more challenging subset called “IH26M-Inter”. “IH26M-Inter” con-
tains samples with more than 30 valid ‘ground-truth’ 3D hand keypoints. Since
InterHand2.6M [21] is captured in a lab environment, its background diversity is
relatively limited. To evaluate the generalization ability, we perform qualitative
and quantitative experiments on the Tzionas dataset [30]. Since Tzionas dataset
does not provide a separate training set, we directly use it as the testing set to
evaluate the model trained on the InterHand2.6M dataset [21].

Evaluation Metrics. For InterHand2.6M [21], we report 3D Mean Per Joint
Position Error (MPJPE). MPJPE is defined as the mean Euclidean distance
between ground truth and predicted 3D joint locations, calculated after aligning
the root joint for each left and right hand separately. The measurements are
reported in millimeters (mm). For Tzionas dataset [30], we follow the common
practice [21,4,13] to use 2D end point error (EPE) for evaluation.

5.3 Comparisons with state-of-the-art methods

We compare with previous state-of-the-art pose estimation methods on the ‘ALL’
branch and the ‘machine annot (M)’ branch of InterHand2.6M V1.0 dataset [21].
MPJPE (mm) is adopted to evaluate the 3D hand pose estimation accuracy. For
fair comparisons, the AIH dataset is only used to train HASM and HDRM for
amodal segmentation and de-occlusion. No pose annotations in AIH are used to
train the pose estimator (SHPE). Table 1 summarizes the experimental results.
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Table 1. Comparisons with state-of-the-art methods on the ‘ALL’ branch and the
‘machine annot (M)’ branch of InterHand2.6M V1.0 Dataset. MPJPE (mm) is adopted
to evaluate the 3D joint estimation accuracy. The results marked with ‘*’ are from [27].

Methods
InterHand2.6M - ALL branch InterHand2.6M - M branch

IH26M-SH IH26M-IH IH26M-ALL IH26M-Inter IH26M-SH IH26M-IH IH26M-ALL

*Boukhayma et al. [4] 27.14 31.46
*Pose2Mesh [5] 27.10 32.11
*BiHand [35] 25.10 28.23

*Rong et al. [27] 17.12 20.66
DIGIT [7] 14.27

InterNet [21] 12.16 16.02 14.21 18.04 12.52 18.04 15.28

HDR (Ours) 8.51 13.12 10.97 14.74 8.52 14.98 11.74

We first compare performances of three single-hand methods, i.e. Boukhayma et
al. [4], Pose2Mesh [5] and BiHand [35]. Our approach significantly outper-
forms all the state-of-the-art single-hand approaches. On the “IH26M-ALL”
split, compared with BiHand [35], our model reduces MPJPE from 25.10mm
to 10.97mm, resulting in as much as 56% error reduction. And in the more
challenging “IH26M-Inter” split, our approach obtains about 47% accuracy im-
provement. This shows existing single-hand pose estimators do not handle heavy
hand-hand occlusions and are easily confused by the other distracting hand.

We also compare with recent two-hand pose estimation approaches, i.e. In-
terNet [21], Rong et al. [27], and DIGIT [7]. We show superior performance
over these 3D interacting hand pose estimation systems. For example, our ap-
proach significantly improves upon Moon et al. [21]’s state-of-the-art results
from 14.21mm to 10.97mm (about 23% error reduction) on the “IH26M-ALL”
split. The clear performance gap validates the effectiveness of our framework.
Overall, our approach consistently ranks the first across all evaluation protocols.

Table 2. Comparisons with state-of-the-art methods on Tzionas dataset [30]. The
results of other algorithms are from [13]. 2D EPE is adopted to evaluate pose results.

Model Boukhayma et al. [4] Wang et al. [31] InterNet [21] Kim et al. [13] SHPE SHPE+HDR

EPE↓ 12.91 13.31 17.61 12.42 14.88 8.70

We also follow [13] to report hand pose estimation results (EPE) on Tzionas
dataset [30] in Table 2. Our method (SHPE+HDR in the table) significantly
improves upon the baseline SHPE, and outperforms the prior arts.

5.4 Effect of Hand De-occlusion and Removal (HDR) Framework

As shown in Table 3, and Table 4, we conduct experiments on the ‘machine annot
(M)’ branch and the ‘ALL’ branch of InterHand2.6M V1.0 dataset respectively.
We compare the results with or without using our HDR framework. We no-
tice that the recent state-of-the-art single-hand pose estimation (SHPE) method
(MinimalHand [39]) struggles with occlusions and appearance ambiguity in in-
teracting hand scenarios (IH26M-IH). To tackle these challenges, we propose
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Table 3. Effect of HDR Framework. Experiments are conducted on the ‘ma-
chine annot (M)’ branch of InterHand2.6M V1.0 dataset. MPJPE (mm) is adopted to
evaluate the 3D joint estimation accuracy.

Methods
Train (M, IH26M-SH) Train (M, IH26M-SH +AIH)

IH26M-IH IH26M-ALL IH26M-IH IH26M-ALL

SHPE [39] 40.98 25.78 32.27 21.66
+HDR (Ours) 25.45 17.98 24.59 17.80

Table 4. Effect of HDR Framework. Experiments are conducted on the ‘ALL’
branch of InterHand2.6M V1.0 dataset. MPJPE (mm) is adopted to evaluate the 3D
joint estimation accuracy.

Methods
Train (ALL, IH26M-SH) Train (ALL, IH26M-SH +AIH)
IH26M-IH IH26M-ALL IH26M-IH IH26M-ALL

SHPE [39] 39.96 25.90 30.23 20.93
+HDR (Ours) 25.93 18.39 23.99 17.58

a novel Hand De-occlusion and Removal (HDR) framework to perform hand
de-occlusion and distractor removal. In Table 3, we show that our approach sig-
nificantly improves upon the SHPE baseline in interacting hand scenarios, e.g.
from 40.98mm to 25.45mm (M, IH26M-IH). We find that adding AIH dataset for
training will further improve the performance of SHPE, which validates the effect
of AIH dataset. Experiments on the ‘ALL’ branch have a similar phenomenon.

5.5 Ablation Study

In this section, we conduct ablation studies to evaluate the effectiveness of the
key components of our approach on the ‘machine annot (M)’ branch of Inter-
Hand2.6M V1.0 dataset [21]. For fair comparisons, in all the ablation experi-
ments, we use the same SHPE [39] trained on the IH26M-SH set.

Analysis of Hand De-occlusion and Removal (HDR) Module. There
are two major challenges of hand pose estimation in interacting scenarios, i.e.
severe self-occlusion, and ambiguity caused by the homogeneous appearance of
hands. As shown in Table 5, #1, #2, #3, and #8, we conduct ablative ex-
periments to quantitatively evaluate the effect of De-occlusion and Removal.
Comparing #2 and #8, we observe that disabling ‘Removal’ will dramatically
increase the MPJPE by 34.4%. Comparing #3 and #8, we see that disabling
‘De-occlusion’ increases the MPJPE by 9.5%. If we only apply SHPE [39] without
HDR, the errors are further increased. These results clearly show that (1) state-
of-the-art SHPE [39] is sensitive to self-occlusions and inter-hand ambiguities
(2) HDRM is effective in handling the aforementioned two major challenges.

Analysis of Model Design Choices. We empirically validate the model
design choice of HDRNet, especially Discriminator and the Transformer block.
Discriminator is applied to enhance the image recovery quality by adversarial
training. Comparing #4 and #8 in Table 5, we observe that although Discrim-
inator helps in improving the quality of the recovered image, its influence on
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Table 5. Ablation Studies. Experiments are conducted on the ‘machine annot (M)’
branch of InterHand2.6M V1.0 dataset. We use MPJPE (mm) to evaluate the 3D joint
estimation accuracy. ∆ means the absolute (and relative) difference compared with our
final model #8. ‘w/o’ is short for ‘without’.

Methods MPJPE (mm) ∆

#1 SHPE [39] only 25.78 +7.80 (43.4%)
#2 w/o Removal 24.16 +6.18 (34.4%)
#3 w/o De-occlusion 19.69 +1.71 (9.5%)

#4 w/o Discriminator 18.11 +0.13 (0.7%)
#5 w/o Transformer Block 18.85 +0.87 (4.8%)

#6 AIH Render only 18.10 +0.12 (0.7%)
#7 AIH Syn only 18.35 +0.37 (2.1%)

#8 Ours 17.98 -

the final results is only marginal (0.7%). The Transformer block enhances image
feature interactions, enlarges the receptive fields, and focuses more on important
image regions. Comparing #5 and #8 in Table 5, we see that without using the
Transformer block impacts the final results by a clear margin (4.8%).

Analysis of AIH Syn and AIH Render. Our proposed AIH dataset is
composed of two subsets, namely AIH Syn and AIH Render. Both have their own
advantages and disadvantages. AIH Syn retains more detailed and realistic ap-
pearance features, while AIH Render considers the inter-dependencies between
two hands to avoid physically implausible configurations. Using a combination
of these two sets to train the HDRNet will achieve the best performance. In
Table 5, comparing #6, #7, and #8, we compare different training settings for
HDRNet. We notice that it already achieves reasonably good results even if we
only use one of the two sets. For example, using “AIH Render only” to train
HDRNet, we can achieve 18.10 MPJPE (mm), which is only marginally worse
than the final model #8. We also empirically find that “AIH Render” seems to
have a larger impact on the final results than “AIH Syn” does.

5.6 Time Complexity Analysis

We analyze the time cost on one Tesla P40 GPU in a single thread. On average,
HASM, HDRM, and SHPE take 12.6 ms, 0.6 ms, and 34.0 ms per frame (includ-
ing two hands) respectively. The time cost of HDRM (our major contribution)
is only a small proportion of the total time cost (0.6 vs 47.2 ms).

5.7 Qualitative Results

In Fig. 5, we provide qualitative analysis on InterHand2.6M [21] and Tzionas
dataset [30] to illustrate how HDR helps in handling severe hand-hand occlu-
sion and the homogeneous appearance of hands. We see that HDR recovers the
appearance in the occluded region and removes the distractor in challenging
hand-hand occlusion cases. The results on Tzionas dataset [30] further validates
the generalization ability of our proposed framework.
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Baseline
Predicted 
3D Pose

HDR 
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2D Pose

Ours
Predicted 
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(a) InterHand2.6M (b) Tzionas

Fig. 5. Qualitive results of how HDR helps in handling severe hand-hand occlusion
and appearance ambiguities of two hands. Best viewed in color.

6 Conclusions and Limitations

Interacting hand pose estimation is important but challenging due to severe
hand-to-hand occlusion and ambiguity caused by the other distracting hand. In
this paper, we propose to decompose the task into two relatively simple sub-
tasks, i.e. (1) Hand De-occlusion and Removal (HDR), (2) Single Hand Pose
Estimation (SHPE). Through HDR, we can simplify the case, which an off-the-
shelf SHPE can handle. We empirically verified the effectiveness of our HDR
framework on the InterHand2.6M and Tzionas dataset. Our limitations mainly
lie in artifacts produced by HDRM. Improving the image recovery quality re-
quires efforts in various research fields, which we will explore in the future.
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