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Abstract. Existing works on 2D pose estimation mainly focus on a cer-
tain category, e.g. human, animal, and vehicle. However, there are lots of
application scenarios that require detecting the poses/keypoints of the
unseen class of objects. In this paper, we introduce the task of Category-
Agnostic Pose Estimation (CAPE), which aims to create a pose estima-
tion model capable of detecting the pose of any class of object given only
a few samples with keypoint definition. To achieve this goal, we formulate
the pose estimation problem as a keypoint matching problem and design
a novel CAPE framework, termed POse Matching Network (POMNet).
A transformer-based Keypoint Interaction Module (KIM) is proposed
to capture both the interactions among different keypoints and the re-
lationship between the support and query images. We also introduce
Multi-category Pose (MP-100) dataset, which is a 2D pose dataset of 100
object categories containing over 20K instances and is well-designed for
developing CAPE algorithms. Experiments show that our method out-
performs other baseline approaches by a large margin. Codes and data
are available at https://github.com/luminxu/Pose-for-Everything.
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1 Introduction

2D pose estimation (also referred to as keypoint localization) aims to predict the
locations of the pre-defined semantic parts of an instance. It has received great
attention in the computer vision community in recent years because of its broad
application scenarios in both academia and industry. For example, human pose
estimation [2] has been widely used in virtual reality (VR) and augmented reality
(AR); animal pose estimation [67] is of great significance in zoology and wildlife
conservation; vehicle pose estimation [44] is critical for autonomous driving.
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Fig. 1: Category-Specific Pose Estimation vs Class-Agnostic Pose Estimation
(CAPE). (a) Traditional pose estimation task is category-specific. Pose esti-
mators are trained on the dataset containing objects of a single category, and
can only predict the poses of that category. (b) CAPE task requires the pose
estimator to detect poses of arbitrary category given the keypoint definition.
After training on the pose dataset containing multi-category objects, the pose
estimators can generalize to novel categories given one or a few support images.

The real-world applications from different fields often involve detecting the
poses of a variety of novel objects of interest. For example, biologists may study
the plant growth by analyzing the poses of plants. However, traditional pose
estimators are category-specific and can only be applied to the category that
they are trained on. In order to detect poses of novel objects, users have to
collect a huge amount of labeled data and design category-specific pose estima-
tion models, which is time-consuming and laborious. To make matters worse,
data collection for rare objects (e.g. endangered animals) and semantic keypoint
annotation for cases that need domain knowledge (e.g. medical images) are ex-
tremely challenging. Therefore, there is increasing demand for developing pose
estimation approaches that can generalize across different categories.

In this paper, we introduce an important yet challenging task, termed Category-
Agnostic Pose Estimation (CAPE). As shown in Fig. 1, unlike traditional pose
estimation methods that can only predict the poses of a specific category, CAPE
aims at using a single model for detecting poses of any category. Given a sup-
port image of a novel category and the corresponding keypoint definition, the
class-agnostic pose estimator predicts the pose of the same category in the query
image. In this way, the pose of any object of interest can be generated accord-
ing to the arbitrary keypoint definition. The huge cost of data collection, model
training and parameter tuning for each novel class is greatly reduced.

There are several challenges preventing the computer vision community from
designing systems capable of predicting the poses of a large number of object
categories. First, most pose estimation approaches [50] treat it as a supervised
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regression task, requiring thousands of labeled images to learn to map an in-
put image to keypoint locations. Second, different objects may have different
keypoint definition and unknown number of keypoints. It is non-trivial to learn
the unique output representations and utilize the structural information. Third,
there are few to none large-scale pose estimation datasets with many visual
categories for the development of a general pose estimation method. Previous
datasets mostly consist of only one category (e.g. human body).

In this paper, we take the first step towards CAPE and propose a novel
framework, termed POse Matching Network (POMNet). POMNet formulates
the 2D pose estimation task as a matching problem. The keypoint features are
extracted from the support images based on the reference keypoint definition,
and the image features are extracted from the query image. Matching Head
(MH) is designed, which integrates the support keypoint features and the query
image features, to estimate the keypoint positions with the maximal possibility.
In this way, the model is agnostic to the object category and can be used for any
number of keypoints. A transformer-based Keypoint Interaction Module (KIM)
is also proposed to capture both the connections among different keypoints and
the relationship between the support and query images. The features of different
keypoints mutually interact with each other to learn their inherent structure for
the given object category. The keypoint features are further aligned with the
query image features for better matching. Experimental results show that our
model significantly outperforms the other baseline models by a large margin.

In order to train and evaluate the class-agnostic pose estimators, we collect
a large-scale pose dataset called Multi-category Pose (MP-100) dataset. The
dataset contains over 20K instances, covering 100 sub-categories (e.g. vinegar
fly body, sofa, suv, and skirt) and 8 super-categories (e.g. animal face, furniture,
vehicle, and clothes). To our best knowledge, it is the first benchmark that
contains the pose annotation of multiple visual (super-)categories.

The main contributions of our work are three-folds.

– We introduce an important yet challenging task termed Category-Agnostic
Pose Estimation (CAPE). CAPE requires the model to predict the poses of
any objects given a few support images with keypoint definition.

– We propose the novel CAPE framework, namely POse Matching Network
(POMNet), and formulate the keypoint detection task as a matching prob-
lem. Keypoint Interaction Module (KIM) is proposed to capture both the
keypoint-level relationship and the support-query relationship.

– We build the first large-scale multi-(super-)category dataset for the task of
CAPE, termed Multi-category Pose (MP-100), to boost the related research.

2 Related Works

2.1 2D Pose Estimation

There are two types of keypoints in computer vision community. Semantic points
are points with clear semantic meanings (e.g. the left eye), while interest points
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Animal Face
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Human Face

Vehicle

Human Hand

Furniture

Clothes

Dataset #Images Dataset #Images

AnimalWeb [22] 21.9K 300VW [46] 218K
ATRW [28] 9.5K AFLW [24] 25K

Horse-10 [34] 8.1K 300W [45] 3.8K
Animal-Pose [4] 6.1K WFLW [61] 10K

MacaquePose [25] 13K InterHand2.6M [35] 2.6M
AP-10K [67] 10K RHD [75] 41K
CUB-200 [58] 12K CMU Panoptic [47] 15K

PoseTrack18 [1] 23K OneHand10K [55] 10K
AI Challenger [59] 300K FreiHand [76] 130K

CrowdPose [27] 20K SynthHands [37] 63K
OCHuman [72] 4.7K GANerated [36] 330K

COCO [30] 200K ApolloCar3D [49] 70K
MPII [2] 25K CarFusion [44] 63K

JHMDB [16] 31K Keypoint-5 [60] 10K
MHP [73] 25K DeepFashion2 [12] 80K

Menpo [69] 9K

Fig. 2: Categories and image numbers for popular 2D pose estimation datasets.

are low-level points (e.g. corner points). 2D pose estimation focuses on pre-
dicting the semantic points of objects, e.g. human body parts [10,21,30], facial
landmarks [3], hand keypoints [75], and animal poses [4]. However, current pose
estimation methods and datasets [12,30,67] only focus on keypoints of a single
super-category and can not support cross-category/unseen pose estimation.

2D Pose Estimation Method. Existing methods can be classified into
two categories: regression-based methods [26,40,51,52] and heatmap-based meth-
ods [6,7,8,18,19,20,27,39,50,57,62]. Regression-based approaches directly map
the image to keypoint coordinates. Such methods are flexible and efficient for
real-time applications. However, they are vulnerable to occlusion and motion
blur, resulting in inferior performance. Heatmap-based approaches use likeli-
hood heatmaps to encode the keypoint location. Because of excellent localiza-
tion precision, heatmap-based methods are dominant in the field of 2D pose
estimation. Recent works on pose estimation mostly focus on designing powerful
convolutional neural networks [6,8,39,50,57,62,63] or transformer-based archi-
tectures [29,33,65,68,70]. However, they only focus on detecting the keypoints
of object categories that appear during training. In comparison, our model is
capable of detecting the keypoints of arbitrary objects of unseen classes.

2D Pose Estimation Benchmark. Existing 2D pose estimation datasets
only focus on a single super-category. As shown in Fig. 2, most attentions have
been focused on human-related categories (e.g. human body [1,2,16,27,30,59,72,73],
human face [24,45,46,61,69], and human hand [35,36,37,47,55,75,76]), and there
are numerous large-scale datasets for these classes. For other long-tailed cat-
egories, the datasets are relatively limited in terms of both the dataset sizes
and diversity. Nevertheless, analyzing these long-tailed object categories is of
great significance in both academia and industry. For example, vehicle pose
estimation [44,49] is important for autonomous driving. Animal pose estima-
tion [4,25,28,34,58,67] is of great significance in zoology and wildlife conserva-
tion. Indoor furniture pose estimation [60] is important for developing household
robots. In this paper, we build the first large-scale benchmark (MP-100 dataset)
that contains the pose annotations of a wide range of visual super-categories.
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2.2 Category-agnostic Estimation

Category-agnostic estimation has been applied to many computer vision tasks,
including detection [17], segmentation [71], object counting [31,66] and viewpoint
estimation [74]. Our work is mostly related to StarMap [74], which proposes
category-agnostic 3D keypoint representations encoded with canonical view lo-
cations. However, StarMap is only applicable for rigid objects (e.g. furniture),
and relies on several expensive 3D CAD models of the target category to identify
the predicted keypoint proposals. In comparison, CAPE aims at predicting 2D
poses of any object category (both rigid and flexible) according to any manual
keypoint definition given by one or a few support images.

2.3 Few-shot Learning

Few-shot learning [32] aims at learning novel classes using only a few examples.
Recent few-shot learning approaches can be roughly classified into three cate-
gories, i.e. metric-learning-based approaches [48,54,64], meta-learning-based ap-
proaches [11,43], and data-augmentation-based approaches [14].Metric-learning-
based Approaches. Prototypical networks [48] learn the prototype (embedding
features) of each class in the support data and then classify query data as the
class whose prototype is the “nearest”. Meta-learning-based Approaches. Model-
agnostic meta-learning [11] and LSTM-based meta-learner [43] aim at search-
ing for a set of good initialization weights, such that the classifier can rapidly
generalize to novel tasks by fine-tuning on only a few support samples. Data-
augmentation-based Approaches. [14,56] generate synthetic examples of novel
classes to improve the performance by using these synthetic examples for re-
training. Our approach belongs to metric-learning-based approaches. It is the
first framework towards CAPE. Besides, Keypoint Interaction Module (KIM) is
specifically designed for CAPE to capture both the relationship among different
keypoints and the relationship between support and query images.

3 Class-Agnostic Pose Estimation (CAPE)

3.1 Problem Definition

This paper introduces a novel task, termed class-agnostic pose estimation (CAPE).
Unlike existing pose estimation tasks that predict keypoints of a single known/seen
(super-)category, CAPE requires a single model to detect keypoints of arbitrary
category. More specifically, given one or a few support samples with keypoint def-
inition of an unseen category, object keypoints of this category can be detected
without labeling large-scale supervisions and retraining models, significantly re-
ducing the cost of data annotation and parameter tuning.

In order to validate the generalization capacity of CAPE models on unseen
categories, they are trained on the base categories but evaluated on novel cate-
gories. The base categories and the novel categories are mutually exclusive, where
the novel categories on the test set do not appear in the training data. During
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testing, CAPE models are provided with K labeled support samples of an un-
seen category. The models are required to detect the poses of the query samples
that are of the same category as the support samples. In this sense, CAPE task
can be viewed as a K-shot pose estimation problem. Especially, when K = 1, it
is one-shot pose estimation.

3.2 POse Matching Network (POMNet)

Traditional pose estimators can be applied to neither the unseen object categories
nor different keypoint definitions of the same class (e.g. 19-keypoint human face
definition and 68-keypoint human face definition). To achieve CAPE, we for-
mulate the task as a matching problem and propose a novel framework termed
POse Matching Network (POMNet). POMNet works by computing the match-
ing similarity between the reference support keypoint features and the query
image features at each location. Therefore, POMNet is capable of handling var-
ious categories with different keypoint numbers and definitions. As shown in
Fig. 3, POMNet consists of three parts, i.e. the feature extractors (ΘS and ΘQ),
Keypoint Interaction Module (KIM), and Matching Head (MH).

Feature Extractor. We employ two parallel feature extractors to extract
the support keypoint features and the query image features. In our implementa-
tion, ResNet-50 [15] pre-trained on ImageNet dataset is used as the backbone.

For the support image IS , the feature extractor ΘS is utilized to extract the
support image features FS = ΘS(IS). The keypoint annotations of the support
sample are provided in the heatmap representations. We denote the ground-
truth heatmaps of the support sample as H∗

S , and H∗j
S ∈ RH×W×1 represents

the heatmap of the jth keypoint. Given the support image features and the
ground-truth heatmaps of the support sample, we can obtain the corresponding
keypoint features as follows.

ˆFj
S = AvgPool(Upsample(FS)⊗H∗j

S ), j = 1, 2, ..., J (1)

where FS ∈ Rh×w×c and F̂ j
S ∈ R1×1×c denote the support image features and

the jth keypoint features respectively. Upsample() is the up-sampling operation
that reshapes the support image features to the same size of the corresponding
heatmaps. ⊗ denotes pixel-wise multiplication. AvgPool() is the average pooling
operation that aggregates the support image features around the ground-truth
keypoint position via weighted mean. J is the number of reference keypoints.

For the query image IQ, we follow a similar pipeline and apply the feature
extractor ΘQ to extract the query image features FQ = ΘQ(IQ). We collapse
the spatial dimensions of the query image features and reshape them into a
sequence. The extracted image features are then used to refine the support key-
point features in Keypoint Interaction Module (KIM) and to predict the keypoint
localization in Matching Head (MH).

Keypoint Interaction Module (KIM). KIM targets at enhancing the
support keypoint features through efficient attention mechanisms. We first re-
duce the channel dimension of support keypoint features by a fully-connected
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Fig. 3: Overview of POse Matching Network (POMNet). Feature extractors ΘS

and ΘQ extract the support keypoint features and the query image features
respectively. Keypoint Interaction Module (KIM) refines the keypoint features
by message passing among keypoints and capturing the relationship between the
query and support images. Matching Head (MH) integrates the refined keypoint
features and the query image features to predict the keypoint localization in the
query image. MSE loss is applied to supervise the model.

layer and input the features of different keypoints as a sequence. As the key-
point numbers of different categories are different, several dummy features with
padding mask are added at the end to keep a fixed number L of input fea-
tures (L = 100 in our implementation), which enables KIM to adapt to various
keypoint numbers. KIM has three transformer blocks, each of which consists
of two major components, i.e. Self-Attn. and Cross-Attn. Self-Attn. The self-
attention layer [53] learns to exchange information among keypoints and utilize
inherent object structures. It allows the keypoint features to interact with each
other, and aggregate these interactions using the attention weights. Cross-Attn.
The keypoint features also interact with the query image features to align the
feature representations and mitigate the representation gap. Specifically, a cross-
attention layer [5] is applied to aggregate useful information in the query image.
The keypoint features are input as query, and the flattened query image features
are input as the key and the value. The channel dimension of the query image fea-
tures are reduced to match the channel dimension of the keypoint features, and
the sinusoidal position embedding [41,53] is supplemented to the query image
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features. A feed forward network (FFN) is also included following the common
practice [53]. As a result, the support keypoint features are processed and refined

by KIM, { ¯F j
S}Lj=1 = KIM({ ˆF j

S}Lj=1,FQ).We exclude the dummy padding ones

and obtain the refined keypoint features { ¯F j
S}Jj=1 by selecting the first J valid

keypoint features, where J ≤ L.
Matching Head (MH). Given the refined keypoint features as the refer-

ence, Matching Head (MH) targets at seeking the best matching positions in the
query image that are encoded with heatmaps.

We expand the refined keypoint features to the same spatial shape as the
query image features FQ. The expanded features are then concatenated with
the query image features. Finally, a decoder ΘM is employed to estimate the
keypoint heatmaps. This procedure can be formulated as follows.

Hj
Q = ΘM (Expand(

¯F j
S)⊕FQ), j = 1, 2, ..., J. (2)

where ⊕ refers to the channel-wise concatenation. Expand() denotes the spatial
expansion operation, i.e. copying the refined keypoint features spatially to fit in
the spatial size of the query image features. Hj

Q is the predicted heatmap of the
jth keypoint. The decoder ΘM consists of one 3× 3 convolutional layer, followed
by deconvolutional layers for higher resolution as the common practice [62].
Pixel-wise mean squared error (MSE) loss is applied to supervise POMNet.

LMSE =
1

JHW

J∑
j=1

∑
p

∥Hj
Q(p)−H∗j

Q (p)∥22, (3)

where H and W refer to the height and width of heatmaps. Hj
Q(p) and H∗j

Q (p)
are the predicted and the ground-truth pixel intensity at the position p.

Extension to K-shot. When K (K > 1) support images are available, we
first extract the support keypoint features for each sample individually, and then
calculate the mean among the K samples. The subsequent pipeline (including
KIM and MH) is exactly the same as that of the 1-shot setting. With more
support images, POMNet is able to capture more robust keypoint features to
handle the intra-category variance and the ambiguity of the keypoint definition.

4 Mulit-category Pose (MP-100) Dataset

Previous pose estimation datasets only consist of objects of one (super-)category
and there are no existing datasets for CAPE task. We therefore construct the
first large-scale pose dataset containing objects of multiple super-categories,
termed Multi-category Pose (MP-100). In total, MP-100 dataset covers 100 sub-
categories and 8 super-categories (human hand, human face, human body, animal
body, animal face, clothes, furniture, and vehicle) as shown in Fig. 4.

Over 18K images and 20K annotations are collected from several popular 2D
pose datasets, including COCO [30], 300W [45], AFLW [24], OneHand10K [55],
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Fig. 4: MP-100 dataset covers 100 sub-categories and 8 super-categories (human
hand & face & body, animal face & body, clothes, furniture, and vehicle).
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Fig. 5: Histogram for instance number of each category on MP-100 dataset.

DeepFasion2 [12], AP-10K [67], MacaquePose [25], Vinegar Fly [42], Desert Lo-
cust [13], CUB-200 [58], CarFusion [44], AnimalWeb [22], and Keypoint-5 [60].
Keypoint numbers are diverse across different categories, ranging from 8 to 68.

We split the collected 100 categories into train/val/test sets (70 for train,
10 for val, and 20 for test). Following the common settings, we form five splits
whose test sets are non-overlapping and evaluate the average model performance
on the five splits. In this case, each category is tested as novel one on different
splits and the category bias is avoided. Moreover, to treat all categories equally,
we try our best to balance the number of instances among different categories.

For the test set on each split, 2K samples are selected with 100 instances in
each category. And for train/val set, 14K/2K samples are chosen for 70/10 cat-
egories respectively. As the number of instances available for different categories
are extremely diverse and there are rare categories with less than 200 instances,
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we minimize the standard deviation of the instance number of all the categories.
During sample selection, for each category, we give preference to the instances
with more valid keypoints labeled and larger image resolution. In Fig. 5, we
demonstrate the histogram plot for the number of instances of each category on
MP-100 dataset. The number of instances for each category is roughly balanced.

5 Experiments

5.1 Implementation Details

For each split on MP-100 dataset, we train POMNet on the train set, validate
the performance on the val set, and finally evaluate the model on the test set.
Note that the categories of the train/val/test set are mutually exclusive. During
training, the support images and the query images of the same category are ran-
domly paired. Each object of interest is cropped according to the bounding box
and is resized to 256 × 256. Data augmentation with random scaling ([−15%,
15%]) and random rotation ([−15◦, 15◦]) is applied to improve the model gener-
alization ability. The training is conducted on 8 GPUs with a batch size of 16 in
each GPU for 210 epochs. We follow MMPose [9] to adopt Adam optimizer [23]
with the base learning rate of 1e-3 and decay the learning rate to 1e-4 and 1e-5
respectively at the 170th and 200th epochs. During testing, we sample 3,000
random episodes for each novel category. Since there are 20 test categories for
each split, we construct a total of 60,000 episodes for evaluation.

PCK (Probability of Correct Keypoint) is a popular metric for pose estima-
tion. If the normalized distance between the predicted keypoint and the ground-
truth keypoint is less than a certain threshold (σ), it is considered correct.

PCK =
1

N

N∑
i=1

1

(
∥pi − p∗i ∥2

d
≤ σ

)
, (4)

where pi and p∗i are predicted and ground-truth keypoint locations respectively.
1(·) is the indicator function. d is the longest side of the ground-truth bounding
box, which is used as the normalization term. The correct ratio of the overall N
keypoints is calculated. In the experiments, we report the average PCK@0.2 (σ
= 0.2) of all the categories in each split. In order to minimize the category bias,
the mean PCK result of all the 5 splits is also reported.

5.2 Benchmark Results on MP-100 Dataset

Class-Agnostic Pose Estimation (CAPE) is a new task that has not been tackled
before. We tailor the existing few-shot learning baseline approaches, including
Prototypical Networks [48], Finetune [38], and MAML [11] to address this new
task. For fair comparisons, all baselines employ the same backbone network
architecture (ResNet-50 [15]) as ours.

Prototypical Networks (ProtoNet) [48]. ProtoNet is a popular few-shot
image classification approach, which constructs a prototype for each class and
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Table 1: Comparisons with the baseline methods on MP-100 dataset under both
5-shot and 1-shot settings. POMNet significantly outperforms other approaches.

5-Shot Split1 Split2 Split3 Split4 Split5 Mean (PCK)

ProtoNet [48] 60.31 53.51 61.92 58.44 58.61 58.56
MAML [11] 70.03 55.98 63.21 64.79 58.47 62.50

Fine-tune [38] 71.67 57.84 66.76 66.53 60.24 64.61
POMNet (Ours) 84.72 79.61 78.00 80.38 80.85 80.71

1-Shot Split1 Split2 Split3 Split4 Split5 Mean (PCK)

ProtoNet [48] 46.05 40.84 49.13 43.34 44.54 44.78
MAML [11] 68.14 54.72 64.19 63.24 57.20 61.50

Fine-tune [38] 70.60 57.04 66.06 65.00 59.20 63.58
POMNet (Ours) 84.23 78.25 78.17 78.68 79.17 79.70

the query example is assigned to the class whose prototype is the “nearest”. To
solve CAPE, we adapt ProtoNet to construct a prototype for each keypoint and
find the location whose features are closest to the prototype in the query image.
Unlike image classification, both the receptive fields and the spatial resolution of
the features are critical for pose estimation. We empirically find that the features
from Stage-3 achieve a good balance of these two factors among all the 4 stages.

Fine-tune [38]. The model is first pre-trained using a combination of all
base categories on the train set. During testing, the model is fine-tuned on the
support images of the novel category before estimating the pose of the query
images. To handle the problem of various number of keypoints, the model is
designed to output the maximum number of keypoints among all the categories,
i.e. 68 on MP-100 dataset, and only the few valid keypoints are supervised for
each particular category during training and fine-tuning.

Model-Agnostic Meta-Learning (MAML) [11]. Through meta training,
the MAML model is explicitly trained to search for a good initialization such
that its parameters can quickly adapt to the given category by fine-tuning on
several support images. Similar to Fine-tune [38], the number of keypoints of
the model is set as 68. During meta testing, the model can rapidly adapt to the
novel categories given a few support images.

As shown in Table 1, our proposed POMNet shows superiority over the ex-
isting few-shot learning based approaches on the task of Class-Agnostic Pose Es-
timation (CAPE). We first conduct experimental comparisons under the 5-shot
setting. We observe that ProtoNet [48] mostly relies on low-level appearance
features and encounters difficulties in constructing a reliable prototype using
only 5 samples for all the keypoints. It processes each type of keypoint indi-
vidually and does not utilize the structural information, restricting its upper
bound performance. MAML [11] and Fine-tune [38] adapt to the novel object
category by fine-tuning on a few samples during testing. However, the limited
number of samples makes it hard for the model to achieve good performance on
the novel categories due to severe over-fitting or under-fitting problems. Our pro-
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Table 2: Cross super-category evaluation (PCK). POMNet outperforms other
methods. But there is still large room for improvement on the rare categories.

Method Human Body Human Face Vehicle Furniture

ProtoNet [48] 37.61 57.80 28.35 42.64
MAML [11] 51.93 25.72 17.68 20.09

Fine-tune [38] 52.11 25.53 17.46 20.76
POMNet (Ours) 73.82 79.63 34.92 47.27

posed POMNet considers the CAPE task as a matching problem, decoupling the
model from the object category and the number of keypoints. In the meanwhile,
KIM explicitly captures the relationship among keypoints and the structure of
the object of interest. As a result, POMNet achieves 80.71 PCK on the novel
categories under 5-shot settings, and outperforms the baseline methods by a
large margin (over 25% improvement).

When the number of sample images decreases to one, the degeneration of
our POMNet is only 1.3% (79.70 vs 80.71 PCK). This is presumably because
POMNet captures the relationship among semantic keypoints and is more robust
to occlusion and visual ambiguity. In comparison, ProtoNet requires building the
prototype based on a single keypoint, thus is more sensitive to the appearance
variation, resulting in a larger performance drop (44.78 vs 58.46 PCK).

5.3 Cross Super-Category Pose Estimation

In order to further evaluate the generalization ability, we conduct the cross super-
category pose estimation evaluation with the “Leave-One-Out” strategy. That is,
we train the model on all but one super-categories on MP-100 dataset, and eval-
uate the performance on the remaining one super-category. The super-categories
to be evaluated include human body, human face, vehicle, and furniture.

As shown in Table 2, our proposed POMNet outperforms the baseline meth-
ods on all the super-categories, demonstrating stronger generalization ability.
However, super-category generalization is challenging and there is still a large
room for improvement. We notice that all the methods perform poorly on the
super-categories of vehicle and furniture. This is possibly because these cate-
gories are very different from the training ones and the extracted features are
not discriminative enough. There are a great number of invisible keypoints for ve-
hicle, and the intra-class variation between images is large for furniture, making
these two super-categories more challenging. Solving CAPE requires to handle
occlusion and intra-class appearance variation, and extract more discriminative
features for unseen categories. We will explore these directions in the future.

5.4 Ablation Study

Effect of model components. Table 3 shows the effect of Keypoint Interac-
tion Module (KIM) and Matching Head (MH). Comparing #1 and #5, we find
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Table 3: Ablation study of proposed components on MP-100 Split1 under 1-shot
setting. KIM and MH significantly improve the model performance.

Self-Atten. Cross-Atten. Matching Head PCK

#1
√

74.40
#2

√ √
79.19

#3
√ √

80.76
#4

√ √
82.92

#5
√ √ √

84.23

that KIM significantly improves the CAPE model performance (13.2% improve-
ment). #3 and #4 show the effect of self-attention and cross-attention design,
respectively. Especially, the 11.5% gain from #1 to #4 shows that message
passing among keypoints by self-attention greatly benefits keypoint localization.
Comparison between #2 and #5 verifies the necessity of MH. #2 replaces MH
by matrix multiplication between support keypoint features and query image
features. It collapses the channel dimension to 1 for each keypoint, causing un-
desirable information loss required for precise localization.

Table 4: Left: Effect of training category number (“#Train”) under 1-shot set-
ting. Evaluation is conducted on a novel category (“human body”). Right: Both
training and testing are on “human body” only.

#Train 1 9 49 99 Oracle SBL-Res50 [60]

PCK 39.32 55.74 70.46 73.82 89.79 89.76

Effect of training category number. As shown in Table 4 Left, more
training categories leads to better generalizability to the novel category, which
validates the necessity of MP-100 dataset and the rationality of our experiments.

Sanity check. We perform traditional one class pose estimation as a san-
ity check. In Table 4 Right, “Oracle” means POMNet trained and tested on
the same category (“human body”) only. It performs comparable with SBL-
Res50 [15], which demonstrates the correctness of our design choices.

5.5 Qualitative Results

In Fig. 6, we qualitatively evaluate the generalization ability of POMNet to
the novel categories on MP-100 test sets. Our method is robust to perspective
variation and appearance diversity. Typical failure cases include appearance am-
biguity (the first two examples) and severe occlusion (the 3rd example).
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Support Image Query Image

Fig. 6: Qualitative results of POMNet on unseen categories. The first column
shows the manually annotated support samples, and the others are the predicted
query samples. The last column shows some failure cases (in RED circles).

6 Conclusions and Limitations

This paper introduces a novel task, termed Category-Agnostic Pose Estimation
(CAPE). The idea of CAPE can benefit a wide range of application scenarios.
It would not only promote the development of pose estimation (e.g. pseudo-
labeling for novel categories), but also enable the researchers in the other fields
to detect keypoints of objects they are interested in (e.g. plants). Besides, it
may also make broader positive impacts for other computer vision tasks. For
example, CAPE models can be developed for keypoint-based object tracking,
contour-based instance segmentation, and graph matching. To achieve this goal,
we propose the first CAPE framework, POse Matching Network (POMNet),
and the first dataset for CAPE task, Multi-category Pose (MP-100). Experi-
ments show that POMNet significantly outperforms the other approaches on
MP-100 dataset. However, there are still many remaining challenges, e.g. the
generalization performance on rare categories, intra-class appearance variation,
self-occlusion, and appearance ambiguity. In conclusion, CAPE, as an important
yet challenging task, is worth more research attention and further exploration.
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