
Estimating Spatially-Varying Lighting in Urban
Scenes with Disentangled Representation

(Supplemental Material)

Jiajun Tang1, Yongjie Zhu2, Haoyu Wang1, Jun Hoong Chan1,
Si Li2, and Boxin Shi1,3 �

1 NERCVT, School of Computer Science, Peking University
2 School of Artificial Intelligence, Beijing University of Posts and Telecommunications

3 Peng Cheng Laboratory

In this supplementary material, we provide more details about our data
collection, implementation details and network architectures. We also show
additional results on our enhanced synthetic dataset, captured real data and
collected in-the-wild data.

7 Appendix

7.1 Data Collection Details

For synthetic data generation, we collect 30 PBR materials from ambientCG [1]
in 4 categories: bricks, concrete, pavement, and grass field; we then mark the 3D
city model with the category labels and randomly replace the materials following
the category labels in Blender [2]4. After material enhancement, we follow the
camera sampling and rendering process proposed in SOLID-Net [13]. Specifically,
the view point (x, y, z) of the local lighting is 10 cm away from the surface at
the designated pixel position (u, v) along its normal.

When capturing the real data of the outdoor spatially-varying lighting, we
use a level to ensure we capture the correct sun elevation angle relative to the
skyline and we use a compass to ensure we capture the correct sun azimuth angle
in the panoramas relative to the observation direction of the limited-FoV images.
Due to the long capture time and the moving clouds, we discard the data if the
lighting environment changes largely in its capture process, which makes our
data capture very time-consuming, especially in (partly-)cloudy weathers.

7.2 Implementation Details

In our implementation, we use 128 parameters in total to model spatially-varying
lighting. Among them, zsky ∈ R16, zsun ∈ R45, Msun is determined by 2 parame-
ters, zlocal ∈ R64, and we treat the spatially-varying sun visibility zvis as another
parameter. The image resolutions are 320× 240 for limited-FoV images I and
128× 64 for panoramic maps (128× 32 for panoramic maps of the sky-dome).

4 We use the PBR materials in Blender following the document at https://docs.

ambientcg.com/books/using-the-assets/page/pbr-materials-in-blender

https://docs.ambientcg.com/books/using-the-assets/page/pbr-materials-in-blender
https://docs.ambientcg.com/books/using-the-assets/page/pbr-materials-in-blender

18 J. Tang et al.

Our full pipeline is implemented in PyTorch [10] and trained step-wise. We
first train our global lighting encoder-decoder on Laval Sky dataset [6] for 30
epochs and finetune on the mixture of Laval Sky dataset [6] and our global
lighting data for 5 epochs. Then we extract the global lighting codes zsky and
zsun of our global lighting data and train our local content encoder-renderer using
our local-global paired data for 20 epochs. At last, the local lighting data are
encoded into zlocal and we train our spatially-varying lighting estimator using
these code labels for 20 epochs. When training the global lighting encoder-decoder
and the local content encoder-renderer, we apply the radiometric distortion [3]
and random rotation at the probability of 0.5 and 0.6 respectively, and we use
the ground truth sun position as input, leaving the sun position estimation as
a disentangled task in the estimator. The batch size is set to 16 in all of our
experiments. The sun position map Msun has the resolution of 128× 32 and only
the 8× 8 patch at the (predicted) sun position is set as 1 otherwise 0. We use
Adam optimizer [5] in all of our experiments, the initial learning rates are set to
4× 10−3 and are halved every 5 epochs.

Since outdoor HDR images have extremely bright intensities in sun pixels,
for a more stable training using CNN, all HDR images are tone-mapped before
being fed into the networks [4]:

T =
log (1 + µH)

log (1 + µ)
, (6)

where linear HDR images H are mapped into log-compressed images T , and we
empirically set µ = 16.

7.3 Sun Visibility Mask

In our proposed methos, we unify the occlusion and weather factors into one
sun visibility component. The sun visibility mask Mvis used in our method has
the same resolution as the limited-FoV image I and indicates whether a pixel
position is directly illuminated by the sun light, which is not identical to a
shadow mask in non-sunny weathers. However it’s hard to get the accurate mask
strictly following the aforementioned definition. To get the approximate mask
for training supervision, we use the Lambertian diffuse material to override the
original materials in the 3D city model and render limited-FoV images using
the same cameras with the shadow visibility set on and off in the Blender [2]
Cycles engine as Iws and Iwos, then we calculate the intensity of the difference
map D = gray(Iwos − Iws). The higher pixel value in D, the more likely the pixel
is in the cast shadow or attached shadow and is not directly illuminated by the
sun light. We use the combination of a fixed threshold of the minimum difference
tmin = 0.002 and an adaptive threshold totsu from the Otsu’s method [9] to
convert the different map D into the approximate binary label of sun visibility
mask Mvis. For cloudy scenes, we set all pixels as non-visible (0). Since the mask
is an approximation and to make our prediction robust to noisy pixels, we use
the predicted mask M ′

vis in a conservative manner: We constrain the sun light

SOLD-Net 19

visibility in the estimated local lighting only when all pixel values in the 7× 7
patch of the pixel position are smaller than 0.2, otherwise we do nothing.

7.4 Training Losses

Our full pipeline is trained with the following losses:

L = LG + LL + LE , (7)

where LG is the loss term for our global lighting encoder-decoder, LL is the loss
term for our local content encoder-renderer, and LE is the loss term for our
spatially-varying lighting estimator.

For global lighting encoder-decoder, LG is defined as:

LG = Lsky + Lsun + Linfo, (8)

where Lsky is the L1 reconstruction loss for sky light:

Lsky = ||Psky ⊙ (1−Msun)− P ′
sky ⊙ (1−Msun)||1, (9)

Lsun is the L2 reconstruction loss for sun light:

Lsun = ||Psun ⊙Msun − P ′
sun||2, (10)

and Linfo is the same as that in HDSky [11].
For local content encoder-renderer, LL is defined as:

LL = Lapp + Lsil + Lid + Lcr, (11)

where Lapp is the L1 reconstruction loss for local appearances:

Lapp = ||Plocal ⊙Msil − P ′
app ⊙Msil||1, (12)

and Lsil is the L1 reconstruction loss for Msil. Lid and Lcr are self-supervised
losses introduced in Sec. 4.3.

For spatially-varying lighting estimator, LE is defined as:

LE = Lvis + Lpos + Lcode + Lpano, (13)

where Lvis is an L2 loss for Mvis, Lpos is the cross-entropy loss for flattened Msun,
Lcode is an L2 loss for zsky, zsun, and zlocal. We also impose Lpano, an L1 loss on
decoded/rendered panoramic maps P ′

sky, P
′
sun, P

′
sil, and P ′

app.

7.5 Implementation of Baseline Methods

SOLID-Net [13]. We train SOLID-Net [13] on our enhanced dataset using their
original code implementation. Following their paper, we render and compute
normal maps, depth maps, (diffuse) shading maps, (diffuse) shadow maps and
albedo maps as learning targets to train their I-Net. Following their geometry

20 J. Tang et al.

projection, we prepare incomplete panoramas projected from the limited-FoV
images at different local positions as the input of their P-Net. Their I-Net and
P-Net are trained separately for 30 epochs and 20 epochs respectively.
SkyNet [3]. We implement SkyNet [3] in PyTorch [10] following the network
structure shown in their paper. SkyNet [3] is designed to separately predict a
sun azimuth angle and a normalized panoramic environment map where the sun
is azimuth-centered. To fit their data requirement, we compute the sun azimuth
of our data and compute the normalized panoramic environment maps as the
training targets of SkyNet [3]. Their sky autoencoder and image encoders are
trained separately for 30 epochs and 20 epochs respectively.
OursSH. We use the same network backbone for OursSH as our proposed method
(see Sec. 7.7) to predict 5-th order SH coefficients as representation for local
lighting. The ground truth SH coefficients can be directly computed from the
orthogonality of SH basis. The model is trained for 30 epochs.
OursSG. We use the same network backbone for OursSG as our proposed method
(see Sec. 7.7) to predict 24 SG lobes as representation for local lighting. The
corresponding parameters of SG lobes may not be unique given an environment
map, which poses a problem to use SG parameters as learning targets. Here we
follow [7] to reparameterize SG parameters to constrain each lobe in the certain
range of the sphere (we roughly divide the sphere into 3×8 regions) and optimize
the ground truth SG parameters by LBFGS method [8]. Note that this process
is very time-consuming5, meaning that using optimized SG lobes to represent
outdoor lighting might not be an efficient choice. The model is trained for 30
epochs.

7.6 Additional Results

Qualitative results. We show the quantitative results of sun position estimation
on our captured real data in Table 46. We can see from the figures that though the
real data are more challenging than synthetic dataset, our method still achieves a
better performance than baseline methods. It’s worth noting that SOLID-Net [13]
trained on synthetic dataset before enhancement (SOLID-Net w/o en) shows
an significant drop compared with the same model trained on synthetic dataset
after enhancement (SOLID-Net), indicating the enhanced material diversity is
helpful for real-world performance. We also show the quantitative evaluation of
local lighting estimation and relighting performance on our captured real data
in Table 5, and the trends are similar as on our enhanced synthetic dataset,
indicating our method can consistently produce more realistic relighting results.
Synthetic dataset enhancement. To further confirm the effectiveness of our
synthetic dataset enhancement, we test the SOLID-Net [13] trained on synthetic

5 https://github.com/lzqsd/InverseRenderingOfIndoorScene#

differences-from-the-original-paper
6 Note that OursSH and OursSG is not designed for global sun position estimation, we
use the maximum points of the predicted local lighting maps given the pixel positions
in the bright regions as the predicted sun positions only as a reference here.

https://github.com/lzqsd/InverseRenderingOfIndoorScene#differences-from-the-original-paper
https://github.com/lzqsd/InverseRenderingOfIndoorScene#differences-from-the-original-paper

SOLD-Net 21

dataset without and with enhancement on the same real-captured data, and the
qualitative results are shown in Figure 12. As we can seen, the SOLID-Net [13]
with enhanced dataset (blue) can recover clearer scene layouts and colors in
ground truth (green) than without enhancement (red) with the presence of
irregular grasses and leafs, which would lead to noisy intrinsic estimation results.

21 21

1

2

1

2

Fig. 12. Local lighting estimation results on real data of SOLID-Net [13] trained on
synthetic dataset without enhancement (the first row, blue box) and with enhancement
(the second row, red box), compared with the ground truth local lighting (the third
row, green box). Panoramas are shown in tone-mapped HDR.

Controlled scene test. To better understand the bounds of our proposed
method, we conduct a controlled scene test in Figure 13. As we can see, our
method works well as expected in the sunny (hard shadow) urban scenes and can
generalize to (partly-)cloudy (soft shadow) weathers (Figure 13 left and middle)
and different proximity to the buildings (Figure 13 middle and right). The two
known common types of failure cases (Figure 13 left) happen around complex
local shapes (blue point) and highlight glass reflections (orange point).

Fig. 13. Local lighting estimation and relighting results of controlled scene test. The red
(green) points in three images correspond to the same spot which is sun-(in)visible. The
organge and blue points show two typical types of failure cases. Colors of boxes indicate
the correspondence with local pixel points marked in the same color. Panoramas and
relighting results are shown in tone-mapped HDR.

Editability. To further illustrate the editability of our disentangled representation
of global and local lighting, we show more qualitative examples. For global lighting
editing, we show examples of sun position editing in Figure 14, sun information
editing in Figure 15, and sky information editing in Figure 16. For local lighting
editing, we show more results in Figure 17. We can see from the results that by

22 J. Tang et al.

Table 4. Quantitative evaluation of
sun position estimation on our cap-
tured real data. We report the aver-
age angular error Eang, azimuth error
Eaz, and elevation error Eel in degrees.
The results of OursSH and OursSG
are calculated from the predicted lo-
cal lighting maps for reference pur-
pose. Lower is better.

Method Eang Eaz Eel

Ours 21.15 20.76 8.44
SkyNet [3] 32.83 32.81 14.20

SOLID-Net [13] 30.82 33.92 11.95

SOLID-Net [13] w/o en 49.07 61.20 8.03

OursSH 48.91 64.55 21.96
OursSG 60.87 68.84 24.31

Table 5. Quantitative evaluation
of spatially-varying local lighting es-
timation on our captured real data.
‘Panorama’ stands for the errors
of panoramic HDR lighting maps
before tone mapping. ‘Relighting’
stands for the errors of rendered
HDR images using predicted light-
ing maps. Lower is better.

Method
Panorama Relighting

MAE RMSE MAE RMSE

Ours 0.240 4.872 0.259 0.437
Ours w/o Mvis 0.274 6.496 0.299 0.552

OursSH 0.244 2.367 0.269 0.469
OursSG 0.179 2.748 0.318 0.560

SOLID-Net [13] 0.390 4.206 0.310 0.601

predicting disentangled global and local representations according to our problem
formulation, the predicted global and local lighting remain flexible editability.
Quantitative results. More quanlitative results of global lighting estimation
and local lighting estimation are shown in Figure 18 and Figure 19 respectively.
In each figure, we show the estimated lighting maps, relighting results using the
(predicted) lighting maps and the quantitative error metrics of the lighting maps
and relighting results. Our method generally performs better qualitatively than
baseline methods while may not be the best in the error metrics, showing the
inconsistency of the quantitative metrics and visual perception.
In-the-wild performance. To test the generalization ability of the compared
methods, we show the local relighting results of in-the-wild data in Figure 20
and Figure 21. The in-the-wild data are collected from the Google Street View
dataset [12] and Internet photos, which cover diverse scenes and lighting condi-
tions. Although the data distribution is far different from our synthetic training
data, our proposed method can capture many spatially-varying properties of
outdoor local lighting and give reasonable relighting results.

7.7 Detailed Network Archetectures

We show the detailed network archtectures of the global lighting encoder-decoder,
local content encoder-renderer, spatially-varying lighting estimator and our base-
line methods OursSH and OursSG from Table 6 to Table 9, with the structures
and default settings of common blocks shown in Figure 22.

SOLD-Net 23

Sun pos
Recon.

Sun info
Recon.

Sky info
Recon.

Fig. 14. Global lighting editing by changing the sun positions (in each row) and the
relighting results (shown in tone-mapped HDR).

Sun pos
Recon.

Sun info
Recon.

Sky info
Recon.

Fig. 15. Global lighting editing by changing the sun info (in each row), and the relighting
results (shown in tone-mapped HDR).

Sun pos
Recon.

Sun info
Recon.

Sky info
Recon.

Fig. 16. Global lighting editing by changing the sky info (in each row), and the relighting
results (shown in tone-mapped HDR).

24 J. Tang et al.

Global
Local

Fig. 17. Local lighting editing by changing global lighting conditions (in each row)
and local contents (in each column), and the relighting results (shown in tone-mapped
HDR).

SOLD-Net 25

Input Image GT Ours SkyNet SOLID-Net

Panorama:
MAE: 0.347 RMSE: 7.920

Relighting:
MAE: 0.031 RMSE: 0.163

Panorama:
MAE: 0.351 RMSE: 8.914

Relighting:
MAE: 0.101 RMSE: 0.495

Panorama:
MAE: 0.382 RMSE: 7.941

Relighting:
MAE: 0.131 RMSE: 0.553

Panorama:
MAE: 0.466 RMSE: 9.700

Relighting:
MAE: 0.084 RMSE: 0.165

Panorama:
MAE: 0.340 RMSE: 8.121

Relighting:
MAE: 0.228 RMSE: 0.460

Panorama:
MAE: 0.341 RMSE: 8.116

Relighting:
MAE: 0.255 RMSE: 0.495

Panorama:
MAE: 0.053 RMSE: 0.778

Relighting:
MAE: 0.017 RMSE: 0.030

Panorama:
MAE: 0.257 RMSE: 6.140

Relighting:
MAE: 0.110 RMSE: 0.225

Panorama:
MAE: 0.198 RMSE: 4.242

Relighting:
MAE: 0.148 RMSE: 0.311

Panorama:
MAE: 0.415 RMSE: 9.866

Relighting:
MAE: 0.049 RMSE: 0.099

Panorama:
MAE: 0.380 RMSE: 10.128

Relighting:
MAE: 0.309 RMSE: 0.606

Panorama:
MAE: 0.250 RMSE: 5.210

Relighting:
MAE: 0.110 RMSE: 0.212

Panorama:
MAE: 0.305 RMSE: 7.575

Relighting:
MAE: 0.049 RMSE: 0.088

Panorama:
MAE: 0.394 RMSE: 11.498

Relighting:
MAE: 0.198 RMSE: 0.382

Panorama:
MAE: 0.230 RMSE: 6.501

Relighting:
MAE: 0.179 RMSE: 0.337

Panorama:
MAE: 1.324 RMSE: 30.351

Relighting:
MAE: 0.047 RMSE: 0.150

Panorama:
MAE: 0.829 RMSE: 22.734

Relighting:
MAE: 0.147 RMSE: 0.444

Panorama:
MAE: 0.884 RMSE: 22.310

Relighting:
MAE: 0.139 RMSE: 0.415

Panorama:
MAE: 0.739 RMSE: 18.018

Relighting:
MAE: 0.044 RMSE: 0.103

Panorama:
MAE: 0.730 RMSE: 16.294

Relighting:
MAE: 0.283 RMSE: 0.562

Panorama:
MAE: 0.309 RMSE: 9.780

Relighting:
MAE: 0.113 RMSE: 0.234

Panorama:
MAE: 0.053 RMSE: 0.813

Relighting:
MAE: 0.015 RMSE: 0.028

Panorama:
MAE: 0.249 RMSE: 4.700

Relighting:
MAE: 0.123 RMSE: 0.276

Panorama:
MAE: 0.180 RMSE: 3.472

Relighting:
MAE: 0.041 RMSE: 0.086

Panorama:
MAE: 0.586 RMSE: 11.656

Relighting:
MAE: 0.047 RMSE: 0.118

Panorama:
MAE: 0.471 RMSE: 10.313

Relighting:
MAE: 0.195 RMSE: 0.385

Panorama:
MAE: 0.188 RMSE: 4.262

Relighting:
MAE: 0.058 RMSE: 0.142

Panorama:
MAE: 0.586 RMSE: 12.332

Relighting:
MAE: 0.067 RMSE: 0.151

Panorama:
MAE: 0.523 RMSE: 10.542

Relighting:
MAE: 0.168 RMSE: 0.336

Panorama:
MAE: 0.434 RMSE: 9.493

Relighting:
MAE: 0.106 RMSE: 0.246

Fig. 18. Global lighting estimation and relighting results on our enhanced synthetic
dataset (shown in tone-mapped HDR). Errors of instances are shown in text boxes.

26 J. Tang et al.

Input Image GT Ours OursSG SOLID-NetOursSH

1
2

0.314 11.46 0.090 0.455 2.443 115.5 0.426 2.170 1.163 11.21 0.249 0.428

1

0.850 19.35 0.247 0.537

0.059 0.115 0.037 0.048 0.213 2.228 0.129 0.410 0.077 0.128 0.026 0.043

2

0.068 0.112 0.031 0.044

1

2

0.393 19.85 0.137 0.333 1.808 80.83 0.738 2.291 1.106 25.41 0.138 0.316

1

1.168 30.62 0.215 0.380

0.024 0.042 0.007 0.011 0.027 0.046 0.008 0.012 0.025 0.043 0.007 0.010

2

0.052 0.082 0.022 0.025

1

2

0.153 3.980 0.026 0.063 2.739 250.4 0.103 0.400 0.672 3.128 0.169 0.312

1

0.124 2.979 0.041 0.102

0.033 0.089 0.011 0.017 0.032 0.093 0.010 0.016 0.050 0.094 0.020 0.027

2

0.099 0.169 0.085 0.106

1
2

0.396 9.852 0.267 0.491 0.124 2.365 0.346 0.601 0.761 2.737 0.283 0.543

1

0.387 2.422 0.264 0.599

0.129 0.154 0.114 0.154 0.064 0.097 0.188 0.225 0.132 0.211 0.138 0.175

2

0.224 0.313 0.124 0.177

1

2
0.413 11.51 0.498 0.793 0.383 3.961 0.648 1.006 0.230 3.814 0.686 1.069

1

0.283 3.813 0.640 1.070

0.091 0.176 0.277 0.371 0.136 0.210 0.282 0.388 0.082 0.152 0.285 0.375

2

0.201 0.269 0.231 0.340

1

2 0.306 5.152 0.400 0.812 0.215 2.903 0.674 1.283 0.270 2.893 0.580 1.181

1

0.281 2.896 0.642 1.277

0.201 0.347 0.127 0.182 0.068 0.111 0.160 0.210 0.072 0.106 0.134 0.187

2

0.130 0.156 0.119 0.181

1

2
0.346 19.13 0.254 0.588 0.235 18.65 0.346 0.726 0.233 18.65 0.329 0.716

1

0.276 18.64 0.302 0.701

0.048 0.068 0.073 0.097 0.027 0.049 0.085 0.106 0.019 0.042 0.077 0.098

2

0.063 0.100 0.039 0.061

1 2

0.232 8.894 0.287 0.669 0.160 7.200 0.362 0.926 0.673 7.279 0.346 0.847

1

0.213 7.198 0.329 0.903

0.021 0.034 0.064 0.076 0.024 0.037 0.075 0.088 0.023 0.032 0.060 0.074

2

0.109 0.124 0.042 0.059

Fig. 19. Local lighting estimation and relighting results (shown in tone-mapped HDR).
The first three examples are from our enhanced synthetic dataset, and the last five
examples are from our captured real data. Errors of instances are shown below each
image (from left to right: MAE of panoramic maps, RMSE of panoramic maps, MAE
of relighting results and RMSE of relighting results).

SOLD-Net 27

Input Image Ours OursSG OursSH SOLID-NetInput Image Ours OursSG OursSH SOLID-Net

1

2
1

2
1

2

1

2

1

2
1

2 1
2

1

2

1

21
2 1 2

1

2

1

2

12 12

1

2

1

2

1
2

1
2

1

2

1

2

1
2 1

2

1

2

Fig. 20. More examples of local lighting estimation on in-the-wild data.

28 J. Tang et al.

Input Image Ours OursSG OursSH SOLID-NetInput Image Ours OursSG OursSH SOLID-Net

1

2
1

2 1 2

1

2

1

21

2
1

2

1

2

1

2

1

2

1 2

1

2

1

2
1

2

1
2

1

2

1

2
1

2
12

1

2

1

2
1
2

12

1

2

Fig. 21. More examples of local lighting estimation on in-the-wild data.

SOLD-Net 29

Table 6. Network architectures of our global lighting encoder-decoder.

Global Lighting Encoder-Decoder
Name Layer Description Input Output Dim.
Pglobal Global lighting maps – (3, 64, 128)
zsky Latent code for sky light Pglobal (16)
zsun Latent code for sun light Pglobal (45)
Msun Mask for sun position Pglobal (1, 64, 128)

Encoders for zsky (cout = 16) and zsun (cout = 45)
Conv1 1 Conv., k=5, s=1 Pglobal (32, 32, 128)
Conv1 2 Res. I, k=3, s=1 Conv1 1 (32, 32, 128)
Conv1 3 Conv., k=3, s=2 Conv1 2 (64, 16, 64)
Conv2 1 Conv., k=3, s=1 Conv1 3 (64, 16, 64)
Conv2 2 Res. I, k=3, s=1 Conv2 1 (64, 16, 64)
Conv2 3 Conv., k=3, s=2 Conv2 2 (128, 8, 32)
Conv3 1 Conv., k=3, s=1 Conv2 3 (128, 8, 32)
Conv3 2 Res. I, k=3, s=1 Conv3 1 (128, 8, 32)
Conv3 3 Conv., k=3, s=2 Conv3 2 (128, 4, 16)
Conv4 1 Conv., k=3, s=1 Conv3 3 (128, 4, 16)
Conv4 2 Res. I, k=3, s=1, no norm Conv4 1 (128, 4, 16)
Conv4 3 Conv., k=3, s=2, no norm Conv4 2 (64, 2, 8)
Conv5 Conv., k=3, s=1, no norm, no activ Conv4 3 (cout, 2, 8)
Pool Global Avg. Pool. Conv5 (cout)

Decoder for Psky

Fc Linear 16 × 512, and reshape zsky (8, 4, 16)
Conv1 1 Conv., k=3, s=1 Fc (64, 4, 16)
Conv1 2 2×Res. I, k=3, s=1 Conv1 1 (64, 4, 16)

Up1 Deconv., k=3, s=1 Conv1 2 (64, 8, 32)
Conv2 1 Conv., k=3, s=1 Up1 (128, 8, 32)
Conv2 2 2×Res. I, k=3, s=1 Conv2 1 (128, 8, 32)

Up2 Deconv., k=3, s=1 Conv1 2 (128, 16, 64)
Conv3 1 Conv., k=3, s=1 Up2 (64, 16, 64)
Conv3 2 2×Res. I, k=3, s=1 Conv3 1 (64, 16, 64)

Up3 Deconv., k=3, s=1 Conv1 2 (64, 32, 128)
Conv4 1 Conv., k=3, s=1 Up3 (32, 32, 128)
Conv4 2 2×Res. I, k=3, s=1, no norm Conv4 1 (32, 32, 128)
Conv5 1 Conv., k=3, s=1, no norm Conv4 2 (16, 32, 128)
Conv5 2 Conv., k=3, s=1, no norm, no activ Conv5 1 (3, 32, 128)

Decoder for Psun

Merge repeat zsun and concate with Msun zsun, Msun (46, 32, 128)
Conv1 1 Conv., k=3, s=1 Merge (64, 32, 128)
Conv1 2 Res. I, k=3, s=1 Conv1 1 (64, 32, 128)
Conv2 1 Conv., k=3, s=1 Conv1 2 (128, 32, 128)
Conv2 2 Res. I, k=3, s=1 Conv2 1 (128, 32, 128)
Conv3 1 Conv., k=3, s=1 Conv2 2 (64, 32, 128)
Conv3 2 Res. I, k=3, s=1 Conv3 1 (64, 32, 128)
Conv4 1 Conv., k=3, s=1 Conv3 2 (32, 32, 128)
Conv4 2 2×Res. I, k=3, s=1, no norm Conv4 1 (32, 32, 128)
Conv5 1 Conv., k=3, s=1, no norm Conv4 2 (16, 32, 128)
Conv5 2 Conv., k=3, s=1, no norm, no activ Conv5 1 (3, 32, 128)

30 J. Tang et al.

Table 7. Network architectures of our local appearance encoder-renderer.

Local Appearance Encoder-Renderer
Name Layer Description Input Output Dim.
Psv Local lighting maps – (3, 64, 128)
zlocal Latent code for local content Psv (64)
zsky Latent code for sky light Pglobal (16)
zsun Latent code for sun light Pglobal (45)
Mcos Cosine mask for sun light Msun (1, 64, 128)

Encoder for zlocal
Conv1 1 Conv., k=5, s=1 Pglobal (32, 64, 128)
Conv1 2 Res. I, k=3, s=1 Conv1 1 (32, 64, 128)
Conv1 3 Conv., k=3, s=2 Conv1 2 (64, 32, 64)
Conv2 1 Conv., k=3, s=1 Conv1 3 (64, 32, 64)
Conv2 2 Res. I, k=3, s=1 Conv2 1 (64, 32, 64)
Conv2 3 Conv., k=3, s=2 Conv2 2 (128, 16, 32)
Conv3 1 Conv., k=3, s=1 Conv2 3 (128, 16, 32)
Conv3 2 Res. I, k=3, s=1 Conv3 1 (128, 16, 32)
Conv3 3 Conv., k=3, s=2 Conv3 2 (128, 8, 16)
Conv4 1 Conv., k=3, s=1 Conv3 3 (128, 8, 16)
Conv4 2 Res. I, k=3, s=1, no norm Conv4 1 (128, 8, 16)
Conv4 3 Conv., k=3, s=2, no norm Conv4 2 (64, 4, 8)
Conv5 Conv., k=3, s=1, no norm, no activ Conv4 3 (64, 2, 8)
Pool Global Avg. Pool. Conv5 (64)

Decoder for Msil

Fc Linear 64 × 256, and reshape zlocal (8, 4, 8)
Conv1 1 Conv., k=3, s=1 Fc (32, 4, 8)

Up1 Deconv., k=3, s=1, nearest upsample Conv1 1 (32, 8, 16)
Conv1 2 2×Res. I, k=3, s=1 Up1 (32, 8, 16)
Conv2 1 Conv., k=3, s=1 Conv1 2 (64, 8, 16)

Up2 Deconv., k=3, s=1, nearest upsample Conv2 1 (64, 16, 32)
Conv2 2 2×Res. I, k=3, s=1 Up2 (64, 16, 32)
Conv3 1 Conv., k=3, s=1 Conv2 2 (64, 16, 32)

Up3 Deconv., k=3, s=1, nearest upsample Conv3 1 (64, 32, 64)
Conv3 2 2×Res. I, k=3, s=1 Up3 (64, 32, 64)
Conv4 1 Conv., k=3, s=1 Conv3 2 (32, 32, 64)

Up4 Deconv., k=3, s=1, nearest upsample Conv4 1 (32, 64, 128)
Conv4 2 2×Res. I, k=3, s=1 Up4 (32, 64, 128)
Conv5 1 Conv., k=3, s=1, no norm Conv4 2 (16, 64, 128)
Conv5 2 Conv., k=3, s=1, no norm, Sigmoid Conv5 1 (1, 64, 128)

Renderer for Plocal

Concat1 concate zlocal with zsky zlocal, zsky (80)
Fc Linear 80 × 1024, and reshape Concat1 (8, 8, 16)

Conv1 1 Conv., k=3, s=1 Fc (64, 8, 16)
Conv1 2 2×Res. I, k=3, s=1 Conv1 1 (64, 8, 16)

Up1 Deconv., k=3, s=1 Conv1 2 (64, 16, 32)
Conv2 1 Conv., k=3, s=1 Up1 (128, 16, 32)
Conv2 2 2×Res. I, k=3, s=1 Conv2 1 (128, 16, 32)

Up2 Deconv., k=3, s=1 Conv2 2 (128, 32, 64)
Conv3 1 Conv., k=3, s=1 Up2 (128, 32, 64)
Conv3 2 2×Res. I, k=3, s=1 Conv3 1 (128, 32, 64)

Up3 Deconv., k=3, s=1 Conv3 2 (128, 64, 128)
Conv4 1 Conv., k=3, s=1 Up3 (128, 64, 128)
Conv4 2 2×Res. I, k=3, s=1, no norm Conv4 1 (128, 64, 128)
Concat2 concate Mcos with Conv4 2 Conv4 2, Mcos (129, 64, 128)
Merge repeat zsun and concate with Concat2 Concat2, zsun (174, 64, 128)

Conv5 1 Conv., k=3, s=1 Merge (128, 64, 128)
Conv5 2 2×Res. I, k=3, s=1 Conv5 1 (128, 64, 128)
Conv6 1 Conv., k=3, s=1 Conv5 2 (128, 64, 128)
Conv6 2 2×Res. I, k=3, s=1 Conv6 1 (128, 64, 128)
Conv7 1 Conv., k=3, s=1 Conv6 2 (64, 64, 128)
Conv7 2 2×Res. I, k=3, s=1 Conv7 1 (64, 64, 128)
Conv8 1 Conv., k=3, s=1 Conv7 2 (32, 64, 128)
Conv8 2 2×Res. I, k=3, s=1 Conv8 1 (32, 64, 128)
Conv9 1 Conv., k=3, s=1, no norm Conv8 2 (16, 64, 128)
Conv9 2 Conv., k=3, s=1, no norm, no activ Conv9 1 (3, 64, 128)

SOLD-Net 31

Table 8. Network architectures of lighting estimator and baselines.

Spatially-varying Lighting Estimator
Name Layer Description Input Output Dim.

I Limited-FoV images – (3, 240, 320)
l local pixel positions – (2)

Fglobal extracted global feature I (512, 30, 40)
Flocal extracted local feature Fglobal (128, 60, 80)
Fpix pixel-aligned local feature Flocal (128, 3, 3)

Global Feature Backbone for Fglobal

Conv1 Conv., k=7, s=1 I (64, 240, 320)
Conv2 Conv., k=4, s=2 Conv1 (128, 120, 160)
Conv3 Conv., k=4, s=2 Conv2 (256, 60, 80)
Conv4 Conv., k=4, s=2 Conv3 (512, 30, 40)
Conv5 2×Res. I, k=3, s=1 Conv4 (512, 30, 40)

Estimator for Mvis

Conv1 2×Res. I, k=3, s=1 Fglobal (512, 30, 40)
Up1 Deconv., k=5, s=1, ReLU Conv1 (256, 60, 80)
Up2 Deconv., k=5, s=1, ReLU Conv2 (128, 120, 160)
Up3 Deconv., k=5, s=1, ReLU Conv3 (64, 240, 320)

Conv2 Conv., k=7, s=1, no norm, Sigmoid Up3 (1, 240, 320)
Estimators for zsky (cout = 16) and zsun (cout = 45)

Conv1 1 Conv., k=3, s=1 Fglobal (256, 30, 40)
Conv1 2 Res. I, k=3, s=1 Conv1 1 (256, 30, 40)
Conv2 1 Conv., k=3, s=2 Conv1 2 (128, 15, 20)
Conv2 2 Res. I, k=3, s=1 Conv2 1 (128, 15, 20)
Conv3 1 Conv., k=3, s=2 Conv2 2 (128, 8, 10)
Conv3 2 Res. I, k=3, s=1 Conv3 1 (128, 8, 10)
Conv4 1 Conv., k=3, s=1 Conv3 2 (64, 8, 10)
Conv4 2 Res. I, k=3, s=1 Conv4 1 (64, 8, 10)
Conv5 1 Conv., k=3, s=2, no norm Conv4 2 (32, 4, 5)
Conv5 2 Conv., k=3, s=1, no norm, no activ Conv5 1 (cout, 4, 5)
Pool Global Avg. Pool. Conv5 2 (cout)

Estimators for Msun

Conv1 1 Conv., k=3, s=1 Fglobal (256, 30, 40)
Conv1 2 Res. I, k=3, s=1 Conv1 1 (256, 30, 40)
Pool1 Avg. Pool., k=2, s=2 Conv1 2 (256, 15, 20)
Conv2 Conv., k=3, s=1 Pool1 (128, 15, 20)
Pool2 Avg. Pool., k=5, s=5 Conv2 (128, 3, 4)
Fc reshape and Linear 1536 × 256 Pool2 (256)

Softmax Softmax and reshape Fc (1, 8, 32)
Estimators for zlocal (cout = 64) or SH coefficients in OursSH (cout = 108)

or SG lobe axes (cout = 48), lambdas (cout = 24) and weights (cout = 72) in OursSG
Extract 3 × 3 feature patch of Fpix pixel-aligned to l Flocal, l (128, 3, 3)
Reshape flatten Extract (1152)
Percp1 Linear 1152 × 512, and LReLU (0.1) Reshape (512)
Percp2 Linear 512 × 256, and LReLU (0.1) Percp1 (256)
Percp3 Linear 256 × 128, and LReLU (0.1) Percp2 (128)
Percp4 Linear 128 × cout, and LReLU (0.1) Percp3 (cout)

32 J. Tang et al.

Table 9. Network architectures of stacked hourglass structure.

Stacked Hourglass Structure for Flocal

Up ConvT., k=4, s=2, IN, LReLU (0.1) Fglobal (256, 60, 80)
Conv1 Res. I, k=3, s=1 Up (256, 60, 80)
Hg1 Hourglass structure of depth=2 Conv1 (256, 60, 80)

Conv1 t Res. II, k=3, s=1 Hg1 (256, 60, 80)
Conv1 l Conv., k=1, s=1, no norm, no activ Conv1 t (128, 60, 80)
Conv1 a Conv., k=1, s=1, no norm, no activ Conv1 l (256, 60, 80)
Conv1 b Conv., k=1, s=1, no norm, no activ Conv1 t (256, 60, 80)
Input2 Input2 = Conv1 t+Conv1 a+Conv1 b (256, 60, 80)
Hg2 Hourglass structure of depth=2 Input2 (256, 60, 80)

Conv2 t Res. II, k=3, s=1 Hg2 (256, 60, 80)
Conv2 l Conv., k=1, s=1, no norm, no activ Conv2 t (128, 60, 80)

Hourglass Structure of depth=2
Name Layer Description Input Output Dim.
F feature for hourglass input – (C, H, W)

Conv1 b1 Res. II, k=3, s=1 F (C, H, W)
Pool1 Avg. Pool., k=2, s=2 F (C, H/2, W/2)

Conv1 b2 Res. II, k=3, s=1 Pool1 (C, H/2, W/2)
Conv2 b1 Res. II, k=3, s=1 Conv1 b2 (C, H/2, W/2)
Pool2 Avg. Pool., k=2, s=2 Conv1 b2 (C, H/4, W/4)

Conv2 b2 Res. II, k=3, s=1 Pool2 (C, H/4, W/4)
Conv2 b2p Res. II, k=3, s=1 Pool2 (C, H/4, W/4)
Conv2 b3 Res. II, k=3, s=1 Conv2 b2p (C, H/4, W/4)

Up2 Deconv., no conv, no activ Conv2 b3 (C, H/2, W/2)
Output2 Output2 = Conv2 b1 + Up2 (C, H/2, W/2)
Conv1 b3 Res. II, k=3, s=1 Output2 (C, H/2, W/2)

Up1 Deconv., no conv, no activ Conv1 b3 (C, H, W)
Output1 Output1 = Conv1 b1 + Up1 (C, H, W)
Output output of the hourglass Output1 (C, H, W)

(a) Convolutional Layer (b) Deconvolutional Layer

Up_sample
(2x bilinear)

Conv IN ReLU

Width x Height x
Channel Convolutional Layer (3x3 kernel, stride 1)

Width x Height x
Channel Convolutional Layer (3x3 kernel, stride 2)

Width x Height x
Channel Deconvolutional Layer (3x3 kernel, stride 1)

FC Ouput Fully connected layer + ReLU

L
eg

en
d Feature Concatenation with Lighting Code 𝐋𝐋

(c) Encoder-Decoder

160 x 120 x 128

80 x 60 x 256

40 x 30 x 512

20 x 15 x 512

160 x 120 x 128

80 x 60 x 256

40 x 30 x 512

20 x 15 x 512

Output

Global Features

320 x 240 x M (w/o ReLU)

160 x 120 x 128

80 x 60 x 256

40 x 30 x 512

20x 15 x 512

2 x 2 x 512

10 x 8 x 512

20x 15 x 512

Output

Global Features

5 x 4 x 512

FC 1024

80 x 60 x 128

20 x 15 x 256

5 x 3 x 512

2 x 1 x 512

80 x 60 x 128

20 x 15 x 256

5 x 3 x 512

2 x 1 x 512

Output

Depth Input

320 x 240 x 3 (w/o ReLU)

320 x 240 x 64

FC 1024

FC 1024

2×

2×

2×

2×

2×

2×

(a) Residual Block (b) Light Encoder

Conv IN ReLU Conv IN

(c) Residual Block (I)

LeakyReLU
(0.1)

Conv

Conv GN ReLU Conv GN ReLU Conv GN ReLU

Conv
(1x1) GN ReLU

(d) Residual Block (II)

Plus

Concat

Fig. 22. Common blocks used in our network architectures (with default settings).

SOLD-Net 33

References

1. ambientCG, public domain materials for physically based rendering. [licensed under
CC0 1.0 universal], https://ambientcg.com 17

2. Blender., https://www.blender.org 17, 18
3. Hold-Geoffroy, Y., Athawale, A., Lalonde, J.F.: Deep sky modeling for single image

outdoor lighting estimation. In: Proc. of Computer Vision and Pattern Recognition
(2019) 18, 20, 22

4. Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic
scenes. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH) 36(4) (2017)
18

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. of
International Conference on Learning Representations (2015) 18

6. Lalonde, J.F., Asselin, L.P., Becirovski, J., Hold-Geoffroy, Y., Garon, M., Gard-
ner, M.A., Zhang, J.: The laval HDR sky database. [free license for academic or
government-sponsored researchers] (2016), http://sky.hdrdb.com 18

7. Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse
rendering for complex indoor scenes: Shape, spatially-varying lighting and SVBRDF
from a single image. In: Proc. of Computer Vision and Pattern Recognition (2020)
20

8. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale
optimization. Mathematical Programming 45(1-3), 503–528 (1989) 20

9. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transac-
tions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) 18

10. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al.: PyTorch: An imperative style, high-
performance deep learning library. In: Proc. of Neural Information Processing
Systems (2019) 18, 20

11. Yu, P., Guo, J., Huang, F., Zhou, C., Che, H., Ling, X., Guo, Y.: Hierarchical
disentangled representation learning for outdoor illumination estimation and editing.
In: Proc. of International Conference on Computer Vision (2021) 19

12. Zamir, A.R., Shah, M.: Image geo-localization based on multiple nearest neighbor
feature matching using generalized graphs. IEEE Transactions on Pattern Analysis
and Machine Intelligence 36(8), 1546–1558 (2014) 22

13. Zhu, Y., Zhang, Y., Li, S., Shi, B.: Spatially-varying outdoor lighting estimation
from intrinsics. In: Proc. of Computer Vision and Pattern Recognition (2021) 17,
19, 20, 21, 22

https://ambientcg.com
https://www.blender.org
http://sky.hdrdb.com

