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Abstract. We present an end-to-end network for spatially-varying out-
door lighting estimation in urban scenes given a single limited field-of-
view LDR image and any assigned 2D pixel position. We use three disen-
tangled latent spaces learned by our network to represent sky light, sun
light, and lighting-independent local contents respectively. At inference
time, our lighting estimation network can run efficiently in an end-to-end
manner by merging the global lighting and the local appearance rendered
by the local appearance renderer with the predicted local silhouette. We
enhance an existing synthetic dataset with more realistic material mod-
els and diverse lighting conditions for more effective training. We also
capture the first real dataset with HDR labels for evaluating spatially-
varying outdoor lighting estimation. Experiments on both synthetic and
real datasets show that our method achieves state-of-the-art performance
with more flexible editability.

Keywords: Spatially-varying lighting; Disentangled representation; Light-
ing estimation; Urban scenes

1 Introduction

Single image based outdoor illumination estimation, aiming at estimating light-
ing from a single limited field-of-view (FoV) image, takes a crucial role in many
computer vision applications, such as object relighting, scene understanding,
and augmented reality (AR). Unlike indoor scenarios, outdoor lighting contains
rich high-frequency and high-intensity components. In early works, several low-
dimensional parametric models are proposed to fit a distant global lighting, such
as the Hošek-Wilkie (HW) sky model [13,14] and the Lalonde-Matthews (LM)
sky model [17]. However, the capacities of those parametric models are not suf-
ficient for real-world outdoor lighting, which often leads to unrealistic rendering
results. Recent data-driven approaches start using latent spaces learned by au-
toencoders to represent outdoor lighting conditions to serve as the target of
global lighting estimation [11]. Methods combining merits of latent space repre-
sentation ability and interpretable parameters have also been proposed [26].
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Fig. 1. We propose an end-to-end network for spatially-varying outdoor lighting es-
timation. Given a limited-FoV LDR image and the 2D pixel positions, the spatially-
uniform global lighting is first estimated as the sun position, sun light, and sky light.
The spatially-varying local content at each position is then estimated respectively. The
spatially-varying local appearance is rendered with both local content information and
global lighting condition, and the spatially-varying lighting at each position is finally
obtained by merging the local appearance with the global lighting using the predicted
local silhouette mask. Realistic virtual object insertion (VOI) can be conducted using
the predicted local lighting (panoramas are shown in tone-mapped HDR).

However, these methods all treat the outdoor lighting as a single spatially-
uniform (global) lighting, i.e., the light probe is surrounded by an environment
map that casts rays from infinitely far away. Extending outdoor lighting estima-
tion to support spatially-varying (local) prediction is of important practicability,
especially for urban scenes where many buildings occlude the light path making
the spatially-uniform representation rather unrealistic. Only until very recently,
such a problem has been demonstrated to be solvable via intrinsic decomposition
and panoramic environment map completion [28].

Although the first trial for outdoor spatially-varying lighting estimation [28]
has shown its impressive performance, there still remains room for improvement:
1) The direct usage of panoramic environment maps is a less compact represen-
tation compared to latent parametric models [11]. 2) The estimated lightings in
the form of panoramic maps have limited editability (horizontal rotation and
scaling). 3) The SOLID-Img [28] synthetic dataset are with limited diversity
(only default object materials in Blender SceneCity [2] and sunny environment
maps) and there lacks a real-captured outdoor spatially-varying dataset with
ground truth HDR lightings to more comprehensively evaluate the performance.

In this paper, we propose the SOLD-Net for Spatially-varying Outdoor Light-
ing estimation with Disentangled representation, which consists of the end-to-end
spatially-varying lighting estimator for non-uniform lighting estimation on dis-
entangled latent spaces and the global lighting encoder-decoder together with
local content encoder-renderer for learning spatially-varying lighting represen-
tation. As shown in Figure 1, the global lighting encoder-decoder learns to
disentangle global lighting as two different latent spaces for sky light and sun
light with separate parameters such as the sun position; the lighting-dependent
spatially-varying local appearances are rendered given global lighting condi-
tions and the lighting-independent local content information learned by the local
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content encoder-renderer. Our method achieves state-of-the-art performance on
spatially-varying outdoor lighting estimation with the following contributions:

– using disentangled latent spaces to compactly represent global lighting con-
ditions and local contents;

– designing an end-to-end network architecture to infer spatially-varying light-
ing with flexible editability;

– enhancing spatially-varying outdoor lighting estimation datasets by increas-
ing material diversity and weather diversity for the synthetic dataset and
capturing the first real dataset with HDR ground truth labels.

2 Related Work

Our method targets at lighting estimation from a single image for the outdoor
urban scenario with local lighting effects being considered. In this section, we
briefly review relevant works for outdoor lighting estimation first and then dis-
cuss how existing methods consider local lighting estimation.
Outdoor lighting estimation. The most direct way to obtain outdoor lighting
representation is to capture HDR images with multiple exposures that include
the sun and sky [25]. However, estimating illumination conditions from images is
always desired for practical consideration. This is feasible since an outdoor image
provides useful cues that could reveal the surrounding environment. Lalonde et
al. [15] for the first time infer illumination from shadows, shading, and sky ap-
pearance variations observed in the image. A convolutional neural network [7] is
used to process the symmetric view of pairwise photos captured from rear and
front cameras of mobile devices, and to estimate the outdoor lighting represented
by low-frequency spherical harmonic (SH) coefficients. However, it has a diffi-
culty in dealing with high-frequency information. A physics-based Hošek-Wilkie
(HW) sky model [13,14] is better tailored to recover HDR parameters for deep
outdoor illumination estimation [12], but it is sensitive to cloud patches data.
This issue is solved by using a more robust sky model, the Lalonde-Matthews
(LM) model [17,27], which covers more comprehensive lighting conditions in the
outdoor environment. More recently, a novel SkyNet autoencoder [11] is designed
to learn a latent sky model from a large sky panorama dataset [16] and success-
fully estimates outdoor lighting from limited-FoV images. An encoder-decoder
framework is further proposed [18] to learn a mapping from a limited-FoV LDR
image to HDR lighting and a mobile phone camera equipped with three spheres
of different reflectance is used to capture ground truth training data. HDSky [26]
makes several physically meaningful attributes of global outdoor lighting estima-
tion editable by hierarchically training autoencoders with different supervisions.
Local lighting estimation. Different from global illumination representation,
the local illumination is related to the position where the light probe is placed,
i.e., to capture the lighting intensity at a target position using a mirror sphere in
the scene [8]. However, calibrations of objects are not always available, so local
lighting estimates from images attract researchers’ attention. Earlier works infer
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intrinsic properties from a single RGBD image, and a noisy depth image is used
to improve spherical harmonic estimation [5], but such an approach does not cap-
ture abrupt changes in ambient lighting caused by local geometry. Estimating
spatially-varying indoor lighting from a single RGB image could be conducted
in real-time [10], by using high-order SH representations learned by deep neural
networks. After the first usage of spherical Gaussian (SG) in deep indoor lighting
estimation [9], an inverse rendering network [19] is proposed to estimate indoor
spatially-varying spherical Gaussian coefficients for scene editing. NeurIllum [23]
recovers high-frequency local lighting with warped color image according to re-
covered geometry, which shows promising texture details, but the lighting esti-
mations are sometimes imprecise due to the errors in the estimated geometry and
the light which is not directly observed in the input. Lighthouse [24] achieves a
spatially-coherent (varies smoothly in 3D) and spatially-varying indoor lighting
estimation from stereo images using the 3D volumetric RGBA lighting model.

Spatially-varying lighting estimation for outdoor scenarios has not been demon-
strated until the proposing of SOLID-Net [28], which is the most relevant work
to ours. SOLID-Net relies on decomposing scene intrinsics first for global illumi-
nation and then ‘warp and complete’ a panoramic environment map to include
local information. Our method uses only a few parameters in disentangled la-
tent spaces to encode sky, sun, and local information compactly, and the local
lighting can be estimated in an end-to-end manner at inference time.

3 Problem Formulation

As aforementioned, the outdoor lighting, especially in urban scenes, is spatially-
varying and consists of two parts: 1) the spatially-uniform (global) part which
can be approximately seen as light sources from infinitely far away and doesn’t
change with the view point, such as lights from far background objects in the sky-
dome. 2) the spatially-varying (local) part whose changes with the view point
are not eligible, mainly the lights come from or occluded by nearby ground,
buildings or plants.

Accordingly, when using panoramic environment maps to present lighting,
the global part of outdoor lighting corresponds to the global lighting map Pglobal.
Since the sun light and the sky light are two different types of light sources,
Pglobal can be further approximately decomposed into the ambient lighting from
the sky Psky and the distant lighting from the sun Psun:

Pglobal = Psky + zvis(Psun ⊙Msun), (1)

where Msun is the binary panoramic mask indicating the position of the sun,
and zvis ∈ [0, 1] indicates the visibility of the sun under different conditions.

Note that in daytime, natural light is dominant over artificial light, thus the
local part of outdoor lighting can be treated as the illuminated local appearance
Papp by global lights from Pglobal:

Papp = Φ(zlocal, Pglobal), (2)
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where Φ denotes the lighting (or rendering) process, and zlocal is the local content
information containing lighting-independent properties (such as implicit albedo,
normal, and silhouette) of forground objects. Here by indicating local, we mean
from the panoramic view centered at the view point (x, y, z) in the 3D space
corresponding to the pixel position (u, v) in a limited-FoV image.

Finally, we can get the spatially-varying local lighting map Plocal by:

Plocal = Pglobal ⊙ (1−Msil) + Papp ⊙Msil, (3)

where Msil is the panoramic silhouette of local content (foreground objects).
An intuitive illustration of the advantages of our disentangled lighting rep-

resentation is shown in Figure 2. Spherical harmonics (SH) [21] is ineffective to
model high-frequency sun light resulting in soft shadows in the relighting, op-
timized spherical Gaussian (SG) [19] and our lighting representation both give
a realistic relighting, while our lighting representation provides better editabil-
ity by disentangling different types of lighting (ambient sky light, distant sun
light, and illuminated local appearance). Based on this lighting representation,
we design an end-to-end network (in Sec. 4) to estimate spatially-uniform global
lighting Pglobal and spatially-varying local lighting Plocal at the same time.

Fig. 2. The relighting results and cor-
responding environment maps of ground
truth, our disentangled lighting represen-
tation, optimized spherical Gaussian [19],
and spherical harmonics [21]. Our rep-
resentation gives both realistic relighting
and better editability.

GT 128×64×3 
environment map

(24576 parameters)

disentangled 
latent spaces

(128 parameters)

24 spherical 
gaussian lobes

(144 parameters)

5-th order 
spherical harmonics

(108 parameters)

4 Method

This section introduces the datasets we use (in Sec. 4.1), the design methodology
(in Sec. 4.2), the training (in Sec. 4.3) and inference (in Sec. 4.4) procedures of
our method, whose pipeline is shown in Figure 3.

4.1 Dataset

As far as we know, the SOLID-Img dataset [28] is the only suitable one for
spatially-varying outdoor lighting estimation. However, its synthetic and real-
world counterparts have limitations in terms of material diversity and ground
truth quality. We expand both parts as our training and testing datasets.
Synthetic dataset enhancement. The SOLID-Img [28] dataset is rendered
using a 3D city model from Blender SceneCity [2] and 70 HDR environment
maps for different global lighting conditions and has 38,000 images. It only uses
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Fig. 3. Overview of our SOLD-Net. Our method uses (a) a global lighting encoder-
decoder and (b) a local content encoder-renderer to learn disentangled latent spaces for
global (sky, sun) and local information respectively, then (c) a spatially-varying lighting
estimator predicts the spatially-varying lighting in disentangled lighting components
from a single limited-FoV LDR image with a given pixel position.

12 default materials in Blender SceneCity [2], which are less realistic diffuse
materials and might lead to insufficient generalization ability of trained mod-
els on real data. To make a dataset with greater diversity, we use a set of 30
open physically based rendering (PBR) materials [1] which contain color maps,
normal maps, roughness maps, and displacement maps of the Disney principled
BRDF model [6]. As shown in Figure 4, we randomly apply different materials in
the 3D city model according to the specific object type, and the issues of repeti-
tive buildings and unrealistic grounds are solved. To cover more diverse lighting
conditions, we select 108 representative outdoor HDR environment maps from
Poly Haven [3] (including 75 sunny, 15 cloudy, and 18 partly-cloudy panoramas).
By this way, we narrow the data gap and make the trained model more robust
on real data. Moreover, we render paired local lighting maps of the same lo-
cal content with different global lighting conditions for our self-supervised cross
rendering loss (in Sec. 4.3). Finally, we render 151,632 images in total.

Fig. 4. An example of rendered 3D city
model (bird view) before and after we ran-
domly replacing the materials in the model
with PBR materials in the same object
category.

Before replacement PBR materials After replacement

Real data with HDR local lightings. The real test data in SOLID-Net[28]
only have LDR panoramic environment maps as ground truth labels of spatially-
varying lighting, which prevents us quantitatively measure the performance and
qualitatively compare the relighting results. To provide a more comprehensive
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evaluation of outdoor local lighting estimation, we capture a test dataset of real
outdoor urban scenes and the corresponding HDR spatially-varying local en-
vironment maps. The scenes are captured by a Sony ILCE-7RM3 camera. To
obtain unclipped HDR capture of the sun intensity, we first capture a basic
HDR panorama using a Ricoh Theta Z1 camera in which only the sun pixels is
clipped, and then capture the sun region directly using the Sony ILCE-7RM3
camera equipped with a 3.0 neutral density (ND) filter; the final unclipped
HDR panoramic environment maps are stitched by aligning the sun positions
in panoramic maps and perspective images (warping the perspective images into
panoramic coordinates). To compensate for the color shift caused by the ND filter
and different cameras, we follow Stumpfel et al. [25] to compute the color correc-
tion matrix (CCM) and align captured intensities across different settings using
an X-rite classic 24 patch colorchecker. In total, our real test dataset includes 20
outdoor scenes and 40 unclipped HDR local lighting environment maps. There
are 17 sunny scenes and 3 partly-cloudy scenes of roads, buildings, bridges and
parks, and the sun azimuths and elevations are scattered and diverse.

4.2 Network Architecture

We model three types of lighting: ambient sky light, distant sun light, and il-
luminated local appearances separately in disentangled parametric spaces. To
this end, SOLD-Net consists of three parts: (a) a global encoder-decoder to en-
code sky light and sun light separately, (b) a local encoder-renderer to encode
lighting-independent local properties, i.e., local contents, in the latent space and
render local appearances given the global lighting conditions, and (c) a spatially-
varying lighting estimator to estimate local lightings represented as disentangled
components in an end-to-end manner.

Global lighting encoder-decoder. Our global lighting encoder-decoder (Fig-
ure 3 (a)) takes a global lighting panorama Pglobal as input and disentangles sky
light and sun light by using two encoders to encode zsky and zsun in two latent
spaces respectively. The sun position Msun is also made explicit from the latent
space of sun light for the editability of the sun position [26]. The reconstructed
global lighting panorama P ′

global is composed of reconstructed sky light P ′
sky and

reconstructed sun light P ′
sun following Eq. (1).

Local content encoder-renderer. As shown in Figure 3 (b), the local content
encoder takes a local lighting panorama Plocal as input and extracts the lighting-
independent component of local content encoded in zlocal, which is achieved by
local identity loss and cross rendering loss (in Sec. 4.3). To get the rendered
local appearance P ′

app, the local appearance renderer takes zlocal, zsky, zsun, and
a panoramic cosine mask Mcos as input to function as Eq. (2), where zsky and
zsun are the encodings of sky light and sun light in the global lighting condition of
Pglobal corresponding to the local lighting panorama Plocal. The cosine maskMcos

is derived from the sun position Msun indicating the shading on a hypothesized
Lambertian sphere in the panoramic coordinate. Since the silhouette is a lighting-
independent property, we use a silhouette decoder to estimate the silhouette
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mask M ′
sil of the local content from zlocal as only input. The reconstruction of

spatially-varying local lighting P ′
local is then derived following Eq. (3).

Spatially-varying lighting estimator. Since we model the outdoor lighting in
three disentangled latent spaces, our spatially-varying lighting estimator predicts
lighting components as latent codes instead of directly estimating panoramic
lighting maps. Our estimator is a single-in-multi-out network (Figure 3 (c)),
which only takes a limited-FoV LDR image I of the outdoor scene as input.
After extracting deep features using a shared network backbone, the sun po-
sition M ′

sun, sky light code z′sky, and sun light code z′sun of global lighting are
estimated in different output branches. Here we estimate the sun position as an
8× 32 classification task. To estimate spatially-varying sun visibility zvis caused
by occlusions or weather at each pixel position, we also use a branch to pre-
dict a sun visibility mask M ′

vis to approximately indicate whether the object
on the given pixel position can be directly illuminated by the sun. For local
content estimation, the stacked hourglass network [20] is used to capture the
pixel-aligned features in multiple scales. Given the pixel position l(u, v) on the
input image, the local features at the same position in the image coordinate are
extracted [22], then the local content code z′local at the corresponding 3D point
L(x, y, z) is estimated from the extracted pixel-aligned local features. Our local
lighting estimator runs in an end-to-end manner and estimates local lighting as
editable disentangled lighting components.

4.3 Training

As illustrated in Figure 3, our full pipeline is trained with both supervised and
self-supervised signals.

Supervised Losses. Since we are using rendered synthetic dataset, we can get
the direct supervisions for many components in the pipeline. During the training
of global lighting and local appearance encoding, we use the ℓ1 reconstruction
loss for P ′

sky, P
′
app, M

′
sil, and the ℓ2 reconstruction loss for P ′

sun. Once our global
and local encoders are trained, we run them on our synthetic dataset to get the
disentangled codes as training targets. When training the estimator, we use the
ℓ2 reconstruction loss for M ′

vis, z
′
sky, z

′
sun, and z′local, and the cross-entropy loss

(CE) for M ′
sun. Please refer to the supplemental materials for more details.

Self-supervised Losses. In our formulation, local content have spatially-varying
and lighting-independent properties. Therefore, the local content codes should
also be lighting-independent. That is to say: 1) local lighting maps with dif-
ferent global lighting conditions and the same local content should have the
same local content codes; 2) the local content codes encoded from the local
lighting maps with the same local content should produce the same local ap-
pearance renderings with the same global lighting conditions. The constraints
can be added by the local identity loss (ID) Lid and the cross rendering loss
(CR) Lcr. As said in Section 4.1, our synthetic dataset has paired local lighting
maps {P 1

local, P
2
local} with the same local content but different global lighting

conditions, and let {z′1local, z′2local} be the local content codes encoded by our local
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encoder, then we define:

Lid = ||z′1local − z′2local||1, (4)

and

Lcr = ||P 1
local ⊙Msil − P ′1

local(z
′2
local)⊙Msil||1+

||P 2
local ⊙Msil − P ′2

local(z
′1
local)⊙Msil||1, (5)

where P ′i
local denotes rendering the local appearance map from local content codes

using the global lighting condition of P i
local. We also adopt the info loss (IF) Linfo

in HDSky [26] to ensure a better disentanglement of sky light and sun light.

4.4 Inference

At inference time, the inputs are a limited-FoV image and a designated pixel
position. As shown in Figure 3(c), the global lighting codes of sun light and sky
light, sun position and sun visibility mask are predicted. Then local content code
and local sun visibility are predicted at the given pixel position. The codes are
further used to decode and render global and local lighting map predictions by
trained global decoder and local renderer following the formulation in Sec. 3. To
estimate local lighting at multiple pixel positions, only local feature extraction,
local content code estimation and local appearance rendering are needed, which
means our method is of high re-usability of network predictions.

5 Experiments

In this section, we perform detailed network analysis and present qualitative
and quantitative results on both synthetic data and real data, we also show re-
lighted bunny results and virtual object insertion results to validate our methods
qualitatively.
Baseline methods. To compare with spatially-varying local lighting estimation
methods, we choose the latest SOLID-Net [28] as the baseline. To compare
with global lighting estimation methods, we use SkyNet [11] as the baseline.
To compare with fully parametric lighting models, we set two baseline OursSH
and OursSG that use the same network architecture as our estimator to predict
spatially-varying local lighting represented using 5-th order SH coefficients (108
parameters in total) and 24 SG lobes following [19] (144 parameters in total). All
baselines are trained on the same synthetic dataset proposed with our method,
and the implementation details can be found in supplemental materials.
Metrics. To measure the accuracy of predicted global lighting maps P ′

global, local
appearance maps P ′

app, local lighting maps P ′
local, and the relighted objects, we

use mean absolute error (MAE) and root mean square error (RMSE) as error
metrics. To measure the sun position prediction, we use angular error, azimuth
error, and elevation error as error metrics.
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Table 1. Quantitative evaluation
of our local encoder-renderer on
our enhanced synthetic dataset.
‘Reconstruction’ and ‘Cross Ren-
dering’ denote the errors of re-
constructed and cross-rendered
panoramic HDR lighting maps re-
spectively before tone mapping.

Method
Reconstruction Cross Rendering

MAE RMSE MAE RMSE

Ours 0.028 0.075 0.031 0.079
Ours w/o Mcos 0.034 0.083 0.036 0.085
Ours w/o Lcr 0.029 0.083 0.048 0.101
Ours w/o Lid 0.032 0.087 0.035 0.089

5.1 Ablation Study

Effectiveness of local content encoder-renderer. To validate that our local
content encoder-renderer learns the lighting-independent local content instead
of the lighting-dependent local appearance in zlocal, we design an experiment of
cross rendering: A pair of local lighting maps {P 1

local, P
2
local} (same local content,

different global lighting) is encoded to z1local and z2local respectively, then the
local codes are swapped and the cross-rendered local appearances are obtained
using the swapped local codes and the original global lighting conditions. The
cross-rendered results are expected be close to ground truth local appearances.

As shown in Table 1, our local content encoder-renderer achieves a good
performance4 in cross rendering, as well as reconstruction. Without panoramic
cosine mask Mcos (Ours w/o Mcos), the direction of sun light becomes unclear
and the rendering performance is damaged both in reconstruction and cross
rendering. Without local identity loss Lid in Eq. (4) (Ours w/o Lid) or cross
rendering loss Lcr in Eq. (5) (Ours w/o Lcr), the cross rendering performance
is heavily downgraded, indicating that the local encoder would fail to encode
lighting-independent information into zlocal without Lcr or Lid.

Fig. 5. Cross-rendered results of lo-
cal lighting under different combi-
nations of local contents and global
lighting conditions on our enhanced
synthetic dataset (shown in tone-
mapped HDR). Different rows and
columns indicate different local con-
tent information and global lighting
conditions respectively.

Global
Local

Editability of disentangled lighting representation. To illustrate the ed-
itability of our disentangled lighting representation, Figure 5 shows the cross
rendering results under different combinations of local contents and global light-
ing conditions. The first row and the first column show the reconstructed global

4 Errors are calculated on the masked region by the (predicted) local silhouette masks.
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Table 2. Quantitative evaluation of
spatially-uniform global lighting es-
timation on our enhanced synthetic
dataset. ‘Panorama’ denotes the er-
rors of panoramic HDR lighting maps
before tone mapping. ‘Relighting’ de-
notes the errors of rendered HDR im-
ages using predicted lighting maps.

Method
Panorama Relighting

MAE RMSE MAE RMSE

Ours 0.439 7.607 0.098 0.119
SkyNet [11] 0.431 8.357 0.226 0.253

SOLID-Net [28] 0.384 6.360 0.153 0.174

lighting maps and local lighting maps from our network respectively. These maps
correspond to different encoded global lighting and local content information.
Here we use different combinations of global lighting information and local con-
tent information to cross-render corresponding local lighting maps. In each row,
the same local content code zlocal is shared and the layouts of local content are
basically the same, which further validates that the lighting-independent local
content information is indeed encoded into zlocal. Given global lighting codes zsky
and zsun in each column, local appearances are correctly rendered, such as block-
ing of the sun light by the buildings and reflection of the sun light on the ground
when the sun is at a low elevation angle. The results show our method’s editabil-
ity of the local lighting. Our disentangled lighting representation also allows the
editing of the global lighting since the sun light, sky light and sun position are
represented in separate spaces (please refer to supplemental material).
Importance of sun visibility mask. In our method, a predicted sun visibility
mask M ′

vis is used to indicate the effects of the weather and the spatially-varying
occlusion of the sun, since whether an object is directly illuminated by the distant
sun light will affect its appearance significantly. Such a design is verified by
removing the prediction branch of Mvis in our lighting estimator and fix zvis = 1
(Ours w/oMvis). As we can see from Table 3, without using the information from
the predicted sun visibility maskM ′

vis to constrain the predicted distant sun light
component in local lighting, the accuracy of both reconstructed environment
maps and relighting results will be degraded.

5.2 Experimental Results

Spatially-uniform global lighting estimation. We compare global lighting
estimation performance of our method (Ours), SkyNet [11], and SOLID-Net [28].

To evaluate the sun position estimation, we compute sun angular error, az-
imuth error, and elevation error on our test set, as shown in Figure 6. The sun
position is calculated as the centroid of the largest connected component of the
global lighting panorama above a threshold (98%) [28]. We can see that by treat-
ing sun position estimation as a disentangled task, our method achieves favorable
improvement over other baseline methods in sun position estimation.

For quantitative evaluation, we calculate the errors on estimated global light-
ing of the sky-dome represented in panoramic maps (only the upper half of the
predicted global environment maps by SOLID-Net [28] are used for calculation).
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(c) Elevation error(a) Sun angular error (b) Azimuth error

Fig. 6. Quantitative evaluation of sun position estimation on our enhanced synthetic
dataset. (a) Cumulative curves of the sun angular error of baseline methods and ours.
(b) Azimuth errors and (c) elevation errors of the sun position estimation are displayed
as ‘violin plots’, where the envelope of each bin represents the percentile, the gray line
represents the percentile of 25% to 75%, and the white point represents the median.

Table 3. Quantitative evaluation
of spatially-varying local lighting
estimation on our enhanced syn-
thetic dataset. ‘Panorama’ denotes
the errors of panoramic HDR light-
ing maps before tone mapping. ‘Re-
lighting’ denotes the errors of ren-
dered HDR images using predicted
lighting maps.

Method
Panorama Relighting

MAE RMSE MAE RMSE

Ours 0.128 2.394 0.075 0.145
Ours w/o Mvis 0.140 2.814 0.081 0.159

OursSH 0.190 1.943 0.081 0.139
OursSG 0.170 2.785 0.093 0.179

SOLID-Net [28] 0.308 3.384 0.186 0.337

The panoramas are rotated before evaluation to move the sun to its center [11].
Furthermore, we evaluate the rendering errors5 on the relighting of a glossy
Stanford Bunny [4] using predicted global lighting maps. For panoramic errors
in global lighting map estimation, we can see from Table 2 that our method is on
par with SkyNet [11] and SOLID-Net [28]. However, our method performs signif-
icantly better on relighting results. This is because metrics on outdoor lighting
maps are sensitive to even a slight misalignment of high-intensity pixels, while
metrics on relighting results are more robust and close to human perception.

From the practical point of view, the relighting performance is of more con-
cern. As shown in Figure 7, our method better preserves the high-frequency
information in sun light and our relighting results look more realistic than those
of SkyNet [11] and SOLID-Net [28], which predict less high-frequency lighting
component resulting in lower errors of panoramic lighting maps.

Spatially-varying local lighting estimation. We compare local lighting es-
timation performance of our method (Ours), Ours w/o Mvis, OursSG, OursSH,
and SOLID-Net [28].

A quantitative evaluation of estimated panoramic local lighting maps and
the relighting results by the estimated local lighting maps on our test set is
shown in Table 3. Our method significantly outperforms the non-parametric
method SOLID-Net [28] in both reconstruction and relighting results. The fully

5 We calculate rendering errors on pixels belonging to the bunny body.
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Fig. 7. Relighting results with global lighting maps on our enhanced synthetic dataset.
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Fig. 8. Qualitative comparison of local lighting estimation results. Column 1 shows the
input image and two selected pixel positions. Column 2 and column 5 show the ground
truth local lighting environment map in HDR and LDR respectively. Columns 3-4 and
columns 6-7 show the estimated local lighting by our method and SOLID-Net [28] in
HDR and LDR respectively. The first two rows are from our enhanced synthetic dataset
and the last row is from our captured real data.

parametric methods OursSH and OursSG generally perform well, which shows the
effectiveness of our local feature extraction network allowing spatially-varying
prediction in both SH and SG models. Overall, our method achieves state-of-
the-art performance with more flexible editability than other methods.

As shown in the qualitative comparison of local lighting estimation (Figure 8),
our method can recover the major layout of local lighting maps, render local
appearances given estimated global lighting conditions, and correctly predict
sun visibility, while SOLID-Net [28] suffers from the accumulated errors of the
scene geometry estimation and the lack of explicit constraint of sun visibility.
Our method does not rely on explicitly estimating accurate geometry and can
recover a cleaner environment map with fewer high-frequency artifacts.

We also show relighted bunny results in Figure 9 for further qualitative com-
parison of estimated local lighting on our captured real data, which is more
challenging due to the dataset shift. We can see that though OursSH performs
well on pixel average, the relighting results are visually unrealistic due to the
lack of hard shadows. OursSG is not as robust as OursSH on real data. SOLID-
Net [28] is misled by inaccurately estimating the complex geometry and shadow
clues. Our method performs better visually on both dark and bright regions.
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Fig. 9. Qualitative comparison of relighting results on our captured real data.
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Fig. 10. Examples of virtual object inser-
tion on our captured real data.
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Fig. 11. Examples of local lighting esti-
mation on in-the-wild data.

Virtual object insertion. A useful application of spatially-varying local light-
ing estimation is to insert a virtual object into the scene. As shown in Figure 10,
the inserted objects can be realistically relit at the positions of insertions.
Generalization ability. Although our pipeline is trained on fully synthetic
dataset of urban scenes, the spatially-varying properties of lighting in natural
scenes can also be captured. Besides, thanks to the synthetic dataset enhance-
ment, our pipeline can work for non-sunny weather, as shown in Figure 11.

6 Conclusion

In this paper, we propose a novel parametric lighting model with disentangled
spaces and formulate lighting estimation on outdoor scenes as an end-to-end
learning problem. The major benefit of the proposed method is that it learns a
flexible lighting representation that is user-friendly to manipulate. In addition,
neither explicit intrinsic estimations nor time-consuming optimization proce-
dures for traditional parametric lighting models are not needed. From extensive
experiments and qualitative demonstrations, the effectiveness of the proposed
method is verified and the proposed method achieves state-of-the-art perfor-
mance compared with previous work on both synthetic and real data.
Limitations and future work. While our method performs well in estimat-
ing at bright regions, it may fail to handle the sharp lighting change near the
boundary pixels. Exploring more spatially-coherent local lighting estimation [24]
is also an interesting direction for our future work. Besides, our lighting editing
only faithfully modifies disentangled components, and automatic harmonization
to make the edited lighting more natural will benefit user interaction in the fu-
ture. A large-scale dataset for spatially-varying lighting in more diverse outdoor
scenes will be helpful to boost the training of learning-based methods.
Acknowledgements. This work is supported by National Natural Science Foun-
dation of China under Grant No. 62136001, 61872012.
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