
Projective Parallel Single-pixel Imaging to
Overcome Global Illumination in 3D Structure

Light Scanning: Supplementary Material

Yuxi Li1[0000−0002−1922−5811], Huijie Zhao2, Hongzhi Jiang1, and Xudong Li1

1 School of Instrumentation and Optoelectronic Engineering, Beihang University
(BUAA), Beijing, China

uniluxli@qq.com, {jhz1862,xdli}@buaa.edu.cn
2 Institute of Artificial Intelligence, Beihang University (BUAA), Beijing, China

hjzhao@buaa.edu.cn

A Proof of Local Maximum Constraint Proposition

Local maximum constraint, which states that the correspondence matched point
has to be a local maximum on the projection function, provides necessary condi-
tion for the location of candidate correspondence matching points when projec-
tion functions are captured. To prove the local maximum constraint proposition,
two lemmas are required.

Lemma 1. Shifting property of Radon transform. Suppose f(x) is a two di-

mensional function with x = (x, y), ξ is a vector of the form ξ=(cosθ,sinθ)
T
,

δ is a vector of the form δ = (δx, δy), the Rodon transform of f(x) is denoted

as ℜθf(x) =
∫
f(x) · δ(ρ− x · ξ)dx=

∨
f (ρ, θ), then, the Radon transform of the

shifted function f(x− δ) is ℜθf(x− δ) =
∨
f (ρ− δ · ξ, θ).

Proof. From the definition of Radon transform, the Radon transform of the
shifted function f(x− δ) is

ℜθf(x− δ) =

∫
f(x− δ)δ(ρ− x · ξ)dx. (13)

Let y = x− δ, and substitute into Eq. (13)

ℜθf(y) =

∫
f(y)δ(ρ− δ · ξ − y · ξ)dy

=
∨
f (ρ− δ · ξ, θ).

(14)

Thus, the lemma is proven. □

Lemma 2. Derivative properties of Radon transform. The Radon transform of
the derivative of original function has the form of



2 Y. Li et al.

ℜθ{
∂f

∂x
} = cos θ

∂
∨
f (ρ, θ)

∂ρ
,

ℜθ{
∂f

∂y
} = sin θ

∂
∨
f (ρ, θ)

∂ρ
,

(15)

and the Radon transform of the second derivative of original function has the
form of

ℜθ{
∂2f

∂x2
} = cos2θ

∂2
∨
f (ρ, θ)

∂ρ2
,

ℜθ{
∂2f

∂y2
} = sin2θ

∂2
∨
f (ρ, θ)

∂ρ2
.

(16)

Proof. The two sub-equations of Eq. (15) and Eq. (16) can be proved in the
same manner, thus only the first sub-equations of Eq. (15) and Eq. (16) are
proved. From the definition of derivative

∂f

∂x
=lim

ε→0

f(x+ ε/cos θ , y)− f(x, y)

ε/cos θ
(17)

Taking Radon transform to both sides of Eq. (17), we have

ℜθ
∂f

∂x
= lim

ε→0

ℜθf(x+ ε/cos θ , y)−ℜθf(x, y)

ε/cos θ

= cos θ · lim
ε→0

ℜθf(x+ ε/cos θ , y)−
∨
f (ρ, θ)

ε
.

(18)

From lemma 1, when δ=(−ε/cos θ , 0), Eq. (18) can be simplified as

ℜθ
∂f

∂x
= cos θ · lim

ε→0

∨
f (ρ, θ)−

∨
f (ρ, θ)

ε

= cos θ
∂
∨
f (ρ+ ε, θ)

∂ρ
.

(19)

Obviously, if ∂f/∂x is treated as the original function f in Eq. (15), Eq. (16)
can be derived by using the result of Eq. (19). □

Theorem 1. Local Maximum Constraint Proposition. The direct illumination
point on the pixel transport image is a local maximum point on the projection
functions, if the corresponding projection line does not pass through any speckles
caused by global illumination.

Proof. Suppose (x0, y0) is the direct illumination point, which is a local max-
imum point on the pixel transport image, and the small circular region ΩR with
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radius R centered at (x0, y0) is the effective region of the direct illumination
[Fig.8 (a)]. This effective region is caused by blurring effect of the lens, thus the
value of pixel transport image inside ΩR can be considered as axial symmetric
and concave function, thus a radius square r2=(x− x0)

2
+ (y − y0)

2
is enough

to parameterize the function inside ΩR

f(x, y)=f(r2),

∂f(x, y)

∂x
= 2f ′

r2x,

∂f(x, y)

∂y
= 2f ′

r2y,

∂2f(x, y)

∂x2
= 4f ′′

r2x
2 + 2f ′

r2 ,

∂2f(x, y)

∂y2
= 4f ′′

r2y
2 + 2f ′

r2 ,

(20)

where f(r2) is a concave and monotone decreasing function with respect to r2,
and we have f ′

r2 < 0, f ′′
r2 < 0, which are the derivative and second derivative of

function f(�) with respect to r2. From Eq. (20), we have the following conclusions∫∫
ΩR

∂f(x, y)

∂x
· δ(ρ0 − x cos θ − y sin θ)dxdy = 0,∫∫

ΩR

∂f(x, y)

∂y
· δ(ρ0 − x cos θ − y sin θ)dxdy = 0,

(21)

and ∫∫
ΩR

∂2f(x, y)

∂x2
· δ(ρ0 − x cos θ − y sin θ)dxdy < 0,∫∫

ΩR

∂2f(x, y)

∂y2
· δ(ρ0 − x cos θ − y sin θ)dxdy < 0,

(22)

where ρ0=x0 cos θ + y0 sin θ. Eq. (21) and Eq. (22) indicates that the integral
is only applied along the line L(ρ0, θ) : x cos θ + y sin θ − ρ0=0, since the delt
function not equals to zero only along this line.

Eq. (21) holds because ∂f
∂x |x=x0+δ = −∂f

∂x |x=x0−δ and
∂f
∂y |y=y0+δ = −∂f

∂y |y=y0−δ

can be concluded from Eq. (20). Eq. (22) holds because ∂2f(x,y)
∂x2 < 0and ∂2f(x,y)

∂y2 <

0 can be concluded according to Eq. (20).

Eq. (21) and Eq. (22) can be understood as the integral of the corresponding
partial derivative functions along line x cos θ+y sin θ−ρ0=0, where ρ0=x0 cos θ+
y0 sin θ. This is a line passing through point (x0, y0), and the angle between x
axial is θ. ρ0 is the projection point of (x0, y0).

From the definition of Radon transform, the Radon transform of the deriva-
tive of the original function can be written as
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ℜθ
∂f

∂x
=

∫∫
[
∂f

∂x
· δ(ρ− x cos θ − y sin θ)]dxdy

ℜθ
∂f

∂y
=

∫∫
[
∂f

∂y
· δ(ρ− x cos θ − y sin θ)]dxdy.

(23)

Because the projection line does not pass through any speckles caused by
global illumination for a certain θ, the values of function f(x, y) (also function
∂f(x, y)/∂x ) on line L(ρ0, θ) : x cos θ + y sin θ − ρ0=0 are zeros, except the
partial line in region ΩR. For the integral inside ΩR, the integral along a fixed
line ρ0=x cos θ+ y sin θ in Eq. (23) equals to zeros, according to Eq. (21). Then,
from Eq. (15), we have

ℜθ
∂f

∂x
|(x,y)∈L(ρ0,θ) = cos θ

∂
∨
f (ρ, θ)

∂ρ
|ρ=x0 cos θ+y0 sin θ=0,

ℜθ
∂f

∂y
|(x,y)∈L(ρ0,θ) = sin θ

∂
∨
f (ρ, θ)

∂ρ
|ρ=x0 cos θ+y0 sin θ=0.

(24)

For any value of θ, sin θ and cos θ are not equal to zero at the same time.
Thus, we can conclude that

∂
∨
f (ρ, θ)

∂ρ
|ρ=x0 cos θ+y0 sin θ=0. (25)

From the definition of Radon transform, the second derivative of original
function can be written as

ℜθ
∂2f

∂x2
=

∫∫
[
∂2f

∂x2
· δ(ρ− x cos θ − y sin θ)]dxdy

ℜθ
∂2f

∂y2
=

∫∫
[
∂2f

∂y2
· δ(ρ− x cos θ − y sin θ)]dxdy.

(26)

By a similar derivation between Eq. (23) and Eq. (24), and from Eq. (22),
Eq. (26) can be written as

ℜθ
∂2f

∂x2
|(x,y)∈L(ρ0,θ)

= cos2θ
∂2

∨
f (ρ, θ)

∂ρ2
|ρ=x0 cos θ+y0 sin θ

=

∫∫
ΩR

[
∂2f

∂x2
· δ(ρ0 − x cos θ − y sin θ)]dxdy < 0

ℜθ
∂2f

∂y2
|(x,y)∈L(ρ0,θ)

= sin2θ
∂2

∨
f (ρ, θ)

∂ρ2
|ρ=x0 cos θ+y0 sin θ

=

∫∫
ΩR

∂2f(x, y)

∂y2
· δ(ρ0 − x cos θ − y sin θ)dxdy < 0.

(27)
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Because sin2θ ≥ 0and cos2θ ≥ 0, thus, we can conclude that

∂
∨
2f (ρ, θ)

∂ρ2
|ρ=x0 cos θ+y0 sin θ < 0. (28)

Thus, from Eq. (25) and (28), the projection point ρ0 is a local maximum on

the projection function
∨
f (ρ, θ). □

B Perfect Reconstruction Property of Local Slice
Extension Method

In the main text, the projection functions are captured by the proposed local
slice extension method, which is implemented by a “coarse to fine” localization
procedure. In this section, we will introduce local slice extension method from a
theoretical aspect, and prove that the local slice extension method can perfectly
reconstruct the projection function. First, we provide Lemma 3 which states
that the reconstructed projection function by inverse discrete Fourier transform
(IDFT) corresponds to a periodic extension version of the projection function
fθ(ρ;u, v) when the patterns generated by Eq. (9) are projected.

Lemma 3. Assume fθ(ρ;u, v) is the projection function with direction θ for
camera pixel (u, v), by projecting patterns in the form of Eq. (9), the recon-
structed function of camera pixel (u, v) by IDFT becomes a periodic extension
version of the original projection function

f̃r
θ (ρr;u, v)=

+∞∑
r1=−∞

f(ρr − r1Mθ;u, v), (29)

where ρr is a pixel on the reconstructed function, Mθ is given in Eq. (9), which
is the size of the maximum of θ projected reception field for each camera pixel,
and r1 is integer.

Proof. Similar to Eqs. (7) and (8), when each sample in the frequency domain
is obtained by using the patterns generated by Eq. (9), the reconstructed function
by applying IDFT on the captured intensity is calculated as

f̃r
θ
(ρr;u, v) = IDFT{Sb

2
·
N−1∑
v′=0

M−1∑
u′=0

·h(u′, v′;u, v) · exp[−2πk

Mθ
(u′ cos θ + v′ sin θ)]}

=
Sb

2
·

+∞∑
r1=−∞

N−1∑
v′=0

M−1∑
u′=0

·h(u′, v′;u, v) · δ(ρr − u′ cos θ − v′ sin θ − r1Mθ)

=
Sb

2
·

+∞∑
r1=−∞

fRadon
θ (ρr − r1Mθ;u, v)

=

+∞∑
r1=−∞

fθ(ρr − r1Mθ;u, v),

(30)
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where fRadon
θ (ρ;u, v) is the discrete Radon transform of LTCs along direction θ,

as defined in Eq. (2). □
Figure 7 shows the periodic extension version of projection function. Provided

with Lemma 3, we can prove the local slice extension theorem.

Theorem 2. Local Slice Extension Theorem. If the size of the maximum of θ
projected reception field Mθ covers the non-zero regions of fθ(ρ;u, v), projection
function can be perfectly reconstructed by adopting local slice extension method,
that is, the projection function obtained by the local slice extension method im-
plemented by the “coarse to fine” procedure is exactly equal to the projection
function captured and reconstructed according to Eq. (4) - Eq. (8).

Proof. If the size of the maximum of θ projected reception field Mθ covers the
non-zero regions of fθ(ρ;u, v), then from Lemma 3, the reconstructed projection
function can be regarded as a periodic extension version of the original projection
function, with step size of Mθ. Aliasing does not occur in this situation (Fig. 7),
and all information of fθ(ρ;u, v) is preserved in f̃r

θ
(ρ;u, v). Thus, by adopting

local slice extension method, projection function can be exactly reconstructed,
which equals to projection function captured and reconstructed according to Eq.
(4) - Eq. (8).

Provided that the nonzero region Cθ(ρ;u, v) of fθ(ρ;u, v) is known, the pro-
jection function fr

θ
(ρ;u, v) can be exactly obtained by taking the values inside

the visible region Cθ(ρ;u, v) of f̃r
θ
(ρ;u, v) and setting zeros outside Cθ(ρ;u, v)

of f̃r
θ
(ρ;u, v) as given by Eq. (12). Mθ is obtained by coarse localization step,

which can avoid the occurence of alizaing as shown in the second row of Fig. 7.□

C Localization by Truncation

C.1 Derivation of the Coarse Localization Accuracy in Terms of
Frequency Number

Suppose the projection function f(ρ) has a length of L. The process of truncation
the higher frequencies of the projection function f(ρ) can be described as ap-
plying a window function P (k) on F (k), which is the discrete Fourier transform
(DFT) of f(ρ)

FC(k) = P (k)F (k), (31)

where FC(k) is the captured frequencies for coarse localization, and P (k) has
following form

P (k)=

{
1 0 ≤ k ≤ K − 1 or L−K − 1 ≤ k ≤ L− 1
0 otherwise

, (32)

where K is the captured number of low frequencies. Conjugate symmetry prop-
erty is considered, which resulting the two banded nonzero values in Eq. (32).
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Fig. 7. Perfect reconstruction property of local slice extension method. Periodic ex-
tension version of projection function is shown. In the first row, Mθ is large enough
such that aliasing does not occur. While in the second row, Mθ is not large enough and
aliasing occurs.

From circular convolution property, Eq. (31) is equivalent to applying circular
convolution in the spatial domain

FC(k) = P (k)F (k)
DFT↔ fC(ρ) = p(ρ)⊗Lf(ρ), (33)

where ⊗L denotes L-point circular convolution.
DFT↔ denotes that the two func-

tions are a DFT pair. If p(ρ) is a periodic impulse train with period L, fC(ρ)
equals exactly to f(ρ). This corresponds to capture the whole frequencies k =
0, · · · , L− 1.

When truncation is applied, the reconstructed coarse projection function
fC(ρ) is the L-point circular convolution of p(ρ) and f(ρ), shown in Fig. 8
(a)–(c). The approximated size of the projected reception field Msis determined
by the width of the main lobe of p(ρ), which is depicted in Fig. 8 (b). The length
of Ms can be approximated by adding the actual size of the projected reception
field and the size of the main lobe.
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p(ρ) can be obtained by applying IDFT to P (k), as expressed by

p(ρ) =
1

L

K−1∑
k=0

exp(j
2π

L
kρ)

+
1

L

L−1∑
k=L−K−1

exp(j
2π

L
kρ)

=
1

L

K−1∑
k=−(K−1)

exp(j
2π

L
kρ)

=
1

L

sin[ 2πL (K − 1
2 )ρ]

sin( πLρ)
.

(34)

Fig. 8. Truncation in frequency domain. (a) Actual projection function. The projected
reception field is indicated by the red lines. (b) Convolution kernel in spatial domain
when direct truncation is applied in frequency domain. The size of the main lobe is
important for localization accuracy. Ringing effect is obvious if the high frequency is
removed directly. (c) The reconstructed coarse projection function when direct trun-
cation is applied. The location of the projected reception field can be determined by
setting the region where the values are larger than a noise threshold. (d) Convolution
kernel in spatial domain when Kaiser window, with the shape parameter set as 5, is ap-
plied in frequency domain. Ringing effect is not obvious. (e) The reconstructed coarse
projection function when Kaiser window is applied in frequency domain.

The size of the main lobe can be determined by setting Eq. (34) equals to
zero. The first zero-crossing point ρ=L/(2K − 1) is half of the size of the main
lobe. For a fixed L, with more low frequency information captured, the more
concentrated the main lobe area, thus the more accurate the coarse localization
process.
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In summary, for a projection function f(ρ) with a length of L, when K low
frequencies are captured, The approximated size of the projected reception field
Ms is 2L/(2K − 1) wider than the actual size.

There is a trade-off between the number of low frequencies captured and the
localization accuracy. To solve this problem, suppose M∗

s be the actual size of
the projected reception field, and

R =
2L

(2K − 1)M∗
s

, (35)

be the localization uncertain ratio. In our experiments, we believe R=1 , which
indicates that the approximated size of the projected reception field Ms is only
one time wider than the actual size, is enough. L takes value of 1920, and M∗

s

is assumed as 150 pixels. Putting these values into Eq. (35), we get K ≈ 13.
We found that the number of low frequency samples of 10 is enough in most
situations.

However, removing high frequency information directly results in severely
ringing effect, shown in Fig. 8 (b)–(c). Alternatively, Kaiser window [2], with the
shape parameter β set to 5, is applied to the sampled low frequency samples.
The ringing effect can be largely eliminated, as shown in Fig. 8 (d)–(e). Kaiser
window is originally applied on spatial/time domain, however, in the context of
pPSI, Kaiser window should by applied on frequency domain.

C.2 Partial Scan for Fine Localization Step

This section provides experimental results to show the excellent compressive
property of Fourier spectrum, which provides opportunity to obtain satisfactory
results by using patrial observations. Although in section B we prove that perfect
reconstruction can be achieved by projecting patterns generated by Eq. (9) with
all frequencies kθ=0, 1 . . .Mθ−1, we can only project partial frequency to obtain
satisfactory results in most real applications. In fine localization step, only the
patterns with low frequencies are projected (We used a scan ratio of 25% in the
main text). The unscanned frequencies are filled with zeros. We conducted an
experiment to analyze the influence of the scan ratio on the subpixel matching
error (SME), and explain the reason for using scan ratio of 25%. SME is defined
as followed.

Performing both PSI and pPSI for a scene. For a camera pixel (u, v), suppose
u′
R = (u′

R, v
′
R) is the subpixel matched point found by PSI, and u′

P = (u′
P , v

′
P )

is the subpixel matched point found by pPSI. We will conduct pPSI with various
scan ratio. The SME is defined as

SME(u′
R,u′

P ) =
1

2
[(u′

R − u′
P )

2
+ (v′R − v′P )

2
]. (36)

In this section, we study the influence of scan ratio on SME for the composite
scene (the scene displayed in Fig.3) in the main text, the result is shown Fig. 9(a).
The vertical axis corresponds to the averaged SME vale. We averaged the SME
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value of every point in the composite scene. The number of points participating
in the average calculation was 289,145. The horizontal axis corresponds to the
scan ratio. The calculated scan ratios were 5%, 8%, 10%, 12%, 14%,16%, 18%,
20%, 22% 25%,30%, 35%, 40%, 50%, 60%, 70%, 80%, and 90%, 100%, and each
ratio corresponds to one data point on the curve. As can be seen in the figure,
the tenth data point or the 25% scan ratio point (represented by a red star)
provides the best trade-off between accuracy and efficiency, since the gradient
of the curve changes greatly near this point. The curve drops rapidly before the
point, and descents slowly after the point. The averaged SME of 25% scan is
0.047 pixel, which is not very worse than the SME value 0.042 of 100% scan.
Thus, we believe that using the scan ratio of 25% provides satisfactory results.

To answer why 25% scan ratio is possible to provide satisfactory results, we
show the normalized energy distribution in Fig. 9(b). This energy distribution
is calculated by the θ = 0◦ projection function. We captured the 100% Fourier
spectrum by pPSI, and calculated the norm of each frequency position in the
Fourier spectrum (The value on each frequency position is a complex value). The
norm corresponds to energy for the frequency index. We repeated the calculation
for every camera pixel, and summed the energy according to its frequency. Taking
account of the conjugate symmetric property of Fourier spectrum of real-valued
signal, we show half of the normalized energy distribution in Fig. 9(b). As can be
seen, the energy of the first 25% frequencies account 88.24% of the total energy.
This explains the reason why 25% scan ratio is possible to provide satisfactory
results. For the scenes in this study, 25% scan corresponds to 19 frequencies
in the fine localization step. In addition, the patterns with zero frequency has
been captured in the coarse localization step. Thus, the number of frequencies
required by fine localization step is 18.

D Choosing the Number of Slices

In this section, we explain why slices with four directions is used in this study.
The fundamental reason that we use four directions is that we want to keep the
simplicity of the calculation of candidate matching points, and also ensure the
robustness.

As an illustration, a pixel transport image is shown in Fig. 10(a), with its four
projection functions along angles θ = 0◦, 45◦, 90◦, 135◦. In this example, the 45°
projection line that passes through the direct speckle also passes through another
speckle, as shown in Fig. 10(a). The local maximum constraint proposition is
violated in this situation, which is the fundamental reason for using four slices
if robust correspondence points are required.

When only one slice is used, epipolar constraint has to be applied for calculat-
ing the candidate points. However, these candidate points cannot be eliminated
further to obtain the final correspondence matching point, if no more constraint
is provided, as shown in Fig. 10(b).
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Fig. 9. Analysis of partial scan in fine localization step. (a) The influence of scan ratio
on SME for the composite scene. (b) Normalized energy distribution with respect to
frequency.

When two slices are used, more virtual points are generated, as shown in
Fig. 10(c). Some of these virtual points may near to the epipolar line, and still
cannot be eliminated.

Three slices can handle most situations. However, there may exist situations
where the local maximum constraint proposition is violated. The 45° projection
line that passes through the direct speckle also passes through another speckle,
thus only 2 peaks, instead of 3 peaks, can be found on the 45° projection function,
shown in Fig. 10(a). We refer to this situation as degenerate, and refer to the peak
generated by a projection line that passes more than one speckles as degenerate
peak. The position of the degenerate peak is influenced by several speckles, and
thus its position is not exactly equal to the projected position of the maximum
point in any speckle. In this situation, if we back project the degenerate peak,
the resulted line is not intersected exactly with other projection lines, and large
error can be incurred, refer to Fig. 10(a) and (d).

Using four slices can better deal with the degenerate situation. Although the
45° projection line leads to degenerate situation, the 135° projection line does
not. We can calculate the direct illumination point by projection functions with
θ = 0◦, 90◦, 135◦.To be more general, if we find a combination of peaks in four
slices does not determine a point, we can check whether by eliminating one peak,
a point can be determined. If the remaining three peaks does intersect as one
point, we store the intersected point as candidate, and check whether it passes
epipolar constraint.

When four slices are used, the angles of θ = 0◦, 45◦, 90◦, 135◦ are chosen
because they evenly divide 180◦.
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Fig. 10. pPSI with different number of slices. (a) A PTI where the 45° projection line
passes through another speckle. Only 2 peaks can be observed on the 45° projection
function. (b) pPSI by one slice. Epipolar constraint has to be applied for calculating
the candidate point. However, virtual points cannot be further eliminated. (c) pPSI
by two slices. More virtual points are incurred. The virtual points near to the epipolar
line cannot be eliminated. (d) pPSI by three slices. If one of the projection lines which
passes through the direct speckle also passes through other speckles, the local maxi-
mum constraint proposition is violated. The direct illumination point may not intersect
exactly. (e) pPSI by four slices. Any point exactly intersected by three projection lines
is considered as candidate points.

E Calculation of the Number of Patterns

This section introduces the calculation of the number of patterns required by
pPSI. For a slice with certain direction, suppose that Nc is the number of fre-
quencies for coarse location, and Nf is the size of the projection reception field
in the fine location step. η is the scan ratio in fine localization step. S is the step
number. Then, taking account of the conjugate symmetric property of Fourier
spectrum of real-valued signal, the required number of patterns Nt is calculated
by

Nt =


SNc + η S

2Nf − S S is even
SNc + η S

2 (Nf+1)− S S is odd, Nf is odd

SNc + ηS(
Nf

2 +1)− S S is odd, Nf is even.

(37)

The minus S means that the zero frequency patterns are projected in the
coarse localization step, which should be eliminated from the fine localization
step.
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F Compare with Micro-phase Shifting Method

In this section, several additional experiments are made to compare pPSI with
micro-phase shifting method [1]. Scenes with strong interreflections and subsur-
face scattering are investigated.

For interreflections, three scenes are investigated. 1. The scene of gypsum bear
with a mirror nearby; 2. The V-groove scene in the main text; 3. A workpiece
made by aluminum alloy, shown in Fig. 11(a). In Fig. 11(b), we showed the
overlapped patterns on the surfaces when high-frequency patterns projected. As
can be seen, glossy interreflections dominated in this scene.

For subsurface scattering, we also tested three scenes. 1. The jade horse; 2.
The polyamide sphere; 3. The candle appeared in the main text, also shown in
Fig. 11 (c). In Fig. 11 (d), we showed the degraded patterns when low frequency
patterns projected. As can be seen, strong subsurface scattering occurred in this
scene.

We conduced micro-phase shifting method and pPSI to the above scenes, and
the 3D reconstruction results are shown in Fig. 12. For the three interreflections
scenes, the projected patterns for micro-phase shifting were chosen as the 16-15
patterns set, which contains patterns for a frequency-band around 16 pixels, and
15 frequencies. For the three subsurface scattering scenes, the projected patterns
for micro-phase shifting were chosen as the 64-15 patterns set, which contains
patterns for a frequency-band around 64 pixels, and 15 frequencies. For pPSI,
all the scenes are illuminated by the same pattern set, i.e., the patterns used in
section 5.2 and 5.3 in the main manuscript.

As can be seen from the results, micro-phase shifting method failed to re-
construct complete 3D data for the following scenes: the scene of gypsum bear
with a mirror, the aluminum alloy workpiece scene. pPSI achieves complete 3D
reconstruction for these scenes, and the quality of the 3D data seems good. Al-
though micro-phase shifting succeeded in reconstructing complete 3D data for
the V-groove scene and the three subsurface scattering scenes, the quality of the
3D data is not as good as that of pPSI. There are obvious ripple errors in the
point clouds reconstructed by micro-phase shifting method.

To test the quality of the 3D point cloud data reconstructed by micro-phase
shifting and pPSI, we calculated the root-mean-square (RMS) error for the V-
groove scene and the candle scene. We separately fitted planes for each surface
of the V-groove scene and the candle scene such that the RMS error can be
obtained by calculating the average error between the reconstructed 3D data
points and the fitted planes. The RMS errors are shown for these two scenes in
Fig. 13. For micro-phase shifting method, the RMS value of the upper plane and
lower plane of the V-groove was 0.058 (mm) and 0.056 (mm), respectively. For
pPSI, the RMS value of the upper plane and lower plane of the V-groove was
0.021 (mm) and 0.015 (mm), respectively. The accuracy of pPSI can is better
than micro-phase shifting. Similar conclusions can be drawn for the candle scene.
For micro-phase shifting method, the RMS value of the candle was 0.228 (mm).
For pPSI, the RMS value of the candle was 0.073 (mm).
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Fig. 11. The workpiece made by aluminum alloy and the candle scene. (a) Workpiece
made by aluminum alloy. (b) The overlapped patterns occurred in the workpiece. (c)
Candle. (d) The degraded patterns on the candle.

The reason that explains the better ability of pPSI is that pPSI explicitly
separates the influences of global illumination and direct illumination, this prop-
erty enables pPSI to reconstruct 3D data under more complex global illumina-
tion. Also, pPSI projects both lower and higher frequency patterns, and all the
response information is synthesized by Fourier transform. There is no need for
pattern set selection. Thus, pPSI is able to reconstruct interreflections and strong
subsurface scattering simultaneously (with a same pattern set to overcome both
interreflections and subsurface scattering).



Projective Parallel Single-pixel Imaging 15

Fig. 12. The reconstructed 3D point clouds. (a) The 3D data of gypsum bear with a
mirror nearby. (b) The 3D data of V-groove. (c) The 3D data of the workpiece. (d)
The 3D data of the jade horse. (e) The 3D data of the candle. (f) The 3D data of the
polyamide sphere.
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Fig. 13. Accuracy comparision between micro-phase shifting and pPSI. (a) The RMS
error for the V-groove scene reconstructed by micro-phase shifting method. (b) The
RMS error for the V-groove scene reconstructed by pPSI. (c) The RMS error for the
candle scene reconstructed by micro-phase shifting method. (d) The RMS error for the
candle scene reconstructed by pPSI.
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