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Abstract. We consider robust and efficient 3D structure light scan-
ning method in situations dominated by global illumination. One typical
way of solving this problem is via the analysis of 4D light transport
coefficients (LTCs), which contains complete information for a projec-
tor–camera pair, and is a 4D data set. However, the process of capturing
LTCs generally takes long time. We present projective parallel single-
pixel imaging (pPSI), wherein the 4D LTCs are reduced to multiple pro-
jection functions to facilitate a highly efficient data capture process. We
introduce local maximum constraint, which provides necessary condi-
tion for the location of correspondence matching points when projection
functions are captured. Local slice extension method is introduced to
further accelerate the capture of projection functions. We study the in-
fluence of scan ratio in local slice extension method on the accuracy
of the correspondence matching points, and conclude that partial scan-
ning is enough for satisfactory results. Our discussions and experiments
include three typical kinds of global illuminations: inter-reflections, sub-
surface scattering, and step edge fringe aliasing. The proposed method
is validated in several challenging scenarios.

Keywords: Global illumination · 3D reconstruction · Single-pixel imag-
ing

1 Introduction

A common assumption in structure light scanning (SLS) methods, such as fringe
projection profilometry (FPP) [34][35][8] and grey coding [12], is that light ray
only travels along a direct path when transmitting through a scene. There-
fore, SLS methods are susceptible to systematic distortions and random errors
when global illumination exists between projector pixels and a camera pixel
[32][31][16][33][13]. Global illumination can occur when the investigated objects
embody complicated surfaces and materials. For instance, inter-reflections, as
shown in Fig. 1(a), dominate between highly glossy reflective surfaces. In these
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surfaces, the light beams received by camera pixels contain not only directly re-
flected light, but also inter-reflected light between surfaces. Subsurface scattering
effects, as shown in Fig.1(b), arise at translucent surfaces when light penetrates
the surface and exits at different positions around the incident point. Fringe alias-
ing occurs at positions with discontinued structures, such as step edge, wherein
a camera pixel can simultaneously observe the foreground and background when
the edge slice exactly passes through the pixel, as shown in Fig. 1(c). Analyzing
and decomposing the influences caused by global illuminations through modern
cameras is a challenging and open problem [22].

Light transport equation describes the complex transport behavior between
projector pixels and camera pixels. The path between the projector and camera
pixels can be determined by capturing and analyzing light transport coefficients
(LTCs) [13], which denote the light radiance between every possible projector
and camera positions combinations; this process enables correspondence match-
ing because the direct path can be identified. However, LTCs are a 4D dataset,
which parameterizes light rays in terms of a 2D camera and 2D projector coor-
dinates. Thus, LTCs involve huge data volume, and capturing them takes long
time. LTCs can be visualized by a 2D image with projector resolutions, given
a camera pixel. We refer to the 2D image with projector resolutions as pixel
transport image.

As a step toward a robust and efficient analysis of light transport behavior,
we develop projective parallel single-pixel imaging (pPSI) to separate the influ-
ences of lights caused by global illumination in 3D scanning. Provided that only
the correspondence point is the ultimate goal in 3D reconstruction, LTCs con-
tains over-complete information because only the direct correspondence point is
extracted and stored. In the present paper, we show that the correspondence
matching position can be obtained when the projection function(s) of the pixel
transport image is captured, through the local maximum constraint.

1.1 Contributions

We introduce pPSI, which is a robust, efficient and comprehensive method of
3D reconstruction in the presence of global illumination. Rather than capturing
complete 4D LTCs, pPSI captures multiple projection functions, thereby en-
abling highly efficient data capture procedure. The local maximum constraint
is proven, which states that the correspondence matched point (direct illumina-
tion point) on the pixel transport image is retained as the local maximum on
the projection function(s). We introduce oblique sinusoidal pattern illumination
mode to capture projection functions, and correspondence point can be calcu-
lated by intersecting the lines that satisfy the local maximum constraint. Local
slice extension method, which involves a “coarse to fine” localization procedure,
is introduced for highly efficient projective function capture. Experimental re-
sults show that partial frequency scanning can obtain satisfactory results, which
enables 3D reconstruction under global illumination with a few hunderds pat-
terns. Three kinds of global illuminations are discussed, namely inter-reflections,
subsurface scattering and step edge fringe aliasing (Fig. 1). For step edge fringe
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aliasing, the upper edge illumination is referred to as direct illumination, and
the lower edge illumination as global illumination.

The present paper offers the following contributions.
1. We develop pPSI, which is a robust, efficient and comprehensive model for

analyzing and solving global illumination effects. Local slice extension method
is introduced for highly efficient capture of projection functions.

2. The relationship between projection functions and LTCs is demonstrated
theoretically, and the oblique sinusoidal pattern illumination mode is proposed.

3. The local maximum constraint is introduced for candidate calculation, and
the fundamental principle is proven both theoretically and experimentally.

Fig. 1. Global illumination problems discussed in this study. Typical global illumina-
tion effects include (a) inter-reflections, (b) subsurface scattering, and (c) step edge
fringe aliasing. Inter-reflections incurs overlapped pattern. Subsurface scattering de-
grades the modulation of the patterns, and step edges cause discontinuous patterns.
Global illumination effects cause failure in traditional SLS methods, such as FPP.
However, our method (pPSI) can solve these problems both robustly and efficiently.

2 Related Work

2.1 3D Reconstruction under Global Illumination

Several methods are developed to solve 3D reconstruction under global illumi-
nations; these methods include high-frequency projection methods [21][2][10][9],
regional projection methods [11][17][29][30], and polarization projection methods
[1][4]. However, these methods are based on specific assumptions that may not
be satisfied in real applications. For example, high frequency projection methods
such as modulated phase-shifting [2] and mircro-phase shifting [10] are mainly to
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suppress lower frequency inter-reflections. These methods used high frequency
patterns and are based on an assumption: only low frequency global illumination
exist, which fails in practical situations. O’Tool et al. [22] introduced structured
light transport (SLT) method for 3D reconstruction under global illumination.
However, non-epipolar assumption was made in SLT, which assumes that epipo-
lar indirect illumination is not strong. In many real world applications, this
assumption can be broken when epipolar plane reflection is strong. On the con-
trary, pPSI makes no explicit assumption and handles inter-reflections (espically
specular inter-reflections) and strong subsurface scattering simultaneously.

Recently, several 3D reconstruction methods that assume no explicit assump-
tion to overcome global illumination are introduced. Park et al. [24] proposed
multipeak range imaging. However, this method requires long capture time, since
each projector stripe line has to be illuminated in turn. In pPSI, each camera
pixel is treated as an independent unit, and reconstructs a 1D projection func-
tion. Each measured pixel value has whole information of projection function.
Thus, the excellent compressive properity of Fourier single-pixel imaging can be
explored, and the projection number can be reduced largely. Recently, Diezu
et al. [6] proposed a method called frequency shift triangulation. However, this
method requires a calibration process to determine the minimal phase step of
the measurement system, and uses a dynamic programming method to eliminate
erroneous data for successful 3D reconstruction. Zhang et al. [32] introduced a
general mathematical model to solve 3D reconstruction under global illumina-
tion. Later, Zhang et al. [31] introduced a sparse multi-path correction method.
However, this method requires an iterative optimization process, which can pro-
long the calculation time and is not suitable for parallel computing. On the
contrary, pPSI requires no additional calibration stage, and the reconstruction
algorithm requires no iterative process, which is suitable for parallel computing.

2.2 Light Transport Coefficients Capture

Light transport is important for computer vision and graphics. Debevec et al.
[5] introduced the capture of a simplified 4D light transport function by a light
stage. Masselus et al. [20] proposed the use of a projector–camera system to
capture a 6D slice of the full light transport function. These early methods
directly capture LTCs, which results in a relatively low capture speed.

Adaptive methods, such as dual photography [26] and symmetric photogra-
phy[7], and compressive imaging methods [27][25][3] are introduced for highly ef-
ficient light transport capture. However, these methods either require a complex
illumination mode or a complex reconstruction algorithm. Primal–dual coding
[23] and SLT [22] are developed, wherein both the illumination and camera pix-
els are controlled simultaneously to manipulate different components in the light
transport between the projector and the camera. However, this method requires
special optical design and hardware.

A single-pixel imaging method is developed for LTCs capture[16][15]. Jiang
et al. [13] introduced parallel single-pixel imaging (PSI) for efficient LTCs cap-
ture using the local region extension (LRE) method. A compressive PSI [19]is
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also introduced for highly efficient LTCs capture. PSI is extended to paraxial
systems [28], and for separating higher order inter-reflections [14]. This work is
an extension to the work by Jiang et al. [13].

In the present paper, we aim to achieve robust and efficient correspondence
matching under strong global illumination for 3D scanning. The most outstand-
ing feature of pPSI is that pPSI provides good balance between robustness and
efficiency in 3D reconstruction under global illumination. The robustnesss means
that pPSI makes no explicit assumption and handles inter-reflections (specular)
and strong subsurface scattering simultaneously. The efficiency means that pPSI
captures projection functions rather than LTCs. This makes pPSI more efficient
than the methods that capture LTCs to solve 3D reconstruction under global
illumination. In the present paper, we take advantage of the excellent compres-
sive property of Fourier spectrum, and achieve 3D reconstruction with a few
hundreds patterns (336 pattterns).

3 Background

PSI captures LTCs h(u′, v′;u, v), which are a 4D dataset, between projector pixel
(u′, v′) and camera pixel (u, v). LTCs describe the image forming process, which
is expressed as

I(u, v) = O(u, v) +

N−1∑
v′=0

M−1∑
u′=0

h(u′, v′;u, v)P (u′, v′), (1)

where I(u, v) is the radiance captured by camera pixel (u, v), O(u, v) is the
environment illumination, P (u′, v′) is the illuminated radiance of projector pixel
(u′, v′). M and N are the horizontal and vertical resolution of the projector,
respectively.

Jiang et al. [13] introduced the LRE method to accelerate the capture ef-
ficiency of PSI; this method assumes that the visible region of each pixel is
confined in a local region; they proved the perfect reconstruction property of
LRE. Reference [13] provides detailed information on PSI. In the present paper,
we refer to the visible region as reception field.

4 Projective Parallel Single-pixel Imaging for Efficient
Separation of Direct and Global Illumination

4.1 Local Maximum Constraint Proposition

This section provides the basics for obtaining direct illumination point (corre-
spondence matched point) via projection functions. PSI requires complete LTCs
capture. However, in the case of 3D reconstruction, LTCs contain over-complete
information because only the direct correspondence point is extracted and stored.
The key observation underlying pPSI is that the direct illumination point can
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be recovered if the 1D projection function(s) of the pixel transport image is
captured [Fig. 2(a)]

fRadon
θ (ρ;u, v) = ℜθ[h(u

′, v′;u, v)]

=

N−1∑
v′=0

M−1∑
u′=0

·h(u′, v′;u, v) · δ(ρ− u′ cos θ − v′ sin θ),
(2)

where ℜθ[h(u
′, v′;u, v)] is the discrete Radon transform of LTCs along direction

θ, which is the angle between the integral direction of the projection function
and horizontal axis, ρ is the coordinate of the projection function, δ(�)is the
Dirac delt function. When each camera pixel is considered, fθ(ρ;u, v) forms a
3D data cube.

We provide some definitions that are useful in following description. Angle
θ defines the direction line to which the pixel transport image is projected. The
direction line is obtained through counter-clockwise rotation of the horizontal
axis by θ, as shown in Fig. 2(a). Given a direction line and a point (u′, v′),
projection line is defined as the line passing through point (u′, v′) and vertical
to the direction line. Thus, the projection position of (u′, v′) to the direction line
is the intersection of the projection line and the direction line, as shown in Fig.
2(a).

The fundamental principle for recovering direct illumination points given
the projection functions is the local maximum constraint proposition, which
provides constraint for the location of the correspondence matched point (direct
illumination point) in the pixel transport image [Fig. 2(b)].

Theorem 1. Local Maximum Constraint Proposition. The direct illumination
point on the pixel transport image is a local maximum point on the projection
functions, if the corresponding projection line does not pass through any speckles
caused by global illumination.

Proof of Local Maximum Constraint Proposition can be found in supplementary
material. □

Local maximum constraint proposition provides a necessary condition for
the location of correspondence matched points. Figs. 2 (a) and (b) provide an
intuitive explanation of local maximum constraint proposition. Suppose multiple
projection functions fθ(ρ;u, v) with D directions are obtained, with the direction
angle of d-th projection at θd. The d-th projection function has a total of Td local
maximums. The j-th local maximum of the d-th projection function is denoted
as ρjd. A grayscale centroid subpixel matching processing is introduced in [16]

and [15], which should be applied to obtain ρjd. The candidate correspondence
matched points are calculated by solving the following linear equations

cos θ1
cos θ2

cos θD

sin θ1
sin θ2

...
sin θD

−ρm1
−ρn2

−ρpD


u′

v′

1

 =


0
0
...
0

 , (3)
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where m,n, p are integers, and take any combination that satisfy m ∈ [0, T1),
n ∈ [0, T2), and p ∈ [0, TD). Each possible combination of local maximum in
every projection line is formed and intersected according to Eq. (3), which can be
solved by singular value decomposition (SVD). Not intersected combinations are
eliminated by check of the rank. The ultimate correspondence matched points are
then determined by the epipolar constraint between the projector and camera,
as conducted in [13]-[16][19][28][33].

Fig. 2. Fundamental principles of pPSI. (a) Projective single-pixel imaging for projec-
tion functions capture. The illumination of oblique patterns is equivalent to the ap-
plication of Radon transform to pixel transport image. The correspondence matching
points of pixel transport image are retained in the projection functions (red spots). (b)
Correspondence matching via projection functions. The red spots are local maximum.
(c) Local slice extension method for efficient projection functions capture.

4.2 Projective Single-pixel Imaging for Projection Functions
Capture

In this section, we show that illuminating oblique sinusoidal patterns is equiva-
lent to applying Radon transform to the pixel transport image. Fig.2 (a) provides
the basic idea.
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If the oblique S-step (S ≥ 3) sinusoidal patterns with following form are
illuminated

Pi(u
′, v′; k, θ) = a+ b · cos[2πk

Lθ
(u′ cos θ + v′ sin θ) +

2πi

S
], (4)

where i denotes the phase step, and take values of i=0, 1, . . . S − 1. a and b are
the average and contrast of the patterns. k is the discrete frequency samples,
and take values of k=0, 1 . . .K, and K ≤ Lθ. Lθ is the equivalent projector
resolution in the projector range for the directional projection function with an
angle of θ [Fig. 2(a)], which can be calculated as

Lθ =

{
⌈M · cos θ +N · sin θ⌉ 0 ≤ θ ≤ π/2
⌈−M · cos θ +N · sin θ⌉ π/2 < θ < π

(5)

where ⌈�⌉ is the ceiling function.
According to Eq. (1), the captured intensity for camera pixel (u, v) can be

calculated as

Ii(u, v; k, θ) = O(u, v) +

N−1∑
v′=0

M−1∑
u′=0

a · h(u′, v′;u, v)

+

N−1∑
v′=0

M−1∑
u′=0

b · h(u′, v′;u, v) · cos[2πk
Lθ

(u′ cos θ + v′ sin θ) +
2πi

S
].

(6)

Supposed that all of phase step i is captured, given a frequency sample k and
an direction θ, we can obtain the following quantity

Fθ(k;u, v) =

S−1∑
i=0

Ii(u, v; k, θ) cos(2πi/S ) + j

S−1∑
i=0

Ii(u, v; k, θ) sin(2πi/S )

=
S

2
·
N−1∑
v′=0

M−1∑
u′=0

b · h(u′, v′;u, v) · exp[−2πk

Lθ
(u′ cos θ + v′ sin θ)].

(7)

Eq. (7) holds because the Lagrange’s trigonometric identities. The product-
to-sum formulas of trigonometric identities and the Euler’s formula can then be
applied.

When patterns with k=0, 1 . . . Lθ − 1 are illuminated, and Fθ(k;u, v) are
calculated as Eq. (7), then, by taking IDFT to Fθ(k;u, v), the projection function
fθ(ρ;u, v), shown in Fig. 2, is obtained as

fθ(ρ;u, v) = IDFT{Sb
2

·
N−1∑
v′=0

M−1∑
u′=0

·h(u′, v′;u, v) · exp[−2πk

Lθ
(u′ cos θ + v′ sin θ)]}

=
Sb

2
·

+∞∑
r=−∞

N−1∑
v′=0

M−1∑
u′=0

·h(u′, v′;u, v) · δ(ρ− u′ cos θ − v′ sin θ − rLθ)

=
Sb

2
· ℜθ[h(u

′, v′;u, v)],

(8)
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where r are integers. Although fθ(ρ;u, v) contains an infinite sum term, the pixel
transport image has nonzero values only in one continuous region with length
of Lθ. Thus, Eq. (8) is precisely applying discrete Radon transform to the pixel
transport image along direction θ, with a scale factor. In the present paper, we
use three-step sinusoidal oblique patterns for projection functions capture.

4.3 Local Slice Extension Method for Efficient Projection Functions
Capture

Local slice extension method, which is implemented by a “coarse to fine” local-
ization procedure, is introduced for highly efficient projection functions capture
[Fig. 2(c)]. The fundamental basis of local slice extension method can be proven
by reducing the LRE reconstruction theorem [13] to 1D case. Compared with
the LRE method, local slice extension method captures projection functions with
different orientations. Thus, in local slice extension method, concepts equivalent
to the size and location of the reception field in LRE method are the size and
location of the reception field projected along projection direction with θ. We
refer to them as the size and location of θ projected reception field [Fig. 2(c)].
For implementation, focus should be on this section. Fig. 2(c) illustrates local
slice extension method.

Coarse localization step This step has a two-fold goal, namely, detecting and
obtaining the coarse location and size of the projected reception field. Oblique
patterns with the form of Eq. (4) are projected. The obtained intensities are
arranged as Eq. (7), and 1D IDFT is applied to the resulting quantities. A
Kaiser window [18], wherein the shape parameter β is set as 5, is applied on
the sampled low frequency samples to eliminate ringing effect. Coarse projection
functions fC

θ (ρ;u, v) can then be obtained. The coarse location of the projected
reception field Cθ(ρ;u, v)can be determined, which is a mask that has a value
of one when the reconstructed coarse projection functions are greater than the
noise threshold, and zero otherwise. The size of the projected reception field
Ms(θ;u, v) is determined between the length in the first position greater than
the noise threshold and the last position greater than the noise threshold. The
number of frequencies for coarse localization is set as 10 in the present paper.
Refer to supplementary material for a theoretical analysis of the relationship
between localization accuracy and frequency number in the coarse localization
step, and how the number of frequencies for coarse localization is chosen.

Fine localization step The fine projection patterns are in fact the 1D case
of the periodic extension patterns introduced in reference [13]. Refer to sup-
plementary material for detailed information on theoretical aspect of local slice
extension method. Fine localization step contains three sub-steps.

First, the fine location patterns with the following form are projected

P̃i(u
′, v′; k, θ) = a+ b · cos[2πkθ

Mθ
(u′ cos θ + v′ sin θ) +

2πi

S
], (9)
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where θ is the angle between the integral direction of the projection function
and horizontal axis. i denotes the phase step, and take values of i=0, 1, . . . S−1.
a and b are the average and contrast of the patterns. k is the discrete frequency
samples, and takes the value of kθ=0, 1 . . .Mθ−1. Mθ is the size of the maximum
of θ projected reception field for each camera pixel, and is defined by

Mθ = max
(u,v)

[Ms(θ;u, v)]. (10)

Due to the excellent compressive property of Fourier spectrum, partial fre-
quencies can be used to obtain a satisfactory result. We tested the subpixel
matched error with respect to different ratio of sampled frequencies, and chose
a scan ratio of 25% in the present paper. This means that only the first 25 %
frequencies are required to be captured. The unscanned frequencies are filled
with zeros. Refer to supplementary material for detailed information.

Second, the captured intensities when each pattern is projected are arranged
as Eq. (7), and 1D IDFT is applied to reconstruct slice patch fB

θ (ρ;u, v). This re-
constructed slice patch is then extended periodically for the projection functions
with resolution of Lθ, and can be expressed by

f̃F
θ (ρ;u, v) =

⌈
Lθ
Mθ

⌉∑
r=0

fB
θ (ρ− rMθ;u, v), (11)

where r is integer, and ρ=0, 1 . . . Lθ − 1.
Finally, the fine projection functions are reconstructed by preserving the

nonzero region of Cθ(ρ;u, v) obtained from coarse localization step, as expressed
by

fr
θ (ρ;u, v) = f̃F

θ (ρ;u, v) � Cθ(ρ;u, v), (12)

where � denote the element-wise product.
Compared with PSI, the capture complexity of pPSI is reduced from O(Ms

2)
to O(Ms), where Ms is the size of the reception field.

5 Experiments and Evaluations

The experimental setup consisted of a camera and a projector (Fig. 1). The
resolutions of the camera and projector are 1600×1200 and 1920×1080, respec-
tively. The frame rate of the projector is synchronized with the frame rate of the
camera. The capture rate of the system was 165 frames per second (fps). Several
challenging scenarios were validated by pPSI. Refer to supplementary material
for comparision of pPSI with micro-phase shifting.

5.1 Compound Scene

A compound scene, which contains a triangular groove and a candle, is used
to compare pPSI and PSI. The image of the investigated scene is shown in Fig.
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3(a). Oblique patterns with four orientations of θ=0◦, 45◦, 90◦, 135◦are projected.
The length of the reception field for each direction was 150 according to the
coarse localization step, which results in a total number of 336 patterns by
pPSI. The steps for choosing the number of slices and the calculation of pattern
number required by pPSI are provided in the supplementary material. Total
acquisition time was 2 seconds. The reconstructed 3D shape is shown in Fig.
3(b). The number of patterns required by PSI is 51,000. Total acquisition time is
about 5 minutes. Thus, pPSI provids about 150-fold improvement in the present
experiment. The error map between pPSI and PSI is shown in Fig. 3(c). The
root-mean-square (RMS) error is 0.023 (mm). This experiment illustrates that
pPSI is both efficient and robust for 3D reconstruction in situations dominated
by global illumination.

The LTCs for three typical points are shown in Figs. 3(e), (g) and (i). The
coordinate of each correspondence point is also shown. We provided the coor-
dinate of each correspondence point calculated by pPSI in Figs. 3 (d), (f) and
(h). These correspondence points are calculated as intersection points of the
projection lines, as shown in Figs. 3 (d), (f) and (h). The differences of these
correspondence point calculated by pPSI and PSI are also shown.

5.2 Inter-reflections

In this subsection, pPSI is tested in situations dominated by inter-reflections.
In the first scene, a gypsum bear was placed near a mirror [Fig. 4(a)]. High-
frequency inter-reflections result in overlapped patterns, which is challenging
for FPP. In the second scene [Fig. 4(b)], two metal blades were measured. The
specular reflection also incurs overlapped patterns, which results in large data
missing areas.

Oblique patterns with four orientations of θ=0◦, 45◦, 90◦, 135◦are projected
for these two scenes. The length of the reception field for each direction was 150
according to the coarse localization step, which results in a total number of 336
patterns by pPSI. Total acquisition time was 2 seconds. Compared to PSI, pPSI
achieved about 150-fold improvement in terms of acquisition time.

The accuracy of pPSI in situations dominated by inter-reflections is analyzed
by a V-Groove that contains two metal gauge blocks [Fig. 5(a)]. A plane was
fitted for the upper and lower plane separately. The RMS error between the fitted
planes and data points of the upper plane and lower plane was 0.021 (mm) and
0.015 (mm), respectively.

5.3 Subsurface Scattering

In this subsection, pPSI is tested in situations dominated by subsurface scatter-
ing. In the first scene, a jade horse was investigated [Fig. 4(c)]. Strong subsurface
scattering results in degraded patterns, which is challenging for FPP. In the sec-
ond scene, a white onion and a pear was investigated. FPP method still failed
to reconstruct satisfactory 3D shape. pPSI and PSI are able to reconstruct high
quality 3D shapes for these two challenging scenes.
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Fig. 3. Comparison between pPSI and PSI using the compound scene. (a) The com-
pound scene contains inter-reflections and subsurface scattering. The camera coordi-
nates are depicted. The positions of three points, namely points A, B, and C, are
indicated by red circles. The intersection positions by pPSI and LTCs by PSI of these
three points are shown in (d) – (i). (b) 3D shape reconstructed by pPSI. (c) Error map
of the point cloud data between pPSI and PSI. RMS error was 0.023 mm. (d), (f) and
(h) are the intersection points calculated by pPSI. The camera positions are indicated
on the upper right corner. On the upper left corner of each of these subfigures, a circle
with a letter inside indicates the point that corresponds to the subfigure. (e), (g) and
(i) are the light transport coefficients and the subpixel matched positions calculated
by PSI. The difference of the subpixel matched positions between pPSI and PSI are
shown in (d), (f) and (h).

The measurement parameters are the same to that in Section 5.2. The number
of projected patterns is 336. The difference between pPSI and PSI is negligible,
but pPSI achieved about 150-fold improvement in terms of acquisition time.

The accuracy of pPSI in situations dominated by subsurface scattering is
analyzed by a polyamide sphere with diameter of 25.449 (mm) [Fig. 5(b)]. A
sphere was fitted by the reconstructd points. The RMS error between the fitted
sphere and the reconstructed data points was 0.031 (mm), and the diameter of
the fitted sphere was 25.432 (mm). Thus, the absolut reconstruction error of
pPSI was 0.017mm, and the uncertainty of the measurement was 0.031mm.
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Fig. 4. Comparison of 3D shape reconstruction results among FPP, PSI and pPSI. The
overlapped/degraded patterns are shown. (a) Gypsum bear. A mirror was placed near
the bear such that high frequency strong inter-reflections dominate. (b) Metal blades.
(c) Jade horse. (d) White onion and pear.

5.4 Step Edges

Fringe aliasing that occurs at step edges causes the missing data at step edges.
We used three standard metal cylinder objects with diameters of 6.000 (mm),
7.000 (mm) and 8.000 (mm), as shown in Fig. 6(a), to test accuracy at step edges.
The accuracy of the reconstructed diameter reflects the effect of the method used
because the data points reconstructed by FPP tend to disappear near the step
edges. The reconstructed results by FPP and pPSI are shown in Figs. 6(b)-
(d). The black regions are the results reconstructed by FPP. The blue rings
correspond to the area reconstructed by pPSI that were missed by FPP due to
fringe aliasing at step edges. pPSI obtains more accurate results than FPP. The
experimental data are summarized in Table 1.

6 Conclusion

In the present paper, pPSI is introduced for efficient and robust correspondence
matching in instances dominated by global illumination. The relationship be-
tween LTCs and projection functions is demonstrated theoretically. The oblique
sinusoidal pattern illumination mode is proposed. The local maximum constraint
is introduced to identify the candidate correspondence points by intersecting the
region that satisfies the local maximum constraint. Local slice extension method
is introduced to further accelerate capture efficiency. Several challenging scenes
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Fig. 5. Accuracy analysis of pPSI. (a) Accuracy analysis using V-Groove when inter-
reflections are present. (b) Accuracy analysis using translucent sphere when subsurface
scattering is present.

Table 1. Accuracy analysis data on metal cylinders

Diameter
(mm)

FPP method pPSI method
Measured
Diameter
(mm)

Absolute
Error
(mm)

Measured
Diameter
(mm)

Absolute
Error
(mm)

6.000 5.827 0.173 5.941 0.059
7.000 6.853 0.147 6.942 0.058
8.000 7.860 0.140 7.941 0.059

are measured and compared, which validates that pPSI achieves efficient and
robust 3D shape measurement in the presence of global illumination.

Fig. 6. Accuracy analysis by standard objects (step edges). (a) Cylinder standards.
(b-d) The 3D data of the end surface. The pPSI results and FPP results are shown
together. Black points correspond to FPP results, while blue points are pPSI results.



Projective Parallel Single-pixel Imaging 15

References

1. Chen, T., Lensch, H.P., Fuchs, C., Seidel, H.P.: Polarization and phase-shifting for
3d scanning of translucent objects. In: 2007 IEEE conference on computer vision
and pattern recognition. pp. 1–8. IEEE (2007)

2. Chen, T., Seidel, H.P., Lensch, H.P.: Modulated phase-shifting for 3d scanning.
In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8.
IEEE (2008)

3. Chiba, N., Hashimoto, K.: 3d measurement by estimating homogeneous light trans-
port (hlt) matrix. In: 2017 IEEE International Conference on Mechatronics and
Automation (ICMA). pp. 1763–1768. IEEE (2017)

4. Clark, J., Trucco, E., Wolff, L.B.: Using light polarization in laser scanning. Image
and Vision Computing 15(2), 107–117 (1997)

5. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Ac-
quiring the reflectance field of a human face. In: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques. pp. 145–156 (2000)

6. Dizeu, F.B.D., Boisvert, J., Drouin, M.A., Godin, G., Rivard, M., Lamouche, G.:
Frequency shift triangulation: a robust fringe projection technique for 3d shape
acquisition in the presence of strong interreflections. In: 2019 International Con-
ference on 3D Vision (3DV). pp. 194–203. IEEE (2019)

7. Garg, G., Talvala, E.V., Levoy, M., Lensch, H.P.: Symmetric photography: Exploit-
ing data-sparseness in reflectance fields. In: Rendering Techniques. pp. 251–262
(2006)

8. Gorthi, S.S., Rastogi, P.: Fringe projection techniques: whither we are? Optics and
lasers in engineering 48(ARTICLE), 133–140 (2010)

9. Gu, J., Kobayashi, T., Gupta, M., Nayar, S.K.: Multiplexed illumination for scene
recovery in the presence of global illumination. In: International Conference on
Computer Vision (2011)

10. Gupta, M., Nayar, S.K.: Micro phase shifting. In: 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 813–820. IEEE (2012)

11. Hu, Q., Harding, K.G., Du, X., Hamilton, D.: Shiny parts measurement using color
separation. Proceedings of SPIE - The International Society for Optical Engineer-
ing 6000, 125–132 (2005)

12. Inokuchi, S.: Range imaging system for 3-d object recognition. ICPR, 1984 pp.
806–808 (1984)

13. Jiang, H., Li, Y., Zhao, H., Li, X., Xu, Y.: Parallel single-pixel imaging: A general
method for direct–global separation and 3d shape reconstruction under strong
global illumination. International Journal of Computer Vision 129(4), 1060–1086
(2021)

14. Jiang, H., Yan, Y., Li, X., Zhao, H., Li, Y., Xu, Y.: Separation of interreflections
based on parallel single-pixel imaging. Optics Express 29(16), 26150–26164 (2021)

15. Jiang, H., Yang, Q., Li, X., Zhao, H., Xu, Y.: 3d shape measurement in the pres-
ence of strong interreflections by using single-pixel imaging in a camera–projector
system. Optics Express 29(3) (2021)

16. Jiang, H., Zhai, H., Xu, Y., Li, X., Zhao, H.: 3d shape measurement of translucent
objects based on fourier single-pixel imaging in projector-camera system. Optics
express 27(23), 33564–33574 (2019)

17. Jiang, H., Zhou, Y., Zhao, H.: Using adaptive regional projection to measure parts
with strong reflection. In: AOPC 2017: 3D Measurement Technology for Intelli-
gent Manufacturing. vol. 10458, p. 104581A. International Society for Optics and
Photonics (2017)



16 Y. Li et al.

18. Kaiser, J.F.: Nonrecursive digital filter design using the i 0-sinh window function.
In: Proc. 1974 IEEE International Symposium on Circuits & Systems, San Fran-
cisco DA, April. pp. 20–23 (1974)

19. Li, Y., Jiang, H., Zhao, H., Li, X., Wang, Y., Xu, Y.: Compressive parallel single-
pixel imaging for efficient 3d shape measurement in the presence of strong inter-
reflections by using a sampling fourier strategy. Optics Express 29(16), 25032–
25047 (2021)

20. Masselus, V., Peers, P., Dutre, P., Willems, Y.D.: Relighting with 4d incident light
fields. Acm Transactions on Graphics 22(3), p.613–620 (2003)

21. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct
and global components of a scene using high frequency illumination. In: ACM
SIGGRAPH 2006 Papers, pp. 935–944 (2006)

22. O’Toole, M., Mather, J., Kutulakos, K.N.: 3d shape and indirect appearance by
structured light transport. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 3246–3253 (2014)

23. O’Toole, M., Raskar, R., Kutulakos, K.N.: Primal-dual coding to probe light trans-
port. ACM Trans. Graph. 31(4), 39–1 (2012)

24. Park, J., Kak, A.: 3d modeling of optically challenging objects. IEEE Transactions
on Visualization and Computer Graphics 14(2), 246–262 (2008)

25. Peers, P., Mahajan, D.K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R.,
Debevec, P.: Compressive light transport sensing. ACM Transactions on Graphics
(TOG) 28(1), 1–18 (2009)

26. Sen, P., Chen, B., Garg, G., Marschner, S., Horowitz, M., Levoy, M., Lensch, H.:
Dual photography. Acm Transactions on Graphics 24(3), 745–755 (2005)

27. Sen, P., Darabi, S.: Compressive dual photography. In: Computer Graphics Forum.
vol. 28, pp. 609–618. Wiley Online Library (2009)

28. Wang, Y., Zhao, H., Jiang, H., Li, X., Li, Y., Xu, Y.: Paraxial 3d shape mea-
surement using parallel single-pixel imaging. Optics Express 29(19), 30543–30557
(2021)

29. Xu, Y., Aliaga, D.G.: Robust pixel classification for 3d modeling with structured
light. In: Proceedings of Graphics Interface 2007. pp. 233–240 (2007)

30. Xu, Y., Aliaga, D.G.: An adaptive correspondence algorithm for modeling scenes
with strong interreflections. IEEE Transactions on Visualization and Computer
Graphics 15(3), 465–480 (2009)

31. Zhang, Y., Lau, D., Wipf, D.: Sparse multi-path corrections in fringe projection
profilometry. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 13344–13353 (2021)

32. Zhang, Y., Lau, D.L., Yu, Y.: Causes and corrections for bimodal multi-path scan-
ning with structured light. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 4431–4439 (2019)

33. Zhao, H., Xu, Y., Jiang, H., Li, X.: 3d shape measurement in the presence of strong
interreflections by epipolar imaging and regional fringe projection. Optics express
26(6), 7117–7131 (2018)

34. Zuo, C., Feng, S., Huang, L., Tao, T., Yin, W., Chen, Q.: Phase shifting algorithms
for fringe projection profilometry: A review. Optics and Lasers in Engineering 109,
23–59 (2018)

35. Zuo, C., Huang, L., Zhang, M., Chen, Q., Asundi, A.: Temporal phase unwrapping
algorithms for fringe projection profilometry: A comparative review. Optics and
lasers in engineering 85, 84–103 (2016)


